1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/*
This file is part of darktable,
copyright (c) 2014 Marcello Perathoner.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
typedef struct dt_iop_roi_t {
int x, y, width, height;
float scale;
} dt_iop_roi_t;
typedef struct {
int x, y;
int width, height;
} cairo_rectangle_int_t;
typedef struct {
int size;
int resolution;
} dt_liquify_kernel_descriptor_t;
float kmix (global const float *k,
global const dt_liquify_kernel_descriptor_t* kdesc,
float t)
{
t = fabs (t * kdesc->resolution);
float flor;
t = fract (t, &flor);
int i = (int) flor;
return mix (k[i], k[i+1], t);
}
/**
* Image convolution with a discrete kernel.
*
* Given a one-dimensional signal with samples \f$s_i\f$, for integer
* values of \f$i\f$, the value \f$S(x)\f$ interpolated at an
* arbitrary real argument \f$x\f$ is obtained by the discrete
* convolution of those samples with the kernel; namely,
*
* \f{S(x) = \sum_{i=\lfloor x \rfloor - a + 1}^{\lfloor x \rfloor + a}
* s_{i} K(x - i),\f}
*
* where a is the filter size parameter and \f$\lfloor x \rfloor\f$ is
* the floor function. The bounds of this sum are such that the kernel
* is zero outside of them.
*
* @param in
* @param out
* @param roi_in
* @param roi_out
* @param map
* @param map_extent
* @param kdesc Kernel description.
* @param k Discrete kernel.
*/
kernel void
warp_kernel (read_only image2d_t in,
write_only image2d_t out,
global dt_iop_roi_t *roi_in,
global dt_iop_roi_t *roi_out,
global float2 *map,
global cairo_rectangle_int_t *map_extent,
global dt_liquify_kernel_descriptor_t *kdesc,
global float *k)
{
int2 pos = (int2) (get_global_id (0), get_global_id (1));
// stop surplus workers in the last workgroup
if (pos.x >= map_extent->width || pos.y >= map_extent->height)
return;
float2 warp = map[pos.y * map_extent->width + pos.x];
const int2 map_origin = (int2) (map_extent->x, map_extent->y);
pos += map_origin;
// roi_in >= roi_out, so we only have to check roi_out
if (pos.x < roi_out->x || pos.x >= roi_out->x + roi_out->width
|| pos.y < roi_out->y || pos.y >= roi_out->y + roi_out->height)
return;
if (warp.x == 0.0f && warp.y == 0.0f)
return;
const int2 roi_in_origin = (int2) (roi_in->x, roi_in->y);
const int2 roi_out_origin = (int2) (roi_out->x, roi_out->y);
float2 in_pos = convert_float2 (pos - roi_in_origin) + warp;
const int a = kdesc->size; // half the kernel width
float2 lkernel[6]; // 2 * the biggest a
float2 *lk = lkernel + a - 1;
float2 norm = (float2) 0.0f;
for (int i = 1 - a; i <= a; ++i)
{
norm.x += (lk[i].x = kmix (k, kdesc, in_pos.x - floor (in_pos.x) - i));
norm.y += (lk[i].y = kmix (k, kdesc, in_pos.y - floor (in_pos.y) - i));
}
in_pos = floor (in_pos);
int2 sample_pos;
float4 Sxy = (float4) 0.0f;
// loop over support region (eg. 6x6 pixels for lanczos3)
for (sample_pos.y = 1 - a; sample_pos.y <= a; ++sample_pos.y)
for (sample_pos.x = 1 - a; sample_pos.x <= a; ++sample_pos.x)
Sxy += (read_imagef (in, sampleri, in_pos + convert_float2 (sample_pos))
* lk[sample_pos.x].x * lk[sample_pos.y].y);
Sxy = Sxy / (norm.x * norm.y);
Sxy = clamp (Sxy, 0.0f, 1.0f);
write_imagef (out, pos - roi_out_origin, Sxy);
}
|