1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
This file is part of darktable,
copyright (c) 2023 darktable developers.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "colorspace.h"
#include "common.h"
typedef struct dt_iop_sigmoid_value_order_t
{
size_t min;
size_t mid;
size_t max;
} dt_iop_sigmoid_value_order_t;
static void _pixel_channel_order(const float *pix_in, dt_iop_sigmoid_value_order_t *pixel_value_order)
{
if (pix_in[0] >= pix_in[1])
{
if (pix_in[1] > pix_in[2])
{ // Case 1: r >= g > b
pixel_value_order->max = 0;
pixel_value_order->mid = 1;
pixel_value_order->min = 2;
}
else if (pix_in[2] > pix_in[0])
{ // Case 2: b > r >= g
pixel_value_order->max = 2;
pixel_value_order->mid = 0;
pixel_value_order->min = 1;
}
else if (pix_in[2] > pix_in[1])
{ // Case 3: r >= b > g
pixel_value_order->max = 0;
pixel_value_order->mid = 2;
pixel_value_order->min = 1;
}
else
{ // Case 4: r == g == b
// No change of the middle value, just assign something.
pixel_value_order->max = 0;
pixel_value_order->mid = 1;
pixel_value_order->min = 2;
}
}
else
{
if (pix_in[0] >= pix_in[2])
{ // Case 5: g > r >= b
pixel_value_order->max = 1;
pixel_value_order->mid = 0;
pixel_value_order->min = 2;
}
else if (pix_in[2] > pix_in[1])
{ // Case 6: b > g > r
pixel_value_order->max = 2;
pixel_value_order->mid = 1;
pixel_value_order->min = 0;
}
else
{ // Case 7: g >= b > r
pixel_value_order->max = 1;
pixel_value_order->mid = 2;
pixel_value_order->min = 0;
}
}
}
static inline float4 _desaturate_negative_values(const float4 i)
{
const float pixel_average = fmax((i.x + i.y + i.z) / 3.0f, 0.0f);
const float min_value = fmin(fmin(i.x, i.y), i.z);
const float saturation_factor = min_value < 0.0f ? -pixel_average / (min_value - pixel_average) : 1.0f;
return pixel_average + saturation_factor * (i - pixel_average);
}
static inline float _generalized_loglogistic_sigmoid_scalar(const float value,
const float magnitude,
const float paper_exp,
const float film_fog,
const float film_power,
const float paper_power)
{
const float clamped_value = fmax(value, 0.0f);
// The following equation can be derived as a model for film + paper but it has a pole at 0
// magnitude * powf(1.0 + paper_exp * powf(film_fog + value, -film_power), -paper_power);
// Rewritten on a stable around zero form:
const float film_response = pow(film_fog + clamped_value, film_power);
const float paper_response = magnitude * pow(film_response / (paper_exp + film_response), paper_power);
// Safety check for very large floats that cause numerical errors
return isnan(paper_response) ? magnitude : paper_response;
}
static inline float4 _generalized_loglogistic_sigmoid_vector(const float4 i,
const float magnitude,
const float paper_exp,
const float film_fog,
const float film_power,
const float paper_power)
{
//clamped_value
float4 io = fmax(i, 0.0f);
// The following equation can be derived as a model for film + paper but it has a pole at 0
// magnitude * powf(1.0 + paper_exp * powf(film_fog + i, -film_power), -paper_power);
// Rewritten on a stable around zero form:
//film_response
io = pow(film_fog + io, film_power);
//paper_response
io = magnitude * pow(io / (paper_exp + io), paper_power);
// Safety check for very large floats that cause numerical errors
return isnan(io) ? magnitude : io;
}
// Linear interpolation of hue that also preserve sum of channels
// Assumes hue_preservation strictly in range [0, 1]
static inline void _preserve_hue_and_energy(float *pix_io,
const float *per_channel,
const dt_iop_sigmoid_value_order_t order,
const float hue_preservation)
{
// Naive Hue correction of the middle channel
const float chroma = pix_io[order.max] - pix_io[order.min];
const float midscale = chroma != 0.f ? (pix_io[order.mid] - pix_io[order.min]) / chroma : 0.f;
const float full_hue_correction =
per_channel[order.min] + (per_channel[order.max] - per_channel[order.min]) * midscale;
const float naive_hue_mid =
(1.0f - hue_preservation) * per_channel[order.mid] + hue_preservation * full_hue_correction;
const float per_channel_energy = per_channel[0] + per_channel[1] + per_channel[2];
const float naive_hue_energy = per_channel[order.min] + naive_hue_mid + per_channel[order.max];
const float pix_in_min_plus_mid = pix_io[order.min] + pix_io[order.mid];
const float blend_factor = pix_in_min_plus_mid != 0.f ? 2.0f * pix_io[order.min] / pix_in_min_plus_mid : 0.f;
const float energy_target = blend_factor * per_channel_energy + (1.0f - blend_factor) * naive_hue_energy;
// Preserve hue constrained to maintain the same energy as the per channel result
if (naive_hue_mid <= per_channel[order.mid])
{
const float corrected_mid =
((1.0f - hue_preservation) * per_channel[order.mid] + hue_preservation *
(midscale * per_channel[order.max] + (1.0f - midscale) * (energy_target - per_channel[order.max]))) /
(1.0f + hue_preservation * (1.0f - midscale));
pix_io[order.min] = energy_target - per_channel[order.max] - corrected_mid;
pix_io[order.mid] = corrected_mid;
pix_io[order.max] = per_channel[order.max];
}
else
{
const float corrected_mid =
((1.0f - hue_preservation) * per_channel[order.mid] +
hue_preservation * (per_channel[order.min] * (1.0f - midscale) +
midscale * (energy_target - per_channel[order.min]))) / (1.0f + hue_preservation * midscale);
pix_io[order.min] = per_channel[order.min];
pix_io[order.mid] = corrected_mid;
pix_io[order.max] = energy_target - per_channel[order.min] - corrected_mid;
}
}
kernel void
sigmoid_loglogistic_per_channel (read_only image2d_t in,
write_only image2d_t out,
const int width,
const int height,
const float white_target,
const float paper_exp,
const float film_fog,
const float contrast_power,
const float skew_power,
const float hue_preservation,
constant const float *const pipe_to_base,
constant const float *const base_to_rendering,
constant const float *const rendering_to_pipe)
{
const unsigned int x = get_global_id(0);
const unsigned int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 i = read_imagef(in, sampleri, (int2)(x, y));
float alpha = i.w;
i = matrix_product_float4(i, pipe_to_base);
// Force negative values to zero
i = _desaturate_negative_values(i);
// Convert to rendering primaries
i = matrix_product_float4(i, base_to_rendering);
float pix_array[3] = {i.x, i.y, i.z};
i = _generalized_loglogistic_sigmoid_vector(i, white_target, paper_exp, film_fog, contrast_power, skew_power);
float per_channel[3] = {i.x, i.y, i.z};
// Hue correction by scaling the middle value relative to the max and min values.
dt_iop_sigmoid_value_order_t pixel_value_order;
_pixel_channel_order(pix_array, &pixel_value_order);
_preserve_hue_and_energy(pix_array, per_channel, pixel_value_order, hue_preservation);
i.xyz = (float3)(pix_array[0], pix_array[1], pix_array[2]);
i = matrix_product_float4(i, rendering_to_pipe);
// Copy over the alpha channel
i.w = alpha;
write_imagef(out, (int2)(x, y), i);
}
kernel void
sigmoid_loglogistic_rgb_ratio(read_only image2d_t in,
write_only image2d_t out,
const int width,
const int height,
const float white_target,
const float black_target,
const float paper_exp,
const float film_fog,
const float contrast_power,
const float skew_power)
{
const unsigned int x = get_global_id(0);
const unsigned int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 i = read_imagef(in, sampleri, (int2)(x, y));
float alpha = i.w;
// Force negative values to zero
i = _desaturate_negative_values(i);
// Preserve color ratios by applying the tone curve on a luma estimate and then scale the RGB tripplet uniformly
const float luma = (i.x + i.y + i.z) / 3.0f;
const float mapped_luma =
_generalized_loglogistic_sigmoid_scalar(luma, white_target, paper_exp, film_fog, contrast_power, skew_power);
if (luma > 1e-9f)
{
const float scaling_factor = mapped_luma / luma;
i = scaling_factor * i;
}
else
{
i = (float4)mapped_luma;
}
// get min an max;
const float pixel_min = fmin(fmin(i.x, i.y), i.z);
const float pixel_max = fmax(fmax(i.x, i.y), i.z);
// Chroma relative display gamut and scene "mapping" gamut.
const float epsilon = 1e-6f;
// "Distance" to max channel = white_target
const float display_border_vs_chroma_white = (white_target - mapped_luma) / (pixel_max - mapped_luma + epsilon);
// "Distance" to min_channel = black_target
const float display_border_vs_chroma_black = (black_target - mapped_luma) / (pixel_min - mapped_luma - epsilon);
const float display_border_vs_chroma = fmin(display_border_vs_chroma_white, display_border_vs_chroma_black);
// "Distance" to min channel = 0.0
const float chroma_vs_mapping_border = (mapped_luma - pixel_min) / (mapped_luma + epsilon);
// Hyperbolic gamut compression
// Small chroma values, i.e. colors close to the acromatic axis are preserved while large chroma values are compressed.
const float pixel_chroma_adjustment = 1.0f / (chroma_vs_mapping_border * display_border_vs_chroma + epsilon);
const float hyperbolic_chroma =
2.0f * chroma_vs_mapping_border /
(1.0f - chroma_vs_mapping_border * chroma_vs_mapping_border + epsilon) * pixel_chroma_adjustment;
const float hyperbolic_z = sqrt(hyperbolic_chroma * hyperbolic_chroma + 1.0f);
const float chroma_factor = hyperbolic_chroma / (1.0f + hyperbolic_z) * display_border_vs_chroma;
i = mapped_luma + chroma_factor * (i - mapped_luma);
// Copy over the alpha channel
i.w = alpha;
write_imagef(out, (int2)(x, y), i);
}
|