File: extended.cl

package info (click to toggle)
darktable 5.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 65,660 kB
  • sloc: ansic: 367,579; cpp: 102,778; xml: 20,091; lisp: 15,099; sh: 3,771; javascript: 3,264; perl: 1,925; python: 1,551; ruby: 975; makefile: 543; asm: 46; sql: 38; awk: 21
file content (1094 lines) | stat: -rw-r--r-- 36,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/*
    This file is part of darktable,
    copyright (c) 2009--2014 Ulrich Pegelow

    darktable is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    darktable is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with darktable.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "common.h"
#include "colorspace.h"
#include "color_conversion.h"


__kernel void
graduatedndp (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float4 color,
              const float density, const float length_base, const float length_inc_x, const float length_inc_y)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float len = length_base + y*length_inc_y + x*length_inc_x;

  const float t = 0.693147181f * (density * clipf(0.5f+len)/8.0f);
  const float d1 = t * t * 0.5f;
  const float d2 = d1 * t * 0.333333333f;
  const float d3 = d2 * t * 0.25f;
  float dens = 1.0f + t + d1 + d2 + d3;
  dens *= dens;
  dens *= dens;
  dens *= dens;

  pixel.xyz = fmax((float4)0.0f, pixel / (color + ((float4)1.0f - color) * (float4)dens)).xyz;

  write_imagef (out, (int2)(x, y), pixel);
}


__kernel void
graduatedndm (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float4 color,
              const float density, const float length_base, const float length_inc_x, const float length_inc_y)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float len = length_base + y*length_inc_y + x*length_inc_x;

  const float t = 0.693147181f * (-density * clipf(0.5f-len)/8.0f);
  const float d1 = t * t * 0.5f;
  const float d2 = d1 * t * 0.333333333f;
  const float d3 = d2 * t * 0.25f;
  float dens = 1.0f + t + d1 + d2 + d3;
  dens *= dens;
  dens *= dens;
  dens *= dens;

  pixel.xyz = fmax((float4)0.0f, pixel * (color + ((float4)1.0f - color) * (float4)dens)).xyz;

  write_imagef (out, (int2)(x, y), pixel);
}

__kernel void
colorize (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
          const float mix, const float L, const float a, const float b)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  pixel.x = pixel.x * mix + L - 50.0f * mix;
  pixel.y = a;
  pixel.z = b;

  write_imagef (out, (int2)(x, y), pixel);
}


float
GAUSS(float center, float wings, float x)
{
  const float b = -1.0f + center * 2.0f;
  const float c = (wings / 10.0f) / 2.0f;
  return exp(-(x-b)*(x-b)/(c*c));
}


__kernel void
relight (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
         const float center, const float wings, const float ev)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float lightness = pixel.x/100.0f;
  const float value = -1.0f+(lightness*2.0f);
  float gauss = GAUSS(center, wings, value);

  if(isnan(gauss) || isinf(gauss))
    gauss = 0.0f;

  float relight = 1.0f / exp2(-ev * clipf(gauss));

  if(isnan(relight) || isinf(relight))
    relight = 1.0f;

  pixel.x = 100.0f * clipf(lightness*relight);

  write_imagef (out, (int2)(x, y), pixel);
}


typedef enum _channelmixer_operation_mode_t
{
  OPERATION_MODE_RGB = 0,
  OPERATION_MODE_GRAY = 1,
  OPERATION_MODE_HSL_V1 = 2,
  OPERATION_MODE_HSL_V2 = 3,
} _channelmixer_operation_mode_t;


__kernel void
channelmixer (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
              const int operation_mode, global const float *hsl_matrix,
              global const float *rgb_matrix)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
  float4 opixel = (float4)(0.0f, 0.0f, 0.0f, pixel.w);
  float gray, hmix, smix, lmix;

  switch(operation_mode)
  {
    case OPERATION_MODE_RGB:
      opixel.x = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
      opixel.y = fmax(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5], 0.0f);
      opixel.z = fmax(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8], 0.0f);
      break;

    case OPERATION_MODE_GRAY:
      gray = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
      opixel = (float4)(gray, gray, gray, pixel.w);
      break;

    case OPERATION_MODE_HSL_V1:
      hmix = clipf(pixel.x * hsl_matrix[0]) + pixel.y * hsl_matrix[1] + pixel.z * hsl_matrix[2];
      smix = clipf(pixel.x * hsl_matrix[3]) + pixel.y * hsl_matrix[4] + pixel.z * hsl_matrix[5];
      lmix = clipf(pixel.x * hsl_matrix[6]) + pixel.y * hsl_matrix[7] + pixel.z * hsl_matrix[8];

      if( hmix != 0.0f || smix != 0.0f || lmix != 0.0f )
      {
        float4 hsl = RGB_2_HSL(pixel);
        hsl.x = (hmix != 0.0f ) ? hmix : hsl.x;
        hsl.y = (smix != 0.0f ) ? smix : hsl.y;
        hsl.z = (lmix != 0.0f ) ? lmix : hsl.z;
        pixel = HSL_2_RGB(hsl);
      }

      opixel.x = clipf(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2]);
      opixel.y = clipf(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5]);
      opixel.z = clipf(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8]);
      break;

    case OPERATION_MODE_HSL_V2:
      hmix = clipf(pixel.x * hsl_matrix[0] + pixel.y * hsl_matrix[1] + pixel.z * hsl_matrix[2]);
      smix = clipf(pixel.x * hsl_matrix[3] + pixel.y * hsl_matrix[4] + pixel.z * hsl_matrix[5]);
      lmix = clipf(pixel.x * hsl_matrix[6] + pixel.y * hsl_matrix[7] + pixel.z * hsl_matrix[8]);
      if( hmix != 0.0f || smix != 0.0f || lmix != 0.0f )
      {
        pixel = (float4)(clipf(pixel.x), clipf(pixel.y), clipf(pixel.z), pixel.w);
        float4 hsl = RGB_2_HSL(pixel);
        hsl.x = (hmix != 0.0f ) ? hmix : hsl.x;
        hsl.y = (smix != 0.0f ) ? smix : hsl.y;
        hsl.z = (lmix != 0.0f ) ? lmix : hsl.z;
        pixel = HSL_2_RGB(hsl);
      }
      opixel.x = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
      opixel.y = fmax(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5], 0.0f);
      opixel.z = fmax(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8], 0.0f);
      break;
  }

  write_imagef (out, (int2)(x, y), opixel);
}


__kernel void
velvia (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
        const float strength, const float bias)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  // calculate vibrance, and apply boost velvia saturation at least saturated pixels
  const float pmax = fmax(pixel.x, fmax(pixel.y, pixel.z));     // max value in RGB set
  const float pmin = fmin(pixel.x, fmin(pixel.y, pixel.z));     // min value in RGB set
  const float plum = (pmax + pmin) / 2.0f;                // pixel luminocity
  const float psat = (plum <= 0.5f) ? (pmax-pmin)/(1e-5f + pmax+pmin) : (pmax-pmin)/(1e-5f + fmax(0.0f, 2.0f-pmax-pmin));

  const float pweight = clipf(((1.0f- (1.5f*psat)) + ((1.0f+(fabs(plum-0.5f)*2.0f))*(1.0f-bias))) / (1.0f+(1.0f-bias))); // The weight of pixel
  const float saturation = strength*pweight;      // So lets calculate the final affection of filter on pixel

  float4 opixel;

  opixel.x = clipf(pixel.x + saturation*(pixel.x-0.5f*(pixel.y+pixel.z)));
  opixel.y = clipf(pixel.y + saturation*(pixel.y-0.5f*(pixel.z+pixel.x)));
  opixel.z = clipf(pixel.z + saturation*(pixel.z-0.5f*(pixel.x+pixel.y)));
  opixel.w = pixel.w;

  write_imagef (out, (int2)(x, y), opixel);
}


__kernel void
colorcontrast (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
               const float4 scale, const float4 offset, const int unbound)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  pixel.xyz = (pixel * scale + offset).xyz;
  pixel.y = unbound ? pixel.y : clamp(pixel.y, -128.0f, 128.0f);
  pixel.z = unbound ? pixel.z : clamp(pixel.z, -128.0f, 128.0f);

  write_imagef (out, (int2)(x, y), pixel);
}


__kernel void
vibrance (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float amount)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float sw = sqrt(pixel.y*pixel.y + pixel.z*pixel.z)/256.0f;
  const float ls = 1.0f - amount * sw * 0.25f;
  const float ss = 1.0f + amount * sw;

  pixel.x *= ls;
  pixel.y *= ss;
  pixel.z *= ss;

  write_imagef (out, (int2)(x, y), pixel);
}

#define TEA_ROUNDS 8

void
encrypt_tea(unsigned int *arg)
{
  const unsigned int key[] = {0xa341316c, 0xc8013ea4, 0xad90777d, 0x7e95761e};
  const unsigned int delta = 0x9e3779b9;
  unsigned int v0 = arg[0], v1 = arg[1];
  unsigned int sum = 0;
  for(int i = 0; i < TEA_ROUNDS; i++)
  {
    sum += delta;
    v0 += ((v1 << 4) + key[0]) ^ (v1 + sum) ^ ((v1 >> 5) + key[1]);
    v1 += ((v0 << 4) + key[2]) ^ (v0 + sum) ^ ((v0 >> 5) + key[3]);
  }
  arg[0] = v0;
  arg[1] = v1;
}

float
tpdf(unsigned int urandom)
{
  float frandom = (float)urandom / (float)0xFFFFFFFFu;

  return (frandom < 0.5f ? (sqrt(2.0f*frandom) - 1.0f) : (1.0f - sqrt(2.0f*(1.0f - frandom))));
}


__kernel void
vignette (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
          const float2 scale, const float2 roi_center_scaled, const float2 expt,
          const float dscale, const float fscale, const float brightness, const float saturation,
          const float dither, const int unbound)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  unsigned int tea_state[2] = { mad24(y, width, x), 0 };
  encrypt_tea(tea_state);

  const float2 pv = fabs((float2)(x,y) * scale - roi_center_scaled);

  const float cplen = pow(pow(pv.x, expt.x) + pow(pv.y, expt.x), expt.y);

  float weight = 0.0f;
  float dith = 0.0f;

  if(cplen >= dscale)
  {
    weight = ((cplen - dscale) / fscale);

    dith = (weight <= 1.0f && weight >= 0.0f) ? dither * tpdf(tea_state[0]) : 0.0f;

    weight = weight >= 1.0f ? 1.0f : (weight <= 0.0f ? 0.0f : 0.5f - cos(M_PI_F * weight) / 2.0f);
  }

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  if(weight > 0.0f)
  {
    const float falloff = brightness < 0.0f ? 1.0f + (weight * brightness) : weight * brightness;

    pixel.xyz = (brightness < 0.0f ? pixel * falloff + dith : pixel + falloff + dith).xyz;

    pixel.xyz = unbound ? pixel.xyz : clamp(pixel, (float4)0.0f, (float4)1.0f).xyz;

    const float mv = (pixel.x + pixel.y + pixel.z) / 3.0f;
    const float wss = weight * saturation;

    pixel.xyz = (pixel - (mv - pixel)* wss).xyz,

    pixel.xyz = unbound ? pixel.xyz : clamp(pixel, (float4)0.0f, (float4)1.0f).xyz;
  }

  write_imagef (out, (int2)(x, y), pixel);
}


/* kernel for the splittoning plugin. */
kernel void
splittoning (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
            const float compress, const float balance, const float shadow_hue, const float shadow_saturation,
            const float highlight_hue, const float highlight_saturation)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  float4 hsl = RGB_2_HSL(pixel);

  if(hsl.z < balance - compress || hsl.z > balance + compress)
  {
    hsl.x = hsl.z < balance ? shadow_hue : highlight_hue;
    hsl.y = hsl.z < balance ? shadow_saturation : highlight_saturation;
    const float ra = hsl.z < balance ? clipf(2.0f*fabs(-balance + compress + hsl.z))
                                     : clipf(2.0f*fabs(-balance - compress + hsl.z));

    float4 mixrgb = HSL_2_RGB(hsl);

    pixel.xyz = clamp(pixel * (1.0f - ra) + mixrgb * ra, (float4)0.0f, (float4)1.0f).xyz;
  }

  write_imagef (out, (int2)(x, y), pixel);
}

/* kernels to get the maximum value of an image */
kernel void
pixelmax_first (read_only image2d_t in, const int width, const int height, global float *accu, local float *buffer)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);
  const int xlsz = get_local_size(0);
  const int ylsz = get_local_size(1);
  const int xlid = get_local_id(0);
  const int ylid = get_local_id(1);

  const int l = ylid * xlsz + xlid;

  buffer[l] = (x < width && y < height) ? read_imagef(in, sampleri, (int2)(x, y)).x : -INFINITY;

  barrier(CLK_LOCAL_MEM_FENCE);

  const int lsz = mul24(xlsz, ylsz);

  for(int offset = lsz / 2; offset > 0; offset = offset / 2)
  {
    if (l < offset)
    {
      const float other = buffer[l + offset];
      const float mine =  buffer[l];
      buffer[l] = (mine > other) ? mine : other;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
  }

  const int xgid = get_group_id(0);
  const int ygid = get_group_id(1);
  const int xgsz = get_num_groups(0);

  const int m = mad24(ygid, xgsz, xgid);
  accu[m] = buffer[0];
}



__kernel void
pixelmax_second(global float* input, global float *result, const int length, local float *buffer)
{
  int x = get_global_id(0);
  float accu = -INFINITY;

  while (x < length)
  {
    float element = input[x];
    accu = (accu > element) ? accu : element;
    x += get_global_size(0);
  }

  const int lid = get_local_id(0);
  buffer[lid] = accu;

  barrier(CLK_LOCAL_MEM_FENCE);

  for(int offset = get_local_size(0) / 2; offset > 0; offset = offset / 2)
  {
    if (lid < offset)
    {
      float other = buffer[lid + offset];
      float mine = buffer[lid];
      buffer[lid] = (mine > other) ? mine : other;
    }
    barrier(CLK_LOCAL_MEM_FENCE);
  }

  if (lid == 0)
  {
    result[get_group_id(0)] = buffer[0];
  }
}


/* kernel for the global tonemap plugin: reinhard */
kernel void
global_tonemap_reinhard (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
            const float4 parameters)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float l = pixel.x * 0.01f;

  pixel.x = 100.0f * (l/(1.0f + l));

  write_imagef (out, (int2)(x, y), pixel);
}



/* kernel for the global tonemap plugin: drago */
kernel void
global_tonemap_drago (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
            const float4 parameters)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  const float eps = parameters.x;
  const float ldc = parameters.y;
  const float bl = parameters.z;
  const float lwmax = parameters.w;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float lw = pixel.x * 0.01f;

  pixel.x = 100.0f * (ldc * log(fmax(eps, lw + 1.0f)) / log(fmax(eps, 2.0f + (pow(lw/lwmax,bl)) * 8.0f)));

  write_imagef (out, (int2)(x, y), pixel);
}


/* kernel for the global tonemap plugin: filmic */
kernel void
global_tonemap_filmic (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
            const float4 parameters)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 pixel = read_imagef(in, sampleri, (int2)(x, y));

  const float l = pixel.x * 0.01f;
  const float m = fmax(0.0f, l - 0.004f);

  pixel.x = 100.0f * ((m*(6.2f*m+0.5f))/(m*(6.2f*m+1.7f)+0.06f));

  write_imagef (out, (int2)(x, y), pixel);
}


/* kernels for the colormapping module */
#define HISTN (1<<11)
#define MAXN 5

// inverse distant weighting according to D. Shepard's method; with power parameter 2.0
void
get_clusters(const float4 col, const int n, global float2 *mean, float *weight)
{
  float mdist = FLT_MAX;
  for(int k=0; k<n; k++)
  {
    const float dist2 = (col.y-mean[k].x)*(col.y-mean[k].x) + (col.z-mean[k].y)*(col.z-mean[k].y);  // dist^2
    weight[k] = dist2 > 1.0e-6f ? 1.0f/dist2 : -1.0f;                                                // direct hits marked as -1
    if(dist2 < mdist) mdist = dist2;
  }
  if(mdist < 1.0e-6f) for(int k=0; k<n; k++) weight[k] = weight[k] < 0.0f ? 1.0f : 0.0f;             // correction in case of direct hits
  float sum = 0.0f;
  for(int k=0; k<n; k++) sum += weight[k];
  if(sum > 0.0f) for(int k=0; k<n; k++) weight[k] /= sum;
}

kernel void
colormapping_histogram (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
            const float equalization, global int *target_hist, global float *source_ihist)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  const float L = read_imagef(in, sampleri, (int2)(x, y)).x;

  float dL = 0.5f*((L * (1.0f - equalization) + source_ihist[target_hist[(int)clamp(HISTN*L/100.0f, 0.0f, (float)HISTN-1.0f)]] * equalization) - L) + 50.0f;
  dL = clamp(dL, 0.0f, 100.0f);

  write_imagef (out, (int2)(x, y), (float4)(dL, 0.0f, 0.0f, 0.0f));
}

kernel void
colormapping_mapping (read_only image2d_t in, read_only image2d_t tmp, write_only image2d_t out, const int width, const int height,
            const int clusters, global float2 *target_mean, global float2 *source_mean, global float2 *var_ratio, global int *mapio)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));
  const float dL = read_imagef(tmp, sampleri, (int2)(x, y)).x;
  float weight[MAXN];
  float4 opixel = (float4)0.0f;

  opixel.x = 2.0f*(dL - 50.0f) + ipixel.x;
  opixel.x = clamp(opixel.x, 0.0f, 100.0f);

  get_clusters(ipixel, clusters, target_mean, weight);

  for(int c=0; c < clusters; c++)
  {
    opixel.y += weight[c] * ((ipixel.y - target_mean[c].x)*var_ratio[c].x + source_mean[mapio[c]].x);
    opixel.z += weight[c] * ((ipixel.z - target_mean[c].y)*var_ratio[c].y + source_mean[mapio[c]].y);
  }
  opixel.w = ipixel.w;

  write_imagef (out, (int2)(x, y), opixel);
}

#undef HISTN
#undef MAXN


/* kernel for the colorbalance module */
kernel void
colorbalance (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
              const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
  float4 sRGB = XYZ_to_sRGB(Lab_to_XYZ(Lab));

  // Lift gamma gain
  sRGB = (sRGB <= (float4)0.0031308f) ? 12.92f * sRGB : (1.0f + 0.055f) * dtcl_pow(sRGB, (float4)1.0f/2.4f) - (float4)0.055f;
  sRGB = dtcl_pow(fmax(((sRGB - (float4)1.0f) * lift + (float4)1.0f) * gain, (float4)0.0f), gamma_inv);
  sRGB = (sRGB <= (float4)0.04045f) ? sRGB / 12.92f : dtcl_pow((sRGB + (float4)0.055f) / (1.0f + 0.055f), (float4)2.4f);
  Lab.xyz = XYZ_to_Lab(sRGB_to_XYZ(sRGB)).xyz;

  write_imagef (out, (int2)(x, y), Lab);
}

kernel void
colorbalance_lgg (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
              const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey, const float saturation_out)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
  const float4 XYZ = Lab_to_XYZ(Lab);
  float4 RGB = XYZ_to_prophotorgb(XYZ);

  // saturation input
  if (saturation != 1.0f)
  {
    const float4 luma = XYZ.y;
    const float4 saturation4 = saturation;
    RGB = luma + saturation4 * (RGB - luma);
  }

  // Lift gamma gain
  RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, (float4)1.0f/2.2f);
  RGB = ((RGB - (float4)1.0f) * lift + (float4)1.0f) * gain;
  RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, gamma_inv * (float4)2.2f);

  // saturation output
  if (saturation_out != 1.0f)
  {
    const float4 luma = prophotorgb_to_XYZ(RGB).y;
    const float4 saturation_out4 = saturation_out;
    RGB = luma + saturation_out4 * (RGB - luma);
  }

  // fulcrum contrast
  if (contrast != 1.0f)
  {
    const float4 contrast4 = contrast;
    const float4 grey4 = grey;
    RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : pow(RGB / grey4, contrast4) * grey4;
  }

  Lab.xyz = prophotorgb_to_Lab(RGB).xyz;

  write_imagef (out, (int2)(x, y), Lab);
}

kernel void
colorbalance_cdl (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
              const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey, const float saturation_out)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
  const float4 XYZ = Lab_to_XYZ(Lab);
  float4 RGB = XYZ_to_prophotorgb(XYZ);

  // saturation input
  if (saturation != 1.0f)
  {
    const float4 luma = XYZ.y;
    const float4 saturation4 = saturation;
    RGB = luma + saturation4 * (RGB - luma);
  }

  // lift power slope
  RGB = RGB * gain + lift;
  RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, gamma_inv);

  // saturation output
  if (saturation_out != 1.0f)
  {
    const float4 luma = prophotorgb_to_XYZ(RGB).y;
    const float4 saturation_out4 = saturation_out;
    RGB = luma + saturation_out4 * (RGB - luma);
  }

  // fulcrum contrast
  if (contrast != 1.0f)
  {
    const float4 contrast4 = contrast;
    const float4 grey4 = grey;
    RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB / grey4, contrast4) * grey4;
  }

  Lab.xyz = prophotorgb_to_Lab(RGB).xyz;

  write_imagef (out, (int2)(x, y), Lab);
}


static inline float sqf(const float x)
{
  return x * x;
}


static inline float4 opacity_masks(const float x,
                                   const float shadows_weight, const float highlights_weight,
                                   const float midtones_weight, const float mask_grey_fulcrum)
{
  float4 output;
  const float x_offset = (x - mask_grey_fulcrum);
  const float x_offset_norm = x_offset / mask_grey_fulcrum;
  const float alpha = 1.f / (1.f + native_exp(x_offset_norm * shadows_weight));    // opacity of shadows
  const float beta = 1.f / (1.f + native_exp(-x_offset_norm * highlights_weight)); // opacity of highlights
  const float gamma = native_exp(-sqf(x_offset) * midtones_weight / 4.f) * sqf(1.f - alpha) * sqf(1.f - beta) * 8.f; // opacity of midtones

  output.x = alpha;
  output.y = gamma;
  output.z = beta;
  output.w = 0.f;

  return output;
}

typedef enum dt_iop_colorbalancrgb_saturation_t
{
  DT_COLORBALANCE_SATURATION_JZAZBZ = 0, // $DESCRIPTION: "JzAzBz (2021)"
  DT_COLORBALANCE_SATURATION_DTUCS = 1   // $DESCRIPTION: "darktable UCS (2022)"
} dt_iop_colorbalancrgb_saturation_t;


kernel void
colorbalancergb (read_only image2d_t in, write_only image2d_t out,
                 const int width, const int height,
                 constant const dt_colorspaces_iccprofile_info_cl_t *const profile_info,
                 constant const float *const matrix_in, constant const float *const matrix_out,
                 global const float *gamut_lut,
                 const float shadows_weight, const float highlights_weight, const float midtones_weight, const float mask_grey_fulcrum,
                 const float hue_angle, const float chroma_global, const float4 chroma, const float vibrance,
                 const float4 global_offset, const float4 shadows, const float4 highlights, const float4 midtones,
                 const float white_fulcrum, const float midtones_Y,
                 const float grey_fulcrum, const float contrast,
                 const float brilliance_global, const float4 brilliance,
                 const float saturation_global, const float4 saturation,
                 const int mask_display, const int mask_type, const int checker_1, const int checker_2,
                 const float4 checker_color_1, const float4 checker_color_2, const float L_white,
                 const dt_iop_colorbalancrgb_saturation_t saturation_formula,
                 constant const float *const hue_rotation_matrix)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);
  if(x >= width || y >= height) return;
  // we clip pipeline RGB while reading; this also ensures a proper alpha
  const float4 pix_in = fmax(0.0f, read_imagef(in, sampleri, (int2)(x, y)));

  float4 XYZ_D65 = 0.f;
  float4 LMS = 0.f;
  float4 RGB = 0.f;
  float4 Yrg = 0.f;
  float4 Ych = 0.f;

  RGB = pix_in;

  // go to CIE 2006 LMS D65
  LMS = matrix_product_float4(RGB, matrix_in);

  // go to Filmlight Yrg
  Yrg = LMS_to_Yrg(LMS);

  // go to Ych
  Ych = Yrg_to_Ych(Yrg);

  // Sanitize input : no negative luminance
  Ych.x = fmax(Ych.x, 0.f);
  const float4 opacities = opacity_masks(dtcl_pow(Ych.x, 0.4101205819200422f), // center middle grey in 50 %
                                         shadows_weight, highlights_weight, midtones_weight, mask_grey_fulcrum);
  const float4 opacities_comp = (float4)1.f - opacities;

  // Hue shift - do it now because we need the gamut limit at output hue right after
  // The hue rotation is implemented as a matrix multiplication.
  const float cos_h = Ych.z;
  const float sin_h = Ych.w;
  Ych.z = hue_rotation_matrix[0] * cos_h + hue_rotation_matrix[1] * sin_h;
  Ych.w = hue_rotation_matrix[2] * cos_h + hue_rotation_matrix[3] * sin_h;

  // Linear chroma : distance to achromatic at constant luminance in scene-referred
  const float chroma_boost = chroma_global + dot(opacities, chroma);
  const float vib = vibrance * (1.0f - dtcl_pow(Ych.y, fabs(vibrance)));
  const float chroma_factor = fmax(1.f + chroma_boost + vib, 0.f);
  Ych.y *= chroma_factor;

  // clip chroma at constant Y and hue
  Ych = gamut_check_Yrg(Ych);

  // go to Yrg for real
  Yrg = Ych_to_Yrg(Ych);

  // Go to LMS
  LMS = Yrg_to_LMS(Yrg);

  // Go to Filmlight RGB
  RGB = LMS_to_gradingRGB(LMS);

  // Color balance

  // global : offset
  RGB += global_offset;

  // highlights, shadows : 2 slopes with masking
  RGB *= opacities_comp.z * (opacities_comp.x + opacities.x * shadows) + opacities.z * highlights;
  // factorization of : (RGB[c] * (1.f - alpha) + RGB[c] * d->shadows[c] * alpha) * (1.f - beta)  + RGB[c] * d->highlights[c] * beta;

  // midtones : power with sign preservation
  RGB = sign(RGB) * dtcl_pow(fabs(RGB) / white_fulcrum, midtones) * white_fulcrum;

  // for the non-linear ops we need to go in Yrg again because RGB doesn't preserve color
  LMS = gradingRGB_to_LMS(RGB);
  Yrg = LMS_to_Yrg(LMS);

  // Y midtones power (gamma)
  Yrg.x = dtcl_pow(fmax(Yrg.x / white_fulcrum, 0.f), midtones_Y) * white_fulcrum;

  // Y fulcrumed contrast
  Yrg.x = grey_fulcrum * dtcl_pow(Yrg.x / grey_fulcrum, contrast);

  LMS = Yrg_to_LMS(Yrg);
  XYZ_D65 = LMS_to_XYZ(LMS);

  // Perceptual color adjustments
  if(saturation_formula == DT_COLORBALANCE_SATURATION_JZAZBZ)
  {

    // Go to JzAzBz for perceptual saturation
    float4 Jab = XYZ_to_JzAzBz(XYZ_D65);

    // Convert to JCh
    float JC[2] = { Jab.x, hypot(Jab.y, Jab.z) };               // brightness/chroma vector
    const float h = atan2(Jab.z, Jab.y);  // hue : (a, b) angle

    // Project JC onto S, the saturation eigenvector, with orthogonal vector O.
    // Note : O should be = (C * cosf(T) - J * sinf(T)) = 0 since S is the eigenvector,
    // so we add the chroma projected along the orthogonal axis to get some control value
    const float T = atan2(JC[1], JC[0]); // angle of the eigenvector over the hue plane
    const float sin_T = dtcl_sin(T);
    const float cos_T = dtcl_cos(T);
    const float M_rot_dir[2][2] = { {  cos_T,  sin_T },
                                    { -sin_T,  cos_T } };
    const float M_rot_inv[2][2] = { {  cos_T, -sin_T },
                                    {  sin_T,  cos_T } };
    float SO[2];

    // brilliance & Saturation : mix of chroma and luminance
    const float boosts[2] = { 1.f + brilliance_global + dot(opacities, brilliance),     // move in S direction
                              saturation_global + dot(opacities, saturation) }; // move in O direction

    SO[0] = JC[0] * M_rot_dir[0][0] + JC[1] * M_rot_dir[0][1];
    SO[1] = SO[0] * clamp(T * boosts[1], -T, M_PI_F / 2.f - T);
    SO[0] = fmax(SO[0] * boosts[0], 0.f);

    // Project back to JCh, that is rotate back of -T angle
    JC[0] = fmax(SO[0] * M_rot_inv[0][0] + SO[1] * M_rot_inv[0][1], 0.f);
    JC[1] = fmax(SO[0] * M_rot_inv[1][0] + SO[1] * M_rot_inv[1][1], 0.f);

    // Gamut mapping
    const float out_max_sat_h = lookup_gamut(gamut_lut, h);
    // if JC[0] == 0.f, the saturation / luminance ratio is infinite - assign the largest practical value we have
    const float sat = (JC[0] > 0.f) ? soft_clip(JC[1] / JC[0], 0.8f * out_max_sat_h, out_max_sat_h)
                                    : out_max_sat_h;
    const float max_C_at_sat = JC[0] * sat;
    // if sat == 0.f, the chroma is zero - assign the original luminance because there's no need to gamut map
    const float max_J_at_sat = (sat > 0.f) ? JC[1] / sat : JC[0];
    JC[0] = (JC[0] + max_J_at_sat) / 2.f;
    JC[1] = (JC[1] + max_C_at_sat) / 2.f;

    // Gamut-clip in Jch at constant hue and lightness,
    // e.g. find the max chroma available at current hue that doesn't
    // yield negative L'M'S' values, which will need to be clipped during conversion
    const float cos_H = dtcl_cos(h);
    const float sin_H = dtcl_sin(h);

    const float d0 = 1.6295499532821566e-11f;
    const float d = -0.56f;
    float Iz = JC[0] + d0;
    Iz /= (1.f + d - d * Iz);
    Iz = fmax(Iz, 0.f);

    const float4 AI[3] = { {  1.0f,  0.1386050432715393f,  0.0580473161561189f, 0.0f },
                          {  1.0f, -0.1386050432715393f, -0.0580473161561189f, 0.0f },
                          {  1.0f, -0.0960192420263190f, -0.8118918960560390f, 0.0f } };

    // Do a test conversion to L'M'S'
    const float4 IzAzBz = { Iz, JC[1] * cos_H, JC[1] * sin_H, 0.f };
    LMS.x = dot(AI[0], IzAzBz);
    LMS.y = dot(AI[1], IzAzBz);
    LMS.z = dot(AI[2], IzAzBz);

    // Clip chroma
    float max_C = JC[1];
    if(LMS.x < 0.f)
      max_C = fmin(-Iz / (AI[0].y * cos_H + AI[0].z * sin_H), max_C);

    if(LMS.y < 0.f)
      max_C = fmin(-Iz / (AI[1].y * cos_H + AI[1].z * sin_H), max_C);

    if(LMS.z < 0.f)
      max_C = fmin(-Iz / (AI[2].y * cos_H + AI[2].z * sin_H), max_C);

    // Project back to JzAzBz for real
    Jab.x = JC[0];
    Jab.y = max_C * cos_H;
    Jab.z = max_C * sin_H;

    XYZ_D65 = JzAzBz_2_XYZ(Jab);
  }
  else
  {
    float4 xyY = dt_D65_XYZ_to_xyY(XYZ_D65);
    float4 JCH = xyY_to_dt_UCS_JCH(xyY, L_white);
    float4 HCB = dt_UCS_JCH_to_HCB(JCH);

    const float radius = hypot(HCB.y, HCB.z);
    const float sin_T = (radius > 0.f) ? HCB.y / radius : 0.f;
    const float cos_T = (radius > 0.f) ? HCB.z / radius : 0.f;
    const float M_rot_inv[2][2] = { { cos_T,  sin_T }, { -sin_T, cos_T } };
    // This would be the full matrice of direct rotation if we didn't need only its last row
    //const float M_rot_dir[2][2] = { { cos_T, -sin_T }, {  sin_T, cos_T } };

    const float P = fmax(FLT_MIN, HCB.y);
    const float W = sin_T * HCB.y + cos_T * HCB.z;

    float a = fmax(1.f + saturation_global + dot(opacities, saturation), 0.f);
    const float b = fmax(1.f + brilliance_global + dot(opacities, brilliance), 0.f);

    const float max_a = hypot(P, W) / P;
    a = soft_clip(a, 0.5f * max_a, max_a);

    const float P_prime = (a - 1.f) * P;
    const float W_prime = dtcl_sqrt(sqf(P) * (1.f - sqf(a)) + sqf(W)) * b;

    HCB.y = fmax(M_rot_inv[0][0] * P_prime + M_rot_inv[0][1] * W_prime, 0.f);
    HCB.z = fmax(M_rot_inv[1][0] * P_prime + M_rot_inv[1][1] * W_prime, 0.f);

    JCH = dt_UCS_HCB_to_JCH(HCB);

    // Gamut mapping
    const float max_colorfulness = lookup_gamut(gamut_lut, JCH.z); // WARNING : this is M²
    const float max_chroma = 15.932993652962535f * dtcl_pow(JCH.x * L_white, 0.6523997524738018f) * dtcl_pow(max_colorfulness, 0.6007557017508491f) / L_white;
    const float4 JCH_gamut_boundary = { JCH.x, max_chroma, JCH.z, 0.f };
    const float4 HSB_gamut_boundary = dt_UCS_JCH_to_HSB(JCH_gamut_boundary);

    // Clip saturation at constant brightness
    float4 HSB = { HCB.x, (HCB.z > 0.f) ? HCB.y / HCB.z : 0.f, HCB.z, 0.f };
    HSB.y = soft_clip(HSB.y, 0.8f * HSB_gamut_boundary.y, HSB_gamut_boundary.y);

    JCH = dt_UCS_HSB_to_JCH(HSB);
    xyY = dt_UCS_JCH_to_xyY(JCH, L_white);
    XYZ_D65 = dt_xyY_to_XYZ(xyY);
  }

  // Project back to D50 pipeline RGB
  RGB = matrix_product_float4(XYZ_D65, matrix_out);

  if(mask_display)
  {
    // draw checkerboard
    float4 color;
    if(x % checker_1 < x % checker_2)
    {
      if(y % checker_1 < y % checker_2) color = checker_color_2;
      else color = checker_color_1;
    }
    else
    {
      if(y % checker_1 < y % checker_2) color = checker_color_1;
      else color = checker_color_2;
    }
    const float *op = (const float *)&opacities;
    float opacity = op[mask_type];
    const float opacity_comp = 1.0f - opacity;

    RGB = opacity_comp * color + opacity * fmax(RGB, 0.f);
    RGB.w = 1.0f; // alpha is opaque, we need to preview it
  }
  else
  {
    RGB = fmax(RGB, 0.f);
    RGB.w = pix_in.w; // alpha copy
  }

  write_imagef (out, (int2)(x, y), RGB);
}


/* helpers and kernel for the colorchecker module */
float fastlog2(float x)
{
  union { float f; unsigned int i; } vx = { x };
  union { unsigned int i; float f; } mx = { (vx.i & 0x007FFFFF) | 0x3f000000 };

  float y = vx.i;

  y *= 1.1920928955078125e-7f;

  return y - 124.22551499f
    - 1.498030302f * mx.f
    - 1.72587999f / (0.3520887068f + mx.f);
}

float fastlog(float x)
{
  return 0.69314718f * fastlog2(x);
}

float thinplate(const float4 x, const float4 y)
{
  const float r2 =
      (x.x - y.x) * (x.x - y.x) +
      (x.y - y.y) * (x.y - y.y) +
      (x.z - y.z) * (x.z - y.z);

  return r2 * fastlog(max(1e-8f, r2));
}

kernel void
colorchecker (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
              const int num_patches, global float4 *params)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);

  if(x >= width || y >= height) return;

  global float4 *source_Lab = params;
  global float4 *coeff_Lab = params + num_patches;
  global float4 *poly_Lab = params + 2 * num_patches;

  float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));

  const float w = ipixel.w;

  float4 opixel = poly_Lab[0] + poly_Lab[1] * ipixel.x + poly_Lab[2] * ipixel.y + poly_Lab[3] * ipixel.z;

  for(int k = 0; k < num_patches; k++)
  {
    const float phi = thinplate(ipixel, source_Lab[k]);
    opixel += coeff_Lab[k] * phi;
  }

  opixel.w = w;

  write_imagef (out, (int2)(x, y), opixel);
}

kernel void
primaries(read_only image2d_t in,
          write_only image2d_t out,
          const int width,
          const int height,
          constant const float *const matrix)
{
  const int x = get_global_id(0);
  const int y = get_global_id(1);
  if(x >= width || y >= height) return;

  const float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));
  float4 opixel = matrix_product_float4(ipixel, matrix);
  opixel.w = ipixel.w;
  write_imagef(out, (int2)(x, y), opixel);
}