1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
|
/*
This file is part of darktable,
copyright (c) 2009--2014 Ulrich Pegelow
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "colorspace.h"
#include "color_conversion.h"
__kernel void
graduatedndp (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float4 color,
const float density, const float length_base, const float length_inc_x, const float length_inc_y)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float len = length_base + y*length_inc_y + x*length_inc_x;
const float t = 0.693147181f * (density * clipf(0.5f+len)/8.0f);
const float d1 = t * t * 0.5f;
const float d2 = d1 * t * 0.333333333f;
const float d3 = d2 * t * 0.25f;
float dens = 1.0f + t + d1 + d2 + d3;
dens *= dens;
dens *= dens;
dens *= dens;
pixel.xyz = fmax((float4)0.0f, pixel / (color + ((float4)1.0f - color) * (float4)dens)).xyz;
write_imagef (out, (int2)(x, y), pixel);
}
__kernel void
graduatedndm (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float4 color,
const float density, const float length_base, const float length_inc_x, const float length_inc_y)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float len = length_base + y*length_inc_y + x*length_inc_x;
const float t = 0.693147181f * (-density * clipf(0.5f-len)/8.0f);
const float d1 = t * t * 0.5f;
const float d2 = d1 * t * 0.333333333f;
const float d3 = d2 * t * 0.25f;
float dens = 1.0f + t + d1 + d2 + d3;
dens *= dens;
dens *= dens;
dens *= dens;
pixel.xyz = fmax((float4)0.0f, pixel * (color + ((float4)1.0f - color) * (float4)dens)).xyz;
write_imagef (out, (int2)(x, y), pixel);
}
__kernel void
colorize (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float mix, const float L, const float a, const float b)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
pixel.x = pixel.x * mix + L - 50.0f * mix;
pixel.y = a;
pixel.z = b;
write_imagef (out, (int2)(x, y), pixel);
}
float
GAUSS(float center, float wings, float x)
{
const float b = -1.0f + center * 2.0f;
const float c = (wings / 10.0f) / 2.0f;
return exp(-(x-b)*(x-b)/(c*c));
}
__kernel void
relight (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float center, const float wings, const float ev)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float lightness = pixel.x/100.0f;
const float value = -1.0f+(lightness*2.0f);
float gauss = GAUSS(center, wings, value);
if(isnan(gauss) || isinf(gauss))
gauss = 0.0f;
float relight = 1.0f / exp2(-ev * clipf(gauss));
if(isnan(relight) || isinf(relight))
relight = 1.0f;
pixel.x = 100.0f * clipf(lightness*relight);
write_imagef (out, (int2)(x, y), pixel);
}
typedef enum _channelmixer_operation_mode_t
{
OPERATION_MODE_RGB = 0,
OPERATION_MODE_GRAY = 1,
OPERATION_MODE_HSL_V1 = 2,
OPERATION_MODE_HSL_V2 = 3,
} _channelmixer_operation_mode_t;
__kernel void
channelmixer (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const int operation_mode, global const float *hsl_matrix,
global const float *rgb_matrix)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
float4 opixel = (float4)(0.0f, 0.0f, 0.0f, pixel.w);
float gray, hmix, smix, lmix;
switch(operation_mode)
{
case OPERATION_MODE_RGB:
opixel.x = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
opixel.y = fmax(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5], 0.0f);
opixel.z = fmax(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8], 0.0f);
break;
case OPERATION_MODE_GRAY:
gray = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
opixel = (float4)(gray, gray, gray, pixel.w);
break;
case OPERATION_MODE_HSL_V1:
hmix = clipf(pixel.x * hsl_matrix[0]) + pixel.y * hsl_matrix[1] + pixel.z * hsl_matrix[2];
smix = clipf(pixel.x * hsl_matrix[3]) + pixel.y * hsl_matrix[4] + pixel.z * hsl_matrix[5];
lmix = clipf(pixel.x * hsl_matrix[6]) + pixel.y * hsl_matrix[7] + pixel.z * hsl_matrix[8];
if( hmix != 0.0f || smix != 0.0f || lmix != 0.0f )
{
float4 hsl = RGB_2_HSL(pixel);
hsl.x = (hmix != 0.0f ) ? hmix : hsl.x;
hsl.y = (smix != 0.0f ) ? smix : hsl.y;
hsl.z = (lmix != 0.0f ) ? lmix : hsl.z;
pixel = HSL_2_RGB(hsl);
}
opixel.x = clipf(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2]);
opixel.y = clipf(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5]);
opixel.z = clipf(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8]);
break;
case OPERATION_MODE_HSL_V2:
hmix = clipf(pixel.x * hsl_matrix[0] + pixel.y * hsl_matrix[1] + pixel.z * hsl_matrix[2]);
smix = clipf(pixel.x * hsl_matrix[3] + pixel.y * hsl_matrix[4] + pixel.z * hsl_matrix[5]);
lmix = clipf(pixel.x * hsl_matrix[6] + pixel.y * hsl_matrix[7] + pixel.z * hsl_matrix[8]);
if( hmix != 0.0f || smix != 0.0f || lmix != 0.0f )
{
pixel = (float4)(clipf(pixel.x), clipf(pixel.y), clipf(pixel.z), pixel.w);
float4 hsl = RGB_2_HSL(pixel);
hsl.x = (hmix != 0.0f ) ? hmix : hsl.x;
hsl.y = (smix != 0.0f ) ? smix : hsl.y;
hsl.z = (lmix != 0.0f ) ? lmix : hsl.z;
pixel = HSL_2_RGB(hsl);
}
opixel.x = fmax(pixel.x * rgb_matrix[0] + pixel.y * rgb_matrix[1] + pixel.z * rgb_matrix[2], 0.0f);
opixel.y = fmax(pixel.x * rgb_matrix[3] + pixel.y * rgb_matrix[4] + pixel.z * rgb_matrix[5], 0.0f);
opixel.z = fmax(pixel.x * rgb_matrix[6] + pixel.y * rgb_matrix[7] + pixel.z * rgb_matrix[8], 0.0f);
break;
}
write_imagef (out, (int2)(x, y), opixel);
}
__kernel void
velvia (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float strength, const float bias)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
// calculate vibrance, and apply boost velvia saturation at least saturated pixels
const float pmax = fmax(pixel.x, fmax(pixel.y, pixel.z)); // max value in RGB set
const float pmin = fmin(pixel.x, fmin(pixel.y, pixel.z)); // min value in RGB set
const float plum = (pmax + pmin) / 2.0f; // pixel luminocity
const float psat = (plum <= 0.5f) ? (pmax-pmin)/(1e-5f + pmax+pmin) : (pmax-pmin)/(1e-5f + fmax(0.0f, 2.0f-pmax-pmin));
const float pweight = clipf(((1.0f- (1.5f*psat)) + ((1.0f+(fabs(plum-0.5f)*2.0f))*(1.0f-bias))) / (1.0f+(1.0f-bias))); // The weight of pixel
const float saturation = strength*pweight; // So lets calculate the final affection of filter on pixel
float4 opixel;
opixel.x = clipf(pixel.x + saturation*(pixel.x-0.5f*(pixel.y+pixel.z)));
opixel.y = clipf(pixel.y + saturation*(pixel.y-0.5f*(pixel.z+pixel.x)));
opixel.z = clipf(pixel.z + saturation*(pixel.z-0.5f*(pixel.x+pixel.y)));
opixel.w = pixel.w;
write_imagef (out, (int2)(x, y), opixel);
}
__kernel void
colorcontrast (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 scale, const float4 offset, const int unbound)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
pixel.xyz = (pixel * scale + offset).xyz;
pixel.y = unbound ? pixel.y : clamp(pixel.y, -128.0f, 128.0f);
pixel.z = unbound ? pixel.z : clamp(pixel.z, -128.0f, 128.0f);
write_imagef (out, (int2)(x, y), pixel);
}
__kernel void
vibrance (read_only image2d_t in, write_only image2d_t out, const int width, const int height, const float amount)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float sw = sqrt(pixel.y*pixel.y + pixel.z*pixel.z)/256.0f;
const float ls = 1.0f - amount * sw * 0.25f;
const float ss = 1.0f + amount * sw;
pixel.x *= ls;
pixel.y *= ss;
pixel.z *= ss;
write_imagef (out, (int2)(x, y), pixel);
}
#define TEA_ROUNDS 8
void
encrypt_tea(unsigned int *arg)
{
const unsigned int key[] = {0xa341316c, 0xc8013ea4, 0xad90777d, 0x7e95761e};
const unsigned int delta = 0x9e3779b9;
unsigned int v0 = arg[0], v1 = arg[1];
unsigned int sum = 0;
for(int i = 0; i < TEA_ROUNDS; i++)
{
sum += delta;
v0 += ((v1 << 4) + key[0]) ^ (v1 + sum) ^ ((v1 >> 5) + key[1]);
v1 += ((v0 << 4) + key[2]) ^ (v0 + sum) ^ ((v0 >> 5) + key[3]);
}
arg[0] = v0;
arg[1] = v1;
}
float
tpdf(unsigned int urandom)
{
float frandom = (float)urandom / (float)0xFFFFFFFFu;
return (frandom < 0.5f ? (sqrt(2.0f*frandom) - 1.0f) : (1.0f - sqrt(2.0f*(1.0f - frandom))));
}
__kernel void
vignette (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float2 scale, const float2 roi_center_scaled, const float2 expt,
const float dscale, const float fscale, const float brightness, const float saturation,
const float dither, const int unbound)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
unsigned int tea_state[2] = { mad24(y, width, x), 0 };
encrypt_tea(tea_state);
const float2 pv = fabs((float2)(x,y) * scale - roi_center_scaled);
const float cplen = pow(pow(pv.x, expt.x) + pow(pv.y, expt.x), expt.y);
float weight = 0.0f;
float dith = 0.0f;
if(cplen >= dscale)
{
weight = ((cplen - dscale) / fscale);
dith = (weight <= 1.0f && weight >= 0.0f) ? dither * tpdf(tea_state[0]) : 0.0f;
weight = weight >= 1.0f ? 1.0f : (weight <= 0.0f ? 0.0f : 0.5f - cos(M_PI_F * weight) / 2.0f);
}
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
if(weight > 0.0f)
{
const float falloff = brightness < 0.0f ? 1.0f + (weight * brightness) : weight * brightness;
pixel.xyz = (brightness < 0.0f ? pixel * falloff + dith : pixel + falloff + dith).xyz;
pixel.xyz = unbound ? pixel.xyz : clamp(pixel, (float4)0.0f, (float4)1.0f).xyz;
const float mv = (pixel.x + pixel.y + pixel.z) / 3.0f;
const float wss = weight * saturation;
pixel.xyz = (pixel - (mv - pixel)* wss).xyz,
pixel.xyz = unbound ? pixel.xyz : clamp(pixel, (float4)0.0f, (float4)1.0f).xyz;
}
write_imagef (out, (int2)(x, y), pixel);
}
/* kernel for the splittoning plugin. */
kernel void
splittoning (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float compress, const float balance, const float shadow_hue, const float shadow_saturation,
const float highlight_hue, const float highlight_saturation)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
float4 hsl = RGB_2_HSL(pixel);
if(hsl.z < balance - compress || hsl.z > balance + compress)
{
hsl.x = hsl.z < balance ? shadow_hue : highlight_hue;
hsl.y = hsl.z < balance ? shadow_saturation : highlight_saturation;
const float ra = hsl.z < balance ? clipf(2.0f*fabs(-balance + compress + hsl.z))
: clipf(2.0f*fabs(-balance - compress + hsl.z));
float4 mixrgb = HSL_2_RGB(hsl);
pixel.xyz = clamp(pixel * (1.0f - ra) + mixrgb * ra, (float4)0.0f, (float4)1.0f).xyz;
}
write_imagef (out, (int2)(x, y), pixel);
}
/* kernels to get the maximum value of an image */
kernel void
pixelmax_first (read_only image2d_t in, const int width, const int height, global float *accu, local float *buffer)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int xlsz = get_local_size(0);
const int ylsz = get_local_size(1);
const int xlid = get_local_id(0);
const int ylid = get_local_id(1);
const int l = ylid * xlsz + xlid;
buffer[l] = (x < width && y < height) ? read_imagef(in, sampleri, (int2)(x, y)).x : -INFINITY;
barrier(CLK_LOCAL_MEM_FENCE);
const int lsz = mul24(xlsz, ylsz);
for(int offset = lsz / 2; offset > 0; offset = offset / 2)
{
if (l < offset)
{
const float other = buffer[l + offset];
const float mine = buffer[l];
buffer[l] = (mine > other) ? mine : other;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int xgid = get_group_id(0);
const int ygid = get_group_id(1);
const int xgsz = get_num_groups(0);
const int m = mad24(ygid, xgsz, xgid);
accu[m] = buffer[0];
}
__kernel void
pixelmax_second(global float* input, global float *result, const int length, local float *buffer)
{
int x = get_global_id(0);
float accu = -INFINITY;
while (x < length)
{
float element = input[x];
accu = (accu > element) ? accu : element;
x += get_global_size(0);
}
const int lid = get_local_id(0);
buffer[lid] = accu;
barrier(CLK_LOCAL_MEM_FENCE);
for(int offset = get_local_size(0) / 2; offset > 0; offset = offset / 2)
{
if (lid < offset)
{
float other = buffer[lid + offset];
float mine = buffer[lid];
buffer[lid] = (mine > other) ? mine : other;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (lid == 0)
{
result[get_group_id(0)] = buffer[0];
}
}
/* kernel for the global tonemap plugin: reinhard */
kernel void
global_tonemap_reinhard (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 parameters)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float l = pixel.x * 0.01f;
pixel.x = 100.0f * (l/(1.0f + l));
write_imagef (out, (int2)(x, y), pixel);
}
/* kernel for the global tonemap plugin: drago */
kernel void
global_tonemap_drago (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 parameters)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float eps = parameters.x;
const float ldc = parameters.y;
const float bl = parameters.z;
const float lwmax = parameters.w;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float lw = pixel.x * 0.01f;
pixel.x = 100.0f * (ldc * log(fmax(eps, lw + 1.0f)) / log(fmax(eps, 2.0f + (pow(lw/lwmax,bl)) * 8.0f)));
write_imagef (out, (int2)(x, y), pixel);
}
/* kernel for the global tonemap plugin: filmic */
kernel void
global_tonemap_filmic (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 parameters)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
const float l = pixel.x * 0.01f;
const float m = fmax(0.0f, l - 0.004f);
pixel.x = 100.0f * ((m*(6.2f*m+0.5f))/(m*(6.2f*m+1.7f)+0.06f));
write_imagef (out, (int2)(x, y), pixel);
}
/* kernels for the colormapping module */
#define HISTN (1<<11)
#define MAXN 5
// inverse distant weighting according to D. Shepard's method; with power parameter 2.0
void
get_clusters(const float4 col, const int n, global float2 *mean, float *weight)
{
float mdist = FLT_MAX;
for(int k=0; k<n; k++)
{
const float dist2 = (col.y-mean[k].x)*(col.y-mean[k].x) + (col.z-mean[k].y)*(col.z-mean[k].y); // dist^2
weight[k] = dist2 > 1.0e-6f ? 1.0f/dist2 : -1.0f; // direct hits marked as -1
if(dist2 < mdist) mdist = dist2;
}
if(mdist < 1.0e-6f) for(int k=0; k<n; k++) weight[k] = weight[k] < 0.0f ? 1.0f : 0.0f; // correction in case of direct hits
float sum = 0.0f;
for(int k=0; k<n; k++) sum += weight[k];
if(sum > 0.0f) for(int k=0; k<n; k++) weight[k] /= sum;
}
kernel void
colormapping_histogram (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float equalization, global int *target_hist, global float *source_ihist)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float L = read_imagef(in, sampleri, (int2)(x, y)).x;
float dL = 0.5f*((L * (1.0f - equalization) + source_ihist[target_hist[(int)clamp(HISTN*L/100.0f, 0.0f, (float)HISTN-1.0f)]] * equalization) - L) + 50.0f;
dL = clamp(dL, 0.0f, 100.0f);
write_imagef (out, (int2)(x, y), (float4)(dL, 0.0f, 0.0f, 0.0f));
}
kernel void
colormapping_mapping (read_only image2d_t in, read_only image2d_t tmp, write_only image2d_t out, const int width, const int height,
const int clusters, global float2 *target_mean, global float2 *source_mean, global float2 *var_ratio, global int *mapio)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));
const float dL = read_imagef(tmp, sampleri, (int2)(x, y)).x;
float weight[MAXN];
float4 opixel = (float4)0.0f;
opixel.x = 2.0f*(dL - 50.0f) + ipixel.x;
opixel.x = clamp(opixel.x, 0.0f, 100.0f);
get_clusters(ipixel, clusters, target_mean, weight);
for(int c=0; c < clusters; c++)
{
opixel.y += weight[c] * ((ipixel.y - target_mean[c].x)*var_ratio[c].x + source_mean[mapio[c]].x);
opixel.z += weight[c] * ((ipixel.z - target_mean[c].y)*var_ratio[c].y + source_mean[mapio[c]].y);
}
opixel.w = ipixel.w;
write_imagef (out, (int2)(x, y), opixel);
}
#undef HISTN
#undef MAXN
/* kernel for the colorbalance module */
kernel void
colorbalance (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
float4 sRGB = XYZ_to_sRGB(Lab_to_XYZ(Lab));
// Lift gamma gain
sRGB = (sRGB <= (float4)0.0031308f) ? 12.92f * sRGB : (1.0f + 0.055f) * dtcl_pow(sRGB, (float4)1.0f/2.4f) - (float4)0.055f;
sRGB = dtcl_pow(fmax(((sRGB - (float4)1.0f) * lift + (float4)1.0f) * gain, (float4)0.0f), gamma_inv);
sRGB = (sRGB <= (float4)0.04045f) ? sRGB / 12.92f : dtcl_pow((sRGB + (float4)0.055f) / (1.0f + 0.055f), (float4)2.4f);
Lab.xyz = XYZ_to_Lab(sRGB_to_XYZ(sRGB)).xyz;
write_imagef (out, (int2)(x, y), Lab);
}
kernel void
colorbalance_lgg (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey, const float saturation_out)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
const float4 XYZ = Lab_to_XYZ(Lab);
float4 RGB = XYZ_to_prophotorgb(XYZ);
// saturation input
if (saturation != 1.0f)
{
const float4 luma = XYZ.y;
const float4 saturation4 = saturation;
RGB = luma + saturation4 * (RGB - luma);
}
// Lift gamma gain
RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, (float4)1.0f/2.2f);
RGB = ((RGB - (float4)1.0f) * lift + (float4)1.0f) * gain;
RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, gamma_inv * (float4)2.2f);
// saturation output
if (saturation_out != 1.0f)
{
const float4 luma = prophotorgb_to_XYZ(RGB).y;
const float4 saturation_out4 = saturation_out;
RGB = luma + saturation_out4 * (RGB - luma);
}
// fulcrum contrast
if (contrast != 1.0f)
{
const float4 contrast4 = contrast;
const float4 grey4 = grey;
RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : pow(RGB / grey4, contrast4) * grey4;
}
Lab.xyz = prophotorgb_to_Lab(RGB).xyz;
write_imagef (out, (int2)(x, y), Lab);
}
kernel void
colorbalance_cdl (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float4 lift, const float4 gain, const float4 gamma_inv, const float saturation, const float contrast, const float grey, const float saturation_out)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 Lab = read_imagef(in, sampleri, (int2)(x, y));
const float4 XYZ = Lab_to_XYZ(Lab);
float4 RGB = XYZ_to_prophotorgb(XYZ);
// saturation input
if (saturation != 1.0f)
{
const float4 luma = XYZ.y;
const float4 saturation4 = saturation;
RGB = luma + saturation4 * (RGB - luma);
}
// lift power slope
RGB = RGB * gain + lift;
RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB, gamma_inv);
// saturation output
if (saturation_out != 1.0f)
{
const float4 luma = prophotorgb_to_XYZ(RGB).y;
const float4 saturation_out4 = saturation_out;
RGB = luma + saturation_out4 * (RGB - luma);
}
// fulcrum contrast
if (contrast != 1.0f)
{
const float4 contrast4 = contrast;
const float4 grey4 = grey;
RGB = (RGB <= (float4)0.0f) ? (float4)0.0f : dtcl_pow(RGB / grey4, contrast4) * grey4;
}
Lab.xyz = prophotorgb_to_Lab(RGB).xyz;
write_imagef (out, (int2)(x, y), Lab);
}
static inline float sqf(const float x)
{
return x * x;
}
static inline float4 opacity_masks(const float x,
const float shadows_weight, const float highlights_weight,
const float midtones_weight, const float mask_grey_fulcrum)
{
float4 output;
const float x_offset = (x - mask_grey_fulcrum);
const float x_offset_norm = x_offset / mask_grey_fulcrum;
const float alpha = 1.f / (1.f + native_exp(x_offset_norm * shadows_weight)); // opacity of shadows
const float beta = 1.f / (1.f + native_exp(-x_offset_norm * highlights_weight)); // opacity of highlights
const float gamma = native_exp(-sqf(x_offset) * midtones_weight / 4.f) * sqf(1.f - alpha) * sqf(1.f - beta) * 8.f; // opacity of midtones
output.x = alpha;
output.y = gamma;
output.z = beta;
output.w = 0.f;
return output;
}
typedef enum dt_iop_colorbalancrgb_saturation_t
{
DT_COLORBALANCE_SATURATION_JZAZBZ = 0, // $DESCRIPTION: "JzAzBz (2021)"
DT_COLORBALANCE_SATURATION_DTUCS = 1 // $DESCRIPTION: "darktable UCS (2022)"
} dt_iop_colorbalancrgb_saturation_t;
kernel void
colorbalancergb (read_only image2d_t in, write_only image2d_t out,
const int width, const int height,
constant const dt_colorspaces_iccprofile_info_cl_t *const profile_info,
constant const float *const matrix_in, constant const float *const matrix_out,
global const float *gamut_lut,
const float shadows_weight, const float highlights_weight, const float midtones_weight, const float mask_grey_fulcrum,
const float hue_angle, const float chroma_global, const float4 chroma, const float vibrance,
const float4 global_offset, const float4 shadows, const float4 highlights, const float4 midtones,
const float white_fulcrum, const float midtones_Y,
const float grey_fulcrum, const float contrast,
const float brilliance_global, const float4 brilliance,
const float saturation_global, const float4 saturation,
const int mask_display, const int mask_type, const int checker_1, const int checker_2,
const float4 checker_color_1, const float4 checker_color_2, const float L_white,
const dt_iop_colorbalancrgb_saturation_t saturation_formula,
constant const float *const hue_rotation_matrix)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
// we clip pipeline RGB while reading; this also ensures a proper alpha
const float4 pix_in = fmax(0.0f, read_imagef(in, sampleri, (int2)(x, y)));
float4 XYZ_D65 = 0.f;
float4 LMS = 0.f;
float4 RGB = 0.f;
float4 Yrg = 0.f;
float4 Ych = 0.f;
RGB = pix_in;
// go to CIE 2006 LMS D65
LMS = matrix_product_float4(RGB, matrix_in);
// go to Filmlight Yrg
Yrg = LMS_to_Yrg(LMS);
// go to Ych
Ych = Yrg_to_Ych(Yrg);
// Sanitize input : no negative luminance
Ych.x = fmax(Ych.x, 0.f);
const float4 opacities = opacity_masks(dtcl_pow(Ych.x, 0.4101205819200422f), // center middle grey in 50 %
shadows_weight, highlights_weight, midtones_weight, mask_grey_fulcrum);
const float4 opacities_comp = (float4)1.f - opacities;
// Hue shift - do it now because we need the gamut limit at output hue right after
// The hue rotation is implemented as a matrix multiplication.
const float cos_h = Ych.z;
const float sin_h = Ych.w;
Ych.z = hue_rotation_matrix[0] * cos_h + hue_rotation_matrix[1] * sin_h;
Ych.w = hue_rotation_matrix[2] * cos_h + hue_rotation_matrix[3] * sin_h;
// Linear chroma : distance to achromatic at constant luminance in scene-referred
const float chroma_boost = chroma_global + dot(opacities, chroma);
const float vib = vibrance * (1.0f - dtcl_pow(Ych.y, fabs(vibrance)));
const float chroma_factor = fmax(1.f + chroma_boost + vib, 0.f);
Ych.y *= chroma_factor;
// clip chroma at constant Y and hue
Ych = gamut_check_Yrg(Ych);
// go to Yrg for real
Yrg = Ych_to_Yrg(Ych);
// Go to LMS
LMS = Yrg_to_LMS(Yrg);
// Go to Filmlight RGB
RGB = LMS_to_gradingRGB(LMS);
// Color balance
// global : offset
RGB += global_offset;
// highlights, shadows : 2 slopes with masking
RGB *= opacities_comp.z * (opacities_comp.x + opacities.x * shadows) + opacities.z * highlights;
// factorization of : (RGB[c] * (1.f - alpha) + RGB[c] * d->shadows[c] * alpha) * (1.f - beta) + RGB[c] * d->highlights[c] * beta;
// midtones : power with sign preservation
RGB = sign(RGB) * dtcl_pow(fabs(RGB) / white_fulcrum, midtones) * white_fulcrum;
// for the non-linear ops we need to go in Yrg again because RGB doesn't preserve color
LMS = gradingRGB_to_LMS(RGB);
Yrg = LMS_to_Yrg(LMS);
// Y midtones power (gamma)
Yrg.x = dtcl_pow(fmax(Yrg.x / white_fulcrum, 0.f), midtones_Y) * white_fulcrum;
// Y fulcrumed contrast
Yrg.x = grey_fulcrum * dtcl_pow(Yrg.x / grey_fulcrum, contrast);
LMS = Yrg_to_LMS(Yrg);
XYZ_D65 = LMS_to_XYZ(LMS);
// Perceptual color adjustments
if(saturation_formula == DT_COLORBALANCE_SATURATION_JZAZBZ)
{
// Go to JzAzBz for perceptual saturation
float4 Jab = XYZ_to_JzAzBz(XYZ_D65);
// Convert to JCh
float JC[2] = { Jab.x, hypot(Jab.y, Jab.z) }; // brightness/chroma vector
const float h = atan2(Jab.z, Jab.y); // hue : (a, b) angle
// Project JC onto S, the saturation eigenvector, with orthogonal vector O.
// Note : O should be = (C * cosf(T) - J * sinf(T)) = 0 since S is the eigenvector,
// so we add the chroma projected along the orthogonal axis to get some control value
const float T = atan2(JC[1], JC[0]); // angle of the eigenvector over the hue plane
const float sin_T = dtcl_sin(T);
const float cos_T = dtcl_cos(T);
const float M_rot_dir[2][2] = { { cos_T, sin_T },
{ -sin_T, cos_T } };
const float M_rot_inv[2][2] = { { cos_T, -sin_T },
{ sin_T, cos_T } };
float SO[2];
// brilliance & Saturation : mix of chroma and luminance
const float boosts[2] = { 1.f + brilliance_global + dot(opacities, brilliance), // move in S direction
saturation_global + dot(opacities, saturation) }; // move in O direction
SO[0] = JC[0] * M_rot_dir[0][0] + JC[1] * M_rot_dir[0][1];
SO[1] = SO[0] * clamp(T * boosts[1], -T, M_PI_F / 2.f - T);
SO[0] = fmax(SO[0] * boosts[0], 0.f);
// Project back to JCh, that is rotate back of -T angle
JC[0] = fmax(SO[0] * M_rot_inv[0][0] + SO[1] * M_rot_inv[0][1], 0.f);
JC[1] = fmax(SO[0] * M_rot_inv[1][0] + SO[1] * M_rot_inv[1][1], 0.f);
// Gamut mapping
const float out_max_sat_h = lookup_gamut(gamut_lut, h);
// if JC[0] == 0.f, the saturation / luminance ratio is infinite - assign the largest practical value we have
const float sat = (JC[0] > 0.f) ? soft_clip(JC[1] / JC[0], 0.8f * out_max_sat_h, out_max_sat_h)
: out_max_sat_h;
const float max_C_at_sat = JC[0] * sat;
// if sat == 0.f, the chroma is zero - assign the original luminance because there's no need to gamut map
const float max_J_at_sat = (sat > 0.f) ? JC[1] / sat : JC[0];
JC[0] = (JC[0] + max_J_at_sat) / 2.f;
JC[1] = (JC[1] + max_C_at_sat) / 2.f;
// Gamut-clip in Jch at constant hue and lightness,
// e.g. find the max chroma available at current hue that doesn't
// yield negative L'M'S' values, which will need to be clipped during conversion
const float cos_H = dtcl_cos(h);
const float sin_H = dtcl_sin(h);
const float d0 = 1.6295499532821566e-11f;
const float d = -0.56f;
float Iz = JC[0] + d0;
Iz /= (1.f + d - d * Iz);
Iz = fmax(Iz, 0.f);
const float4 AI[3] = { { 1.0f, 0.1386050432715393f, 0.0580473161561189f, 0.0f },
{ 1.0f, -0.1386050432715393f, -0.0580473161561189f, 0.0f },
{ 1.0f, -0.0960192420263190f, -0.8118918960560390f, 0.0f } };
// Do a test conversion to L'M'S'
const float4 IzAzBz = { Iz, JC[1] * cos_H, JC[1] * sin_H, 0.f };
LMS.x = dot(AI[0], IzAzBz);
LMS.y = dot(AI[1], IzAzBz);
LMS.z = dot(AI[2], IzAzBz);
// Clip chroma
float max_C = JC[1];
if(LMS.x < 0.f)
max_C = fmin(-Iz / (AI[0].y * cos_H + AI[0].z * sin_H), max_C);
if(LMS.y < 0.f)
max_C = fmin(-Iz / (AI[1].y * cos_H + AI[1].z * sin_H), max_C);
if(LMS.z < 0.f)
max_C = fmin(-Iz / (AI[2].y * cos_H + AI[2].z * sin_H), max_C);
// Project back to JzAzBz for real
Jab.x = JC[0];
Jab.y = max_C * cos_H;
Jab.z = max_C * sin_H;
XYZ_D65 = JzAzBz_2_XYZ(Jab);
}
else
{
float4 xyY = dt_D65_XYZ_to_xyY(XYZ_D65);
float4 JCH = xyY_to_dt_UCS_JCH(xyY, L_white);
float4 HCB = dt_UCS_JCH_to_HCB(JCH);
const float radius = hypot(HCB.y, HCB.z);
const float sin_T = (radius > 0.f) ? HCB.y / radius : 0.f;
const float cos_T = (radius > 0.f) ? HCB.z / radius : 0.f;
const float M_rot_inv[2][2] = { { cos_T, sin_T }, { -sin_T, cos_T } };
// This would be the full matrice of direct rotation if we didn't need only its last row
//const float M_rot_dir[2][2] = { { cos_T, -sin_T }, { sin_T, cos_T } };
const float P = fmax(FLT_MIN, HCB.y);
const float W = sin_T * HCB.y + cos_T * HCB.z;
float a = fmax(1.f + saturation_global + dot(opacities, saturation), 0.f);
const float b = fmax(1.f + brilliance_global + dot(opacities, brilliance), 0.f);
const float max_a = hypot(P, W) / P;
a = soft_clip(a, 0.5f * max_a, max_a);
const float P_prime = (a - 1.f) * P;
const float W_prime = dtcl_sqrt(sqf(P) * (1.f - sqf(a)) + sqf(W)) * b;
HCB.y = fmax(M_rot_inv[0][0] * P_prime + M_rot_inv[0][1] * W_prime, 0.f);
HCB.z = fmax(M_rot_inv[1][0] * P_prime + M_rot_inv[1][1] * W_prime, 0.f);
JCH = dt_UCS_HCB_to_JCH(HCB);
// Gamut mapping
const float max_colorfulness = lookup_gamut(gamut_lut, JCH.z); // WARNING : this is M²
const float max_chroma = 15.932993652962535f * dtcl_pow(JCH.x * L_white, 0.6523997524738018f) * dtcl_pow(max_colorfulness, 0.6007557017508491f) / L_white;
const float4 JCH_gamut_boundary = { JCH.x, max_chroma, JCH.z, 0.f };
const float4 HSB_gamut_boundary = dt_UCS_JCH_to_HSB(JCH_gamut_boundary);
// Clip saturation at constant brightness
float4 HSB = { HCB.x, (HCB.z > 0.f) ? HCB.y / HCB.z : 0.f, HCB.z, 0.f };
HSB.y = soft_clip(HSB.y, 0.8f * HSB_gamut_boundary.y, HSB_gamut_boundary.y);
JCH = dt_UCS_HSB_to_JCH(HSB);
xyY = dt_UCS_JCH_to_xyY(JCH, L_white);
XYZ_D65 = dt_xyY_to_XYZ(xyY);
}
// Project back to D50 pipeline RGB
RGB = matrix_product_float4(XYZ_D65, matrix_out);
if(mask_display)
{
// draw checkerboard
float4 color;
if(x % checker_1 < x % checker_2)
{
if(y % checker_1 < y % checker_2) color = checker_color_2;
else color = checker_color_1;
}
else
{
if(y % checker_1 < y % checker_2) color = checker_color_1;
else color = checker_color_2;
}
const float *op = (const float *)&opacities;
float opacity = op[mask_type];
const float opacity_comp = 1.0f - opacity;
RGB = opacity_comp * color + opacity * fmax(RGB, 0.f);
RGB.w = 1.0f; // alpha is opaque, we need to preview it
}
else
{
RGB = fmax(RGB, 0.f);
RGB.w = pix_in.w; // alpha copy
}
write_imagef (out, (int2)(x, y), RGB);
}
/* helpers and kernel for the colorchecker module */
float fastlog2(float x)
{
union { float f; unsigned int i; } vx = { x };
union { unsigned int i; float f; } mx = { (vx.i & 0x007FFFFF) | 0x3f000000 };
float y = vx.i;
y *= 1.1920928955078125e-7f;
return y - 124.22551499f
- 1.498030302f * mx.f
- 1.72587999f / (0.3520887068f + mx.f);
}
float fastlog(float x)
{
return 0.69314718f * fastlog2(x);
}
float thinplate(const float4 x, const float4 y)
{
const float r2 =
(x.x - y.x) * (x.x - y.x) +
(x.y - y.y) * (x.y - y.y) +
(x.z - y.z) * (x.z - y.z);
return r2 * fastlog(max(1e-8f, r2));
}
kernel void
colorchecker (read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const int num_patches, global float4 *params)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
global float4 *source_Lab = params;
global float4 *coeff_Lab = params + num_patches;
global float4 *poly_Lab = params + 2 * num_patches;
float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));
const float w = ipixel.w;
float4 opixel = poly_Lab[0] + poly_Lab[1] * ipixel.x + poly_Lab[2] * ipixel.y + poly_Lab[3] * ipixel.z;
for(int k = 0; k < num_patches; k++)
{
const float phi = thinplate(ipixel, source_Lab[k]);
opixel += coeff_Lab[k] * phi;
}
opixel.w = w;
write_imagef (out, (int2)(x, y), opixel);
}
kernel void
primaries(read_only image2d_t in,
write_only image2d_t out,
const int width,
const int height,
constant const float *const matrix)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float4 ipixel = read_imagef(in, sampleri, (int2)(x, y));
float4 opixel = matrix_product_float4(ipixel, matrix);
opixel.w = ipixel.w;
write_imagef(out, (int2)(x, y), opixel);
}
|