1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
This file is part of darktable,
copyright (c) 2019 Heiko Bauke
Copyright (C) 2023 darktable developers.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
kernel void guided_filter_split_rgb_image(const int width,
const int height,
read_only image2d_t guide,
write_only image2d_t out_r,
write_only image2d_t out_g,
write_only image2d_t out_b,
const float guide_weight)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float4 weight = { guide_weight, guide_weight, guide_weight, 0.0f };
const float4 pixel = weight * fmin(100.0, fmax(0.0, read_imagef(guide, sampleri, (int2)(x, y))));
write_imagef(out_r, (int2)(x, y), pixel.x);
write_imagef(out_g, (int2)(x, y), pixel.y);
write_imagef(out_b, (int2)(x, y), pixel.z);
}
// Kahan summation algorithm
#define Kahan_sum(m, c, add) \
{ \
const float t1 = (add) - (c); \
const float t2 = (m) + t1; \
c = (t2 - m) - t1; \
m = t2; \
}
kernel void guided_filter_box_mean_x(const int width,
const int height,
read_only image2d_t in,
write_only image2d_t out,
const int w)
{
const int y = get_global_id(0);
if(y >= height) return;
float m = 0.f, n_box = 0.f, c = 0.f;
if(width > 2 * w)
{
for(int i = 0, i_end = w + 1; i < i_end; i++)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(i, y)).x);
n_box += 1.f;
}
for(int i = 0, i_end = w; i < i_end; i++)
{
write_imagef(out, (int2)(i, y), m / n_box);
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(i + w + 1, y)).x);
n_box += 1.f;
}
for(int i = w, i_end = width - w - 1; i < i_end; i++)
{
write_imagef(out, (int2)(i, y), m / n_box);
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(i + w + 1, y)).x);
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(i - w, y)).x);
}
for(int i = width - w - 1, i_end = width; i < i_end; i++)
{
write_imagef(out, (int2)(i, y), m / n_box);
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(i - w, y)).x);
n_box -= 1.f;
}
}
else
{
for(int i = 0, i_end = min(w + 1, width); i < i_end; i++)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(i, y)).x);
n_box += 1.f;
}
for(int i = 0; i < width; i++)
{
write_imagef(out, (int2)(i, y), m / n_box);
if(i - w >= 0)
{
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(i - w, y)).x);
n_box -= 1.f;
}
if(i + w + 1 < width)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(i + w + 1, y)).x);
n_box += 1.f;
}
}
}
}
kernel void guided_filter_box_mean_y(const int width,
const int height,
read_only image2d_t in,
write_only image2d_t out,
const int w)
{
const int x = get_global_id(0);
if(x >= width) return;
float m = 0.f, n_box = 0.f, c = 0.f;
if(height > 2 * w)
{
for(int i = 0, i_end = w + 1; i < i_end; i++)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(x, i)).x);
n_box += 1.f;
}
for(int i = 0, i_end = w; i < i_end; i++)
{
write_imagef(out, (int2)(x, i), m / n_box);
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(x, i + w + 1)).x);
n_box += 1.f;
}
for(int i = w, i_end = height - w - 1; i < i_end; i++)
{
write_imagef(out, (int2)(x, i), m / n_box);
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(x, i + w + 1)).x);
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(x, i - w)).x);
}
for(int i = height - w - 1, i_end = height; i < i_end; i++)
{
write_imagef(out, (int2)(x, i), m / n_box);
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(x, i - w)).x);
n_box -= 1.f;
}
}
else
{
for(int i = 0, i_end = min(w + 1, height); i < i_end; i++)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(x, i)).x);
n_box += 1.f;
}
for(int i = 0; i < height; i++)
{
write_imagef(out, (int2)(x, i), m / n_box);
if(i - w >= 0)
{
Kahan_sum(m, c, -read_imagef(in, sampleri, (int2)(x, i - w)).x);
n_box -= 1.f;
}
if(i + w + 1 < height)
{
Kahan_sum(m, c, read_imagef(in, sampleri, (int2)(x, i + w + 1)).x);
n_box += 1.f;
}
}
}
}
kernel void guided_filter_covariances(const int width,
const int height,
read_only image2d_t guide,
read_only image2d_t img,
write_only image2d_t cov_imgg_img_r,
write_only image2d_t cov_imgg_img_g,
write_only image2d_t cov_imgg_img_b,
const float guide_weight)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float4 weight = { guide_weight, guide_weight, guide_weight, 0.0f };
const float img_ = read_imagef(img, sampleri, (int2)(x, y)).x;
const float4 imgv = { img_, img_, img_, 0.0f };
const float4 pixel = imgv * weight * fmin(100.0, fmax(0.0, read_imagef(guide, sampleri, (int2)(x, y))));
write_imagef(cov_imgg_img_r, (int2)(x, y), pixel.x);
write_imagef(cov_imgg_img_g, (int2)(x, y), pixel.y);
write_imagef(cov_imgg_img_b, (int2)(x, y), pixel.z);
}
kernel void guided_filter_variances(const int width,
const int height,
read_only image2d_t guide,
write_only image2d_t var_imgg_rr,
write_only image2d_t var_imgg_rg,
write_only image2d_t var_imgg_rb,
write_only image2d_t var_imgg_gg,
write_only image2d_t var_imgg_gb,
write_only image2d_t var_imgg_bb,
const float guide_weight)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float4 weight = { guide_weight, guide_weight, guide_weight, 0.0f };
const float4 pixel = weight * fmin(100.0, fmax(0.0, read_imagef(guide, sampleri, (int2)(x, y))));
write_imagef(var_imgg_rr, (int2)(x, y), pixel.x * pixel.x);
write_imagef(var_imgg_rg, (int2)(x, y), pixel.x * pixel.y);
write_imagef(var_imgg_rb, (int2)(x, y), pixel.x * pixel.z);
write_imagef(var_imgg_gg, (int2)(x, y), pixel.y * pixel.y);
write_imagef(var_imgg_gb, (int2)(x, y), pixel.y * pixel.z);
write_imagef(var_imgg_bb, (int2)(x, y), pixel.z * pixel.z);
}
kernel void guided_filter_update_covariance(const int width,
const int height,
read_only image2d_t in,
write_only image2d_t out,
read_only image2d_t a,
read_only image2d_t b,
const float eps)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float i_val = read_imagef(in, samplerA, (int2)(x, y)).x;
const float a_val = read_imagef(a, samplerA, (int2)(x, y)).x;
const float b_val = read_imagef(b, samplerA, (int2)(x, y)).x;
write_imagef(out, (int2)(x, y), i_val - a_val * b_val + eps);
}
kernel void guided_filter_solve(const int width,
const int height,
read_only image2d_t img_mean,
read_only image2d_t imgg_mean_r,
read_only image2d_t imgg_mean_g,
read_only image2d_t imgg_mean_b,
read_only image2d_t cov_imgg_img_r,
read_only image2d_t cov_imgg_img_g,
read_only image2d_t cov_imgg_img_b,
read_only image2d_t var_imgg_rr,
read_only image2d_t var_imgg_rg,
read_only image2d_t var_imgg_rb,
read_only image2d_t var_imgg_gg,
read_only image2d_t var_imgg_gb,
read_only image2d_t var_imgg_bb,
write_only image2d_t a_r,
write_only image2d_t a_g,
write_only image2d_t a_b,
write_only image2d_t b)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float Sigma_0_0 = read_imagef(var_imgg_rr, sampleri, (int2)(x, y)).x;
const float Sigma_0_1 = read_imagef(var_imgg_rg, sampleri, (int2)(x, y)).x;
const float Sigma_0_2 = read_imagef(var_imgg_rb, sampleri, (int2)(x, y)).x;
const float Sigma_1_1 = read_imagef(var_imgg_gg, sampleri, (int2)(x, y)).x;
const float Sigma_1_2 = read_imagef(var_imgg_gb, sampleri, (int2)(x, y)).x;
const float Sigma_2_2 = read_imagef(var_imgg_bb, sampleri, (int2)(x, y)).x;
const float cov_imgg_img[3] = { read_imagef(cov_imgg_img_r, sampleri, (int2)(x, y)).x,
read_imagef(cov_imgg_img_g, sampleri, (int2)(x, y)).x,
read_imagef(cov_imgg_img_b, sampleri, (int2)(x, y)).x };
const float det0 = Sigma_0_0 * (Sigma_1_1 * Sigma_2_2 - Sigma_1_2 * Sigma_1_2)
- Sigma_0_1 * (Sigma_0_1 * Sigma_2_2 - Sigma_0_2 * Sigma_1_2)
+ Sigma_0_2 * (Sigma_0_1 * Sigma_1_2 - Sigma_0_2 * Sigma_1_1);
float a_r_ = 0.0f;
float a_g_ = 0.0f;
float a_b_ = 0.0f;
float b_ = read_imagef(img_mean, sampleri, (int2)(x, y)).x;
if(fabs(det0) > 4.f * FLT_EPSILON)
{
const float det1 = cov_imgg_img[0] * (Sigma_1_1 * Sigma_2_2 - Sigma_1_2 * Sigma_1_2)
- Sigma_0_1 * (cov_imgg_img[1] * Sigma_2_2 - cov_imgg_img[2] * Sigma_1_2)
+ Sigma_0_2 * (cov_imgg_img[1] * Sigma_1_2 - cov_imgg_img[2] * Sigma_1_1);
const float det2 = Sigma_0_0 * (cov_imgg_img[1] * Sigma_2_2 - cov_imgg_img[2] * Sigma_1_2)
- cov_imgg_img[0] * (Sigma_0_1 * Sigma_2_2 - Sigma_0_2 * Sigma_1_2)
+ Sigma_0_2 * (Sigma_0_1 * cov_imgg_img[2] - Sigma_0_2 * cov_imgg_img[1]);
const float det3 = Sigma_0_0 * (Sigma_1_1 * cov_imgg_img[2] - Sigma_1_2 * cov_imgg_img[1])
- Sigma_0_1 * (Sigma_0_1 * cov_imgg_img[2] - Sigma_0_2 * cov_imgg_img[1])
+ cov_imgg_img[0] * (Sigma_0_1 * Sigma_1_2 - Sigma_0_2 * Sigma_1_1);
a_r_ = det1 / det0;
a_g_ = det2 / det0;
a_b_ = det3 / det0;
b_ = b_
- a_r_ * read_imagef(imgg_mean_r, sampleri, (int2)(x, y)).x
- a_g_ * read_imagef(imgg_mean_g, sampleri, (int2)(x, y)).x
- a_b_ * read_imagef(imgg_mean_b, sampleri, (int2)(x, y)).x;
}
write_imagef(a_r, (int2)(x, y), a_r_);
write_imagef(a_g, (int2)(x, y), a_g_);
write_imagef(a_b, (int2)(x, y), a_b_);
write_imagef(b, (int2)(x, y), b_);
}
kernel void guided_filter_generate_result(const int width,
const int height,
read_only image2d_t guide,
read_only image2d_t a_r,
read_only image2d_t a_g,
read_only image2d_t a_b,
read_only image2d_t b,
write_only image2d_t res,
const float guide_weight,
const float minval,
const float maxval)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const float4 pixel = fmin(100.0, fmax(0.0, read_imagef(guide, sampleri, (int2)(x, y))));
const float a_r_ = pixel.x * read_imagef(a_r, sampleri, (int2)(x, y)).x;
const float a_g_ = pixel.y * read_imagef(a_g, sampleri, (int2)(x, y)).x;
const float a_b_ = pixel.z * read_imagef(a_b, sampleri, (int2)(x, y)).x;
const float b_ = read_imagef(b, sampleri, (int2)(x, y)).x;
const float res_ = guide_weight * (a_r_ + a_g_ + a_b_)+ b_;
write_imagef(res, (int2)(x, y), fmin(maxval, fmax(minval, res_)));
}
|