File: main.cpp

package info (click to toggle)
dart 6.12.1%2Bdfsg4-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 57,000 kB
  • sloc: cpp: 269,461; python: 3,911; xml: 1,273; sh: 404; makefile: 30
file content (970 lines) | stat: -rw-r--r-- 31,473 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
/*
 * Copyright (c) 2011-2021, The DART development contributors
 * All rights reserved.
 *
 * The list of contributors can be found at:
 *   https://github.com/dartsim/dart/blob/master/LICENSE
 *
 * This file is provided under the following "BSD-style" License:
 *   Redistribution and use in source and binary forms, with or
 *   without modification, are permitted provided that the following
 *   conditions are met:
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 *   CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 *   INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *   DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 *   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 *   USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 *   AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *   POSSIBILITY OF SUCH DAMAGE.
 */

#include <dart/dart.hpp>
#include <dart/gui/osg/osg.hpp>
#include <dart/utils/urdf/urdf.hpp>
#include <dart/utils/utils.hpp>

using namespace dart::common;
using namespace dart::dynamics;
using namespace dart::simulation;
using namespace dart::utils;
using namespace dart::math;

const double display_elevation = 0.05;

class RelaxedPosture : public dart::optimizer::Function
{
public:
  RelaxedPosture(
      const Eigen::VectorXd& idealPosture,
      const Eigen::VectorXd& lower,
      const Eigen::VectorXd& upper,
      const Eigen::VectorXd& weights,
      bool enforceIdeal = false)
    : enforceIdealPosture(enforceIdeal),
      mIdeal(idealPosture),
      mLower(lower),
      mUpper(upper),
      mWeights(weights)
  {
    int dofs = mIdeal.size();
    if (mLower.size() != dofs || mWeights.size() != dofs
        || mUpper.size() != dofs)
    {
      dterr << "[RelaxedPose::RelaxedPose] Dimension mismatch:\n"
            << "  ideal:   " << mIdeal.size() << "\n"
            << "  lower:   " << mLower.size() << "\n"
            << "  upper:   " << mUpper.size() << "\n"
            << "  weights: " << mWeights.size() << "\n";
    }
    mResultVector.setZero(dofs);
  }

  double eval(const Eigen::VectorXd& _x) override
  {
    computeResultVector(_x);
    return 0.5 * mResultVector.dot(mResultVector);
  }

  void evalGradient(
      const Eigen::VectorXd& _x, Eigen::Map<Eigen::VectorXd> _grad) override
  {
    computeResultVector(_x);

    _grad.setZero();
    int smaller = std::min(mResultVector.size(), _grad.size());
    for (int i = 0; i < smaller; ++i)
      _grad[i] = mResultVector[i];
  }

  void computeResultVector(const Eigen::VectorXd& _x)
  {
    mResultVector.setZero();

    if (enforceIdealPosture)
    {
      // Try to get the robot into the best possible posture
      for (int i = 0; i < _x.size(); ++i)
      {
        if (mIdeal.size() <= i)
          break;

        mResultVector[i] = mWeights[i] * (_x[i] - mIdeal[i]);
      }
    }
    else
    {
      // Only adjust the posture if it is really bad
      for (int i = 0; i < _x.size(); ++i)
      {
        if (mIdeal.size() <= i)
          break;

        if (_x[i] < mLower[i])
          mResultVector[i] = mWeights[i] * (_x[i] - mLower[i]);
        else if (mUpper[i] < _x[i])
          mResultVector[i] = mWeights[i] * (_x[i] - mUpper[i]);
      }
    }
  }

  bool enforceIdealPosture;

protected:
  Eigen::VectorXd mResultVector;

  Eigen::VectorXd mIdeal;

  Eigen::VectorXd mLower;

  Eigen::VectorXd mUpper;

  Eigen::VectorXd mWeights;
};

class TeleoperationWorld : public dart::gui::osg::WorldNode
{
public:
  enum MoveEnum_t
  {
    MOVE_Q = 0,
    MOVE_W,
    MOVE_E,
    MOVE_A,
    MOVE_S,
    MOVE_D,
    MOVE_F,
    MOVE_Z,

    NUM_MOVE
  };

  TeleoperationWorld(WorldPtr _world, SkeletonPtr _robot)
    : dart::gui::osg::WorldNode(_world),
      mAtlas(_robot),
      iter(0),
      l_foot(_robot->getEndEffector("l_foot")),
      r_foot(_robot->getEndEffector("r_foot"))
  {
    mMoveComponents.resize(NUM_MOVE, false);
    mAnyMovement = false;
  }

  void setMovement(const std::vector<bool>& moveComponents)
  {
    mMoveComponents = moveComponents;

    mAnyMovement = false;

    for (bool move : mMoveComponents)
    {
      if (move)
      {
        mAnyMovement = true;
        break;
      }
    }
  }

  void customPreRefresh() override
  {
    if (mAnyMovement)
    {
      Eigen::Isometry3d old_tf = mAtlas->getBodyNode(0)->getWorldTransform();
      Eigen::Isometry3d new_tf = Eigen::Isometry3d::Identity();
      Eigen::Vector3d forward = old_tf.linear().col(0);
      forward[2] = 0.0;
      if (forward.norm() > 1e-10)
        forward.normalize();
      else
        forward.setZero();

      Eigen::Vector3d left = old_tf.linear().col(1);
      left[2] = 0.0;
      if (left.norm() > 1e-10)
        left.normalize();
      else
        left.setZero();

      const Eigen::Vector3d& up = Eigen::Vector3d::UnitZ();

      const double linearStep = 0.01;
      const double elevationStep = 0.2 * linearStep;
      const double rotationalStep = 2.0 * constantsd::pi() / 180.0;

      if (mMoveComponents[MOVE_W])
        new_tf.translate(linearStep * forward);

      if (mMoveComponents[MOVE_S])
        new_tf.translate(-linearStep * forward);

      if (mMoveComponents[MOVE_A])
        new_tf.translate(linearStep * left);

      if (mMoveComponents[MOVE_D])
        new_tf.translate(-linearStep * left);

      if (mMoveComponents[MOVE_F])
        new_tf.translate(elevationStep * up);

      if (mMoveComponents[MOVE_Z])
        new_tf.translate(-elevationStep * up);

      if (mMoveComponents[MOVE_Q])
        new_tf.rotate(Eigen::AngleAxisd(rotationalStep, up));

      if (mMoveComponents[MOVE_E])
        new_tf.rotate(Eigen::AngleAxisd(-rotationalStep, up));

      new_tf.pretranslate(old_tf.translation());
      new_tf.rotate(old_tf.rotation());

      mAtlas->getJoint(0)->setPositions(FreeJoint::convertToPositions(new_tf));
    }

    bool solved = mAtlas->getIK(true)->solveAndApply(true);

    if (!solved)
      ++iter;
    else
      iter = 0;

    if (iter == 1000)
    {
      std::cout << "Failing!" << std::endl;
    }
  }

protected:
  SkeletonPtr mAtlas;
  std::size_t iter;

  EndEffectorPtr l_foot;
  EndEffectorPtr r_foot;

  Eigen::VectorXd grad;

  std::vector<bool> mMoveComponents;

  bool mAnyMovement;
};

class InputHandler : public ::osgGA::GUIEventHandler
{
public:
  InputHandler(
      dart::gui::osg::Viewer* viewer,
      TeleoperationWorld* teleop,
      const SkeletonPtr& atlas,
      const WorldPtr& world)
    : mViewer(viewer), mTeleop(teleop), mAtlas(atlas), mWorld(world)
  {
    initialize();
  }

  void initialize()
  {
    mRestConfig = mAtlas->getPositions();

    mLegs.reserve(12);
    for (std::size_t i = 0; i < mAtlas->getNumDofs(); ++i)
    {
      if (mAtlas->getDof(i)->getName().substr(1, 5) == "_leg_")
        mLegs.push_back(mAtlas->getDof(i)->getIndexInSkeleton());
    }
    // We should also adjust the pelvis when detangling the legs
    mLegs.push_back(mAtlas->getDof("rootJoint_rot_x")->getIndexInSkeleton());
    mLegs.push_back(mAtlas->getDof("rootJoint_rot_y")->getIndexInSkeleton());
    mLegs.push_back(mAtlas->getDof("rootJoint_pos_z")->getIndexInSkeleton());

    for (std::size_t i = 0; i < mAtlas->getNumEndEffectors(); ++i)
    {
      const InverseKinematicsPtr ik = mAtlas->getEndEffector(i)->getIK();
      if (ik)
      {
        mDefaultBounds.push_back(ik->getErrorMethod().getBounds());
        mDefaultTargetTf.push_back(ik->getTarget()->getRelativeTransform());
        mConstraintActive.push_back(false);
        mEndEffectorIndex.push_back(i);
      }
    }

    mPosture = std::dynamic_pointer_cast<RelaxedPosture>(
        mAtlas->getIK(true)->getObjective());

    mBalance = std::dynamic_pointer_cast<dart::constraint::BalanceConstraint>(
        mAtlas->getIK(true)->getProblem()->getEqConstraint(1));

    mOptimizationKey = 'r';

    mMoveComponents.resize(TeleoperationWorld::NUM_MOVE, false);
  }

  virtual bool handle(
      const ::osgGA::GUIEventAdapter& ea, ::osgGA::GUIActionAdapter&) override
  {
    if (nullptr == mAtlas)
    {
      return false;
    }

    if (::osgGA::GUIEventAdapter::KEYDOWN == ea.getEventType())
    {
      if (ea.getKey() == 'p')
      {
        for (std::size_t i = 0; i < mAtlas->getNumDofs(); ++i)
          std::cout << mAtlas->getDof(i)->getName() << ": "
                    << mAtlas->getDof(i)->getPosition() << std::endl;
        std::cout << "  -- -- -- -- -- " << std::endl;
        return true;
      }

      if (ea.getKey() == 't')
      {
        // Reset all the positions except for x, y, and yaw
        for (std::size_t i = 0; i < mAtlas->getNumDofs(); ++i)
        {
          if (i < 2 || 4 < i)
            mAtlas->getDof(i)->setPosition(mRestConfig[i]);
        }
        return true;
      }

      if ('1' <= ea.getKey() && ea.getKey() <= '9')
      {
        std::size_t index = ea.getKey() - '1';
        if (index < mConstraintActive.size())
        {
          EndEffector* ee = mAtlas->getEndEffector(mEndEffectorIndex[index]);
          const InverseKinematicsPtr& ik = ee->getIK();
          if (ik && mConstraintActive[index])
          {
            mConstraintActive[index] = false;

            ik->getErrorMethod().setBounds(mDefaultBounds[index]);
            ik->getTarget()->setRelativeTransform(mDefaultTargetTf[index]);
            mWorld->removeSimpleFrame(ik->getTarget());
          }
          else if (ik)
          {
            mConstraintActive[index] = true;

            // Use the standard default bounds instead of our custom default
            // bounds
            ik->getErrorMethod().setBounds();
            ik->getTarget()->setTransform(ee->getTransform());
            mWorld->addSimpleFrame(ik->getTarget());
          }
        }
        return true;
      }

      if ('x' == ea.getKey())
      {
        EndEffector* ee = mAtlas->getEndEffector("l_foot");
        ee->getSupport()->setActive(!ee->getSupport()->isActive());
        return true;
      }

      if ('c' == ea.getKey())
      {
        EndEffector* ee = mAtlas->getEndEffector("r_foot");
        ee->getSupport()->setActive(!ee->getSupport()->isActive());
        return true;
      }

      switch (ea.getKey())
      {
        case 'w':
          mMoveComponents[TeleoperationWorld::MOVE_W] = true;
          break;
        case 'a':
          mMoveComponents[TeleoperationWorld::MOVE_A] = true;
          break;
        case 's':
          mMoveComponents[TeleoperationWorld::MOVE_S] = true;
          break;
        case 'd':
          mMoveComponents[TeleoperationWorld::MOVE_D] = true;
          break;
        case 'q':
          mMoveComponents[TeleoperationWorld::MOVE_Q] = true;
          break;
        case 'e':
          mMoveComponents[TeleoperationWorld::MOVE_E] = true;
          break;
        case 'f':
          mMoveComponents[TeleoperationWorld::MOVE_F] = true;
          break;
        case 'z':
          mMoveComponents[TeleoperationWorld::MOVE_Z] = true;
          break;
      }

      switch (ea.getKey())
      {
        case 'w':
        case 'a':
        case 's':
        case 'd':
        case 'q':
        case 'e':
        case 'f':
        case 'z': {
          mTeleop->setMovement(mMoveComponents);
          return true;
        }
      }

      if (mOptimizationKey == ea.getKey())
      {
        if (mPosture)
          mPosture->enforceIdealPosture = true;

        if (mBalance)
          mBalance->setErrorMethod(
              dart::constraint::BalanceConstraint::OPTIMIZE_BALANCE);

        return true;
      }
    }

    if (::osgGA::GUIEventAdapter::KEYUP == ea.getEventType())
    {
      if (ea.getKey() == mOptimizationKey)
      {
        if (mPosture)
          mPosture->enforceIdealPosture = false;

        if (mBalance)
          mBalance->setErrorMethod(
              dart::constraint::BalanceConstraint::FROM_CENTROID);

        return true;
      }

      switch (ea.getKey())
      {
        case 'w':
          mMoveComponents[TeleoperationWorld::MOVE_W] = false;
          break;
        case 'a':
          mMoveComponents[TeleoperationWorld::MOVE_A] = false;
          break;
        case 's':
          mMoveComponents[TeleoperationWorld::MOVE_S] = false;
          break;
        case 'd':
          mMoveComponents[TeleoperationWorld::MOVE_D] = false;
          break;
        case 'q':
          mMoveComponents[TeleoperationWorld::MOVE_Q] = false;
          break;
        case 'e':
          mMoveComponents[TeleoperationWorld::MOVE_E] = false;
          break;
        case 'f':
          mMoveComponents[TeleoperationWorld::MOVE_F] = false;
          break;
        case 'z':
          mMoveComponents[TeleoperationWorld::MOVE_Z] = false;
          break;
      }

      switch (ea.getKey())
      {
        case 'w':
        case 'a':
        case 's':
        case 'd':
        case 'q':
        case 'e':
        case 'f':
        case 'z': {
          mTeleop->setMovement(mMoveComponents);
          return true;
        }
      }
    }

    return false;
  }

protected:
  dart::gui::osg::Viewer* mViewer;

  TeleoperationWorld* mTeleop;

  SkeletonPtr mAtlas;

  WorldPtr mWorld;

  Eigen::VectorXd mRestConfig;

  std::vector<std::size_t> mLegs;

  std::vector<bool> mConstraintActive;

  std::vector<std::size_t> mEndEffectorIndex;

  std::vector<std::pair<Eigen::Vector6d, Eigen::Vector6d> > mDefaultBounds;

  dart::common::aligned_vector<Eigen::Isometry3d> mDefaultTargetTf;

  std::shared_ptr<RelaxedPosture> mPosture;

  std::shared_ptr<dart::constraint::BalanceConstraint> mBalance;

  char mOptimizationKey;

  std::vector<bool> mMoveComponents;
};

SkeletonPtr createGround()
{
  // Create a Skeleton to represent the ground
  SkeletonPtr ground = Skeleton::create("ground");
  Eigen::Isometry3d tf(Eigen::Isometry3d::Identity());
  double thickness = 0.01;
  tf.translation() = Eigen::Vector3d(0, 0, -thickness / 2.0);
  WeldJoint::Properties joint;
  joint.mT_ParentBodyToJoint = tf;
  ground->createJointAndBodyNodePair<WeldJoint>(nullptr, joint);
  ShapePtr groundShape
      = std::make_shared<BoxShape>(Eigen::Vector3d(10, 10, thickness));

  auto shapeNode = ground->getBodyNode(0)
                       ->createShapeNodeWith<
                           VisualAspect,
                           CollisionAspect,
                           DynamicsAspect>(groundShape);
  shapeNode->getVisualAspect()->setColor(dart::Color::Blue(0.2));

  return ground;
}

SkeletonPtr createAtlas()
{
  // Parse in the atlas model
  DartLoader urdf;
  SkeletonPtr atlas
      = urdf.parseSkeleton("dart://sample/sdf/atlas/atlas_v3_no_head.urdf");

  // Add a box to the root node to make it easier to click and drag
  double scale = 0.25;
  ShapePtr boxShape
      = std::make_shared<BoxShape>(scale * Eigen::Vector3d(1.0, 1.0, 0.5));

  Eigen::Isometry3d tf(Eigen::Isometry3d::Identity());
  tf.translation() = Eigen::Vector3d(0.1 * Eigen::Vector3d(0.0, 0.0, 1.0));

  auto shapeNode
      = atlas->getBodyNode(0)->createShapeNodeWith<VisualAspect>(boxShape);
  shapeNode->getVisualAspect()->setColor(dart::Color::Black());
  shapeNode->setRelativeTransform(tf);

  return atlas;
}

void setupStartConfiguration(const SkeletonPtr& atlas)
{
  // Squat with the right leg
  atlas->getDof("r_leg_hpy")->setPosition(-45.0 * constantsd::pi() / 180.0);
  atlas->getDof("r_leg_kny")->setPosition(90.0 * constantsd::pi() / 180.0);
  atlas->getDof("r_leg_aky")->setPosition(-45.0 * constantsd::pi() / 180.0);

  // Squat with the left left
  atlas->getDof("l_leg_hpy")->setPosition(-45.0 * constantsd::pi() / 180.0);
  atlas->getDof("l_leg_kny")->setPosition(90.0 * constantsd::pi() / 180.0);
  atlas->getDof("l_leg_aky")->setPosition(-45.0 * constantsd::pi() / 180.0);

  // Get the right arm into a comfortable position
  atlas->getDof("r_arm_shx")->setPosition(65.0 * constantsd::pi() / 180.0);
  atlas->getDof("r_arm_ely")->setPosition(90.0 * constantsd::pi() / 180.0);
  atlas->getDof("r_arm_elx")->setPosition(-90.0 * constantsd::pi() / 180.0);
  atlas->getDof("r_arm_wry")->setPosition(65.0 * constantsd::pi() / 180.0);

  // Get the left arm into a comfortable position
  atlas->getDof("l_arm_shx")->setPosition(-65.0 * constantsd::pi() / 180.0);
  atlas->getDof("l_arm_ely")->setPosition(90.0 * constantsd::pi() / 180.0);
  atlas->getDof("l_arm_elx")->setPosition(90.0 * constantsd::pi() / 180.0);
  atlas->getDof("l_arm_wry")->setPosition(65.0 * constantsd::pi() / 180.0);

  // Prevent the knees from bending backwards
  atlas->getDof("r_leg_kny")
      ->setPositionLowerLimit(10 * constantsd::pi() / 180.0);
  atlas->getDof("l_leg_kny")
      ->setPositionLowerLimit(10 * constantsd::pi() / 180.0);
}

void setupEndEffectors(const SkeletonPtr& atlas)
{
  // Apply very small weights to the gradient of the root joint in order to
  // encourage the arms to use arm joints instead of only moving around the root
  // joint
  Eigen::VectorXd rootjoint_weights = Eigen::VectorXd::Ones(6);
  rootjoint_weights = 0.01 * rootjoint_weights;

  // Setting the bounds to be infinite allows the end effector to be implicitly
  // unconstrained
  Eigen::Vector3d linearBounds
      = Eigen::Vector3d::Constant(std::numeric_limits<double>::infinity());

  Eigen::Vector3d angularBounds
      = Eigen::Vector3d::Constant(std::numeric_limits<double>::infinity());

  // -- Set up the left hand --

  // Create a relative transform for the EndEffector frame. This is the
  // transform that the left hand will have relative to the BodyNode that it is
  // attached to
  Eigen::Isometry3d tf_hand(Eigen::Isometry3d::Identity());
  tf_hand.translation() = Eigen::Vector3d(0.0009, 0.1254, 0.012);
  tf_hand.rotate(Eigen::AngleAxisd(
      90.0 * constantsd::pi() / 180.0, Eigen::Vector3d::UnitZ()));

  // Create the left hand's end effector and set its relative transform
  EndEffector* l_hand
      = atlas->getBodyNode("l_hand")->createEndEffector("l_hand");
  l_hand->setDefaultRelativeTransform(tf_hand, true);

  // Create an interactive frame to use as the target for the left hand
  dart::gui::osg::InteractiveFramePtr lh_target(
      new dart::gui::osg::InteractiveFrame(Frame::World(), "lh_target"));

  // Set the target of the left hand to the interactive frame. We pass true into
  // the function to tell it that it should create the IK module if it does not
  // already exist. If we don't do that, then calling getIK() could return a
  // nullptr if the IK module was never created.
  l_hand->getIK(true)->setTarget(lh_target);

  // Tell the left hand to use the whole body for its IK
  l_hand->getIK()->useWholeBody();

  // Set the weights for the gradient
  l_hand->getIK()->getGradientMethod().setComponentWeights(rootjoint_weights);

  // Set the bounds for the IK to be infinite so that the hands start out
  // unconstrained
  l_hand->getIK()->getErrorMethod().setLinearBounds(
      -linearBounds, linearBounds);

  l_hand->getIK()->getErrorMethod().setAngularBounds(
      -angularBounds, angularBounds);

  // -- Set up the right hand --

  // The orientation of the right hand frame is different than the left, so we
  // need to adjust the signs of the relative transform
  tf_hand.translation()[0] = -tf_hand.translation()[0];
  tf_hand.translation()[1] = -tf_hand.translation()[1];
  tf_hand.linear() = tf_hand.linear().inverse().eval();

  // Create the right hand's end effector and set its relative transform
  EndEffector* r_hand
      = atlas->getBodyNode("r_hand")->createEndEffector("r_hand");
  r_hand->setDefaultRelativeTransform(tf_hand, true);

  // Create an interactive frame to use as the target for the right hand
  dart::gui::osg::InteractiveFramePtr rh_target(
      new dart::gui::osg::InteractiveFrame(Frame::World(), "rh_target"));

  // Create the right hand's IK and set its target
  r_hand->getIK(true)->setTarget(rh_target);

  // Tell the right hand to use the whole body for its IK
  r_hand->getIK()->useWholeBody();

  // Set the weights for the gradient
  r_hand->getIK()->getGradientMethod().setComponentWeights(rootjoint_weights);

  // Set the bounds for the IK to be infinite so that the hands start out
  // unconstrained
  r_hand->getIK()->getErrorMethod().setLinearBounds(
      -linearBounds, linearBounds);

  r_hand->getIK()->getErrorMethod().setAngularBounds(
      -angularBounds, angularBounds);

  // Define the support geometry for the feet. These points will be used to
  // compute the convex hull of the robot's support polygon
  dart::math::SupportGeometry support;
  const double sup_pos_x = 0.10 - 0.186;
  const double sup_neg_x = -0.03 - 0.186;
  const double sup_pos_y = 0.03;
  const double sup_neg_y = -0.03;
  support.push_back(Eigen::Vector3d(sup_neg_x, sup_neg_y, 0.0));
  support.push_back(Eigen::Vector3d(sup_pos_x, sup_neg_y, 0.0));
  support.push_back(Eigen::Vector3d(sup_pos_x, sup_pos_y, 0.0));
  support.push_back(Eigen::Vector3d(sup_neg_x, sup_pos_y, 0.0));

  // Create a relative transform that goes from the center of the feet to the
  // bottom of the feet
  Eigen::Isometry3d tf_foot(Eigen::Isometry3d::Identity());
  tf_foot.translation() = Eigen::Vector3d(0.186, 0.0, -0.08);

  // Constrain the feet to snap to the ground
  linearBounds[2] = 1e-8;

  // Constrain the feet to lie flat on the ground
  angularBounds[0] = 1e-8;
  angularBounds[1] = 1e-8;

  // Create an end effector for the left foot and set its relative transform
  EndEffector* l_foot
      = atlas->getBodyNode("l_foot")->createEndEffector("l_foot");
  l_foot->setRelativeTransform(tf_foot);

  // Create an interactive frame to use as the target for the left foot
  dart::gui::osg::InteractiveFramePtr lf_target(
      new dart::gui::osg::InteractiveFrame(Frame::World(), "lf_target"));

  // Create the left foot's IK and set its target
  l_foot->getIK(true)->setTarget(lf_target);

  // Set the left foot's IK hierarchy level to 1. This will project its IK goals
  // through the null space of any IK modules that are on level 0. This means
  // that it will try to accomplish its goals while also accommodating the goals
  // of other modules.
  l_foot->getIK()->setHierarchyLevel(1);

  // Use the bounds defined above
  l_foot->getIK()->getErrorMethod().setLinearBounds(
      -linearBounds, linearBounds);
  l_foot->getIK()->getErrorMethod().setAngularBounds(
      -angularBounds, angularBounds);

  // Create Support for the foot and give it geometry
  l_foot->getSupport(true)->setGeometry(support);

  // Turn on support mode so that it can be used as a foot
  l_foot->getSupport()->setActive();

  // Create an end effector for the right foot and set its relative transform
  EndEffector* r_foot
      = atlas->getBodyNode("r_foot")->createEndEffector("r_foot");
  r_foot->setRelativeTransform(tf_foot);

  // Create an interactive frame to use as the target for the right foot
  dart::gui::osg::InteractiveFramePtr rf_target(
      new dart::gui::osg::InteractiveFrame(Frame::World(), "rf_target"));

  // Create the right foot's IK module and set its target
  r_foot->getIK(true)->setTarget(rf_target);

  // Set the right foot's IK hierarchy level to 1
  r_foot->getIK()->setHierarchyLevel(1);

  // Use the bounds defined above
  r_foot->getIK()->getErrorMethod().setLinearBounds(
      -linearBounds, linearBounds);
  r_foot->getIK()->getErrorMethod().setAngularBounds(
      -angularBounds, angularBounds);

  // Create Support for the foot and give it geometry
  r_foot->getSupport(true)->setGeometry(support);

  // Turn on support mode so that it can be used as a foot
  r_foot->getSupport()->setActive();

  // Move atlas to the ground so that it starts out squatting with its feet on
  // the ground
  double heightChange = -r_foot->getWorldTransform().translation()[2];
  atlas->getDof(5)->setPosition(heightChange);

  // Now that the feet are on the ground, we should set their target transforms
  l_foot->getIK()->getTarget()->setTransform(l_foot->getTransform());
  r_foot->getIK()->getTarget()->setTransform(r_foot->getTransform());
}

void setupWholeBodySolver(const SkeletonPtr& atlas)
{
  // The default
  std::shared_ptr<dart::optimizer::GradientDescentSolver> solver
      = std::dynamic_pointer_cast<dart::optimizer::GradientDescentSolver>(
          atlas->getIK(true)->getSolver());
  solver->setNumMaxIterations(10);

  std::size_t nDofs = atlas->getNumDofs();

  double default_weight = 0.01;
  Eigen::VectorXd weights = default_weight * Eigen::VectorXd::Ones(nDofs);
  weights[2] = 0.0;
  weights[3] = 0.0;
  weights[4] = 0.0;

  weights[6] *= 0.2;
  weights[7] *= 0.2;
  weights[8] *= 0.2;

  Eigen::VectorXd lower_posture = Eigen::VectorXd::Constant(
      nDofs, -std::numeric_limits<double>::infinity());
  lower_posture[0] = -0.35;
  lower_posture[1] = -0.35;
  lower_posture[5] = 0.600;

  lower_posture[6] = -0.1;
  lower_posture[7] = -0.1;
  lower_posture[8] = -0.1;

  Eigen::VectorXd upper_posture = Eigen::VectorXd::Constant(
      nDofs, std::numeric_limits<double>::infinity());
  upper_posture[0] = 0.35;
  upper_posture[1] = 0.35;
  upper_posture[5] = 0.885;

  upper_posture[6] = 0.1;
  upper_posture[7] = 0.1;
  upper_posture[8] = 0.1;

  std::shared_ptr<RelaxedPosture> objective = std::make_shared<RelaxedPosture>(
      atlas->getPositions(), lower_posture, upper_posture, weights);
  atlas->getIK()->setObjective(objective);

  std::shared_ptr<dart::constraint::BalanceConstraint> balance
      = std::make_shared<dart::constraint::BalanceConstraint>(atlas->getIK());
  atlas->getIK()->getProblem()->addEqConstraint(balance);

  //  // Shift the center of mass towards the support polygon center while
  //  trying
  //  // to keep the support polygon where it is
  //  balance->setErrorMethod(dart::constraint::BalanceConstraint::FROM_CENTROID);
  //  balance->setBalanceMethod(dart::constraint::BalanceConstraint::SHIFT_COM);

  //  // Keep shifting the center of mass towards the center of the support
  //  // polygon, even if it is already inside. This is useful for trying to
  //  // optimize a stance
  //  balance->setErrorMethod(dart::constraint::BalanceConstraint::OPTIMIZE_BALANCE);
  //  balance->setBalanceMethod(dart::constraint::BalanceConstraint::SHIFT_COM);

  //  // Try to leave the center of mass where it is while moving the support
  //  // polygon to be under the current center of mass location
  balance->setErrorMethod(dart::constraint::BalanceConstraint::FROM_CENTROID);
  balance->setBalanceMethod(dart::constraint::BalanceConstraint::SHIFT_SUPPORT);

  //  // Try to leave the center of mass where it is while moving the support
  //  // point that is closest to the center of mass
  //  balance->setErrorMethod(dart::constraint::BalanceConstraint::FROM_EDGE);
  //  balance->setBalanceMethod(dart::constraint::BalanceConstraint::SHIFT_SUPPORT);

  // Note that using the FROM_EDGE error method is liable to leave the center of
  // mass visualization red even when the constraint was successfully solved.
  // This is because the constraint solver has a tiny bit of tolerance that
  // allows the Problem to be considered solved when the center of mass is
  // microscopically outside of the support polygon. This is an inherent risk of
  // using FROM_EDGE instead of FROM_CENTROID.

  // Feel free to experiment with the different balancing methods. You will find
  // that some work much better for user interaction than others.
}

void enableDragAndDrops(
    dart::gui::osg::Viewer& viewer, const SkeletonPtr& atlas)
{
  // Turn on drag-and-drop for the whole Skeleton
  for (std::size_t i = 0; i < atlas->getNumBodyNodes(); ++i)
    viewer.enableDragAndDrop(atlas->getBodyNode(i), false, false);

  for (std::size_t i = 0; i < atlas->getNumEndEffectors(); ++i)
  {
    EndEffector* ee = atlas->getEndEffector(i);
    if (!ee->getIK())
      continue;

    // Check whether the target is an interactive frame, and add it if it is
    if (const auto& frame
        = std::dynamic_pointer_cast<dart::gui::osg::InteractiveFrame>(
            ee->getIK()->getTarget()))
      viewer.enableDragAndDrop(frame.get());
  }
}

int main()
{
  WorldPtr world = World::create();

  SkeletonPtr atlas = createAtlas();
  world->addSkeleton(atlas);

  SkeletonPtr ground = createGround();
  world->addSkeleton(ground);

  setupStartConfiguration(atlas);

  setupEndEffectors(atlas);

  setupWholeBodySolver(atlas);

  ::osg::ref_ptr<TeleoperationWorld> node
      = new TeleoperationWorld(world, atlas);

  dart::gui::osg::Viewer viewer;

  // Prevent this World from simulating
  viewer.allowSimulation(false);
  viewer.addWorldNode(node);

  // Add our custom input handler to the Viewer
  viewer.addEventHandler(new InputHandler(&viewer, node, atlas, world));

  enableDragAndDrops(viewer, atlas);

  // Attach a support polygon visualizer
  viewer.addAttachment(
      new dart::gui::osg::SupportPolygonVisual(atlas, display_elevation));

  // Print out instructions for the viewer
  std::cout << viewer.getInstructions() << std::endl;

  std::cout
      << "Alt + Click:   Try to translate a body without changing its "
         "orientation\n"
      << "Ctrl + Click:  Try to rotate a body without changing its "
         "translation\n"
      << "Shift + Click: Move a body using only its parent joint\n"
      << "1 -> 4:        Toggle the interactive target of an EndEffector\n"
      << "W A S D:       Move the robot around the scene\n"
      << "Q E:           Rotate the robot counter-clockwise and clockwise\n"
      << "F Z:           Shift the robot's elevation up and down\n"
      << "X C:           Toggle support on the left and right foot\n"
      << "R:             Optimize the robot's posture\n"
      << "T:             Reset the robot to its relaxed posture\n\n"
      << "  Because this uses iterative Jacobian methods, the solver can get "
         "finicky,\n"
      << "  and the robot can get tangled up. Use 'R' and 'T' keys when the "
         "robot is\n"
      << "  in a messy configuration\n\n"
      << "  The green polygon is the support polygon of the robot, and the "
         "blue/red ball is\n"
      << "  the robot's center of mass. The green ball is the centroid of the "
         "polygon.\n\n"
      << "Note that this is purely kinematic. Physical simulation is not "
         "allowed in this app.\n"
      << std::endl;

  // Set up the window
  viewer.setUpViewInWindow(0, 0, 1280, 960);

  // Set up the default viewing position
  viewer.getCameraManipulator()->setHomePosition(
      ::osg::Vec3(5.34, 3.00, 2.41),
      ::osg::Vec3(0.00, 0.00, 1.00),
      ::osg::Vec3(-0.20, -0.08, 0.98));

  // Reset the camera manipulator so that it starts in the new viewing position
  viewer.setCameraManipulator(viewer.getCameraManipulator());

  // Run the Viewer
  viewer.run();
}