1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
/*
* Copyright (c) 2011-2021, The DART development contributors
* All rights reserved.
*
* The list of contributors can be found at:
* https://github.com/dartsim/dart/blob/master/LICENSE
*
* This file is provided under the following "BSD-style" License:
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <dart/dart.hpp>
#include <dart/gui/gui.hpp>
#include <dart/utils/utils.hpp>
const double default_speed_increment = 0.5;
const int default_ik_iterations = 4500;
const double default_force = 50.0; // N
const int default_countdown = 100; // Number of timesteps for applying force
using namespace dart::common;
using namespace dart::dynamics;
using namespace dart::simulation;
using namespace dart::gui;
using namespace dart::gui::glut;
using namespace dart::utils;
using namespace dart::math;
class Controller
{
public:
/// Constructor
Controller(const SkeletonPtr& biped)
: mBiped(biped), mPreOffset(0.0), mSpeed(0.0)
{
int nDofs = mBiped->getNumDofs();
mForces = Eigen::VectorXd::Zero(nDofs);
mKp = Eigen::MatrixXd::Identity(nDofs, nDofs);
mKd = Eigen::MatrixXd::Identity(nDofs, nDofs);
for (std::size_t i = 0; i < 6; ++i)
{
mKp(i, i) = 0.0;
mKd(i, i) = 0.0;
}
for (std::size_t i = 6; i < biped->getNumDofs(); ++i)
{
mKp(i, i) = 1000;
mKd(i, i) = 50;
}
setTargetPositions(mBiped->getPositions());
}
/// Reset the desired dof position to the current position
void setTargetPositions(const Eigen::VectorXd& pose)
{
mTargetPositions = pose;
}
/// Clear commanding forces
void clearForces()
{
mForces.setZero();
}
/// Add commanding forces from PD controllers
void addPDForces()
{
// Lesson 2
}
/// Add commanind forces from Stable-PD controllers
void addSPDForces()
{
// Lesson 3
}
/// add commanding forces from ankle strategy
void addAnkleStrategyForces()
{
// Lesson 4
}
// Send velocity commands on wheel actuators
void setWheelCommands()
{
// Lesson 6
}
void changeWheelSpeed(double increment)
{
mSpeed += increment;
std::cout << "wheel speed = " << mSpeed << std::endl;
}
protected:
/// The biped Skeleton that we will be controlling
SkeletonPtr mBiped;
/// Joint forces for the biped (output of the Controller)
Eigen::VectorXd mForces;
/// Control gains for the proportional error terms in the PD controller
Eigen::MatrixXd mKp;
/// Control gains for the derivative error terms in the PD controller
Eigen::MatrixXd mKd;
/// Target positions for the PD controllers
Eigen::VectorXd mTargetPositions;
/// For ankle strategy: Error in the previous timestep
double mPreOffset;
/// For velocity actuator: Current speed of the skateboard
double mSpeed;
};
class MyWindow : public SimWindow
{
public:
/// Constructor
MyWindow(const WorldPtr& world) : mForceCountDown(0), mPositiveSign(true)
{
setWorld(world);
mController = std::make_unique<Controller>(mWorld->getSkeleton("biped"));
}
/// Handle keyboard input
void keyboard(unsigned char key, int x, int y) override
{
switch (key)
{
case ',':
mForceCountDown = default_countdown;
mPositiveSign = false;
break;
case '.':
mForceCountDown = default_countdown;
mPositiveSign = true;
break;
case 'a':
mController->changeWheelSpeed(default_speed_increment);
break;
case 's':
mController->changeWheelSpeed(-default_speed_increment);
break;
default:
SimWindow::keyboard(key, x, y);
}
}
void timeStepping() override
{
mController->clearForces();
// Lesson 3
mController->addSPDForces();
// Lesson 4
mController->addAnkleStrategyForces();
// Lesson 6
mController->setWheelCommands();
// Apply body forces based on user input, and color the body shape red
if (mForceCountDown > 0)
{
BodyNode* bn = mWorld->getSkeleton("biped")->getBodyNode("h_abdomen");
auto shapeNodes = bn->getShapeNodesWith<VisualAspect>();
shapeNodes[0]->getVisualAspect()->setColor(dart::Color::Red());
if (mPositiveSign)
bn->addExtForce(
default_force * Eigen::Vector3d::UnitX(),
bn->getCOM(),
false,
false);
else
bn->addExtForce(
-default_force * Eigen::Vector3d::UnitX(),
bn->getCOM(),
false,
false);
--mForceCountDown;
}
// Step the simulation forward
SimWindow::timeStepping();
}
protected:
std::unique_ptr<Controller> mController;
/// Number of iterations before clearing a force entry
int mForceCountDown;
/// Whether a force should be applied in the positive or negative direction
bool mPositiveSign;
};
// Load a biped model and enable joint limits and self-collision
SkeletonPtr loadBiped()
{
// Lesson 1
// Create the world with a skeleton
WorldPtr world = SkelParser::readWorld("dart://sample/skel/biped.skel");
assert(world != nullptr);
SkeletonPtr biped = world->getSkeleton("biped");
return biped;
}
// Load a skateboard model and connect it to the biped model via an Euler joint
void modifyBipedWithSkateboard(SkeletonPtr /*biped*/)
{
// Lesson 5
}
// Set the actuator type for four wheel joints to "VELOCITY"
void setVelocityAccuators(SkeletonPtr /*biped*/)
{
// Lesson 6
}
// Solve for a balanced pose using IK
Eigen::VectorXd solveIK(SkeletonPtr biped)
{
// Lesson 7
Eigen::VectorXd newPose = biped->getPositions();
return newPose;
}
SkeletonPtr createFloor()
{
SkeletonPtr floor = Skeleton::create("floor");
// Give the floor a body
BodyNodePtr body
= floor->createJointAndBodyNodePair<WeldJoint>(nullptr).second;
// Give the body a shape
double floor_width = 10.0;
double floor_height = 0.01;
std::shared_ptr<BoxShape> box(
new BoxShape(Eigen::Vector3d(floor_width, floor_height, floor_width)));
auto shapeNode = body->createShapeNodeWith<
VisualAspect,
CollisionAspect,
DynamicsAspect>(box);
shapeNode->getVisualAspect()->setColor(dart::Color::Black());
// Put the body into position
Eigen::Isometry3d tf(Eigen::Isometry3d::Identity());
tf.translation() = Eigen::Vector3d(0.0, -1.0, 0.0);
body->getParentJoint()->setTransformFromParentBodyNode(tf);
return floor;
}
int main(int argc, char* argv[])
{
SkeletonPtr floor = createFloor();
// Lesson 1
SkeletonPtr biped = loadBiped();
// Lesson 5
modifyBipedWithSkateboard(biped);
// Lesson 6
setVelocityAccuators(biped);
// Lesson 7
Eigen::VectorXd balancedPose = solveIK(biped);
biped->setPositions(balancedPose);
WorldPtr world = std::make_shared<World>();
world->setGravity(Eigen::Vector3d(0.0, -9.81, 0.0));
if (dart::collision::CollisionDetector::getFactory()->canCreate("bullet"))
{
world->getConstraintSolver()->setCollisionDetector(
dart::collision::CollisionDetector::getFactory()->create("bullet"));
}
world->addSkeleton(floor);
world->addSkeleton(biped);
// Create a window for rendering the world and handling user input
MyWindow window(world);
// Print instructions
std::cout << "'.': forward push" << std::endl;
std::cout << "',': backward push" << std::endl;
std::cout << "'s': increase skateboard forward speed" << std::endl;
std::cout << "'a': increase skateboard backward speed" << std::endl;
std::cout << "space bar: simulation on/off" << std::endl;
std::cout << "'p': replay simulation" << std::endl;
std::cout << "'v': Turn contact force visualization on/off" << std::endl;
std::cout << "'[' and ']': replay one frame backward and forward"
<< std::endl;
// Initialize glut, initialize the window, and begin the glut event loop
glutInit(&argc, argv);
window.initWindow(640, 480, "Multi-Pendulum Tutorial");
glutMainLoop();
}
|