1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
* Copyright (c) 2011-2021, The DART development contributors
* All rights reserved.
*
* The list of contributors can be found at:
* https://github.com/dartsim/dart/blob/master/LICENSE
*
* This file is provided under the following "BSD-style" License:
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <gtest/gtest.h>
#include "dart/collision/ode/OdeCollisionDetector.hpp"
#include "dart/constraint/ConstraintSolver.hpp"
#include "dart/dynamics/SimpleFrame.hpp"
#include "dart/math/Geometry.hpp"
#include "dart/math/Helpers.hpp"
#include "dart/math/Random.hpp"
#include "TestHelpers.hpp"
using namespace dart;
using namespace dynamics;
//==============================================================================
std::shared_ptr<World> createWorld()
{
auto world = simulation::World::create();
world->getConstraintSolver()->setCollisionDetector(
collision::OdeCollisionDetector::create());
return world;
}
//==============================================================================
dynamics::SkeletonPtr createFloor()
{
auto floor = dynamics::Skeleton::create("floor");
// Give the floor a body
auto body
= floor->createJointAndBodyNodePair<dynamics::WeldJoint>(nullptr).second;
// Give the body a shape
double floorWidth = 10000.0;
double floorHeight = 0.01;
auto box = std::make_shared<dynamics::BoxShape>(
Eigen::Vector3d(floorWidth, floorWidth, floorHeight));
auto* shapeNode = body->createShapeNodeWith<
dynamics::VisualAspect,
dynamics::CollisionAspect,
dynamics::DynamicsAspect>(box);
shapeNode->getVisualAspect()->setColor(dart::Color::LightGray());
shapeNode->getDynamicsAspect()->setPrimarySlipCompliance(0);
shapeNode->getDynamicsAspect()->setSecondarySlipCompliance(0);
// Put the body into position
Eigen::Isometry3d tf = Eigen::Isometry3d::Identity();
tf.translation() = Eigen::Vector3d(0.0, 0.0, -floorHeight / 2.0);
body->getParentJoint()->setTransformFromParentBodyNode(tf);
return floor;
}
//==============================================================================
SkeletonPtr createCylinder(
double _radius,
double _height,
const Eigen::Vector3d& _position = Eigen::Vector3d::Zero(),
const Eigen::Vector3d& _orientation = Eigen::Vector3d::Zero())
{
SkeletonPtr cylinder = createObject(_position, _orientation);
BodyNode* bn = cylinder->getBodyNode(0);
std::shared_ptr<Shape> cylinderShape(new CylinderShape(_radius, _height));
bn->createShapeNodeWith<VisualAspect, CollisionAspect, DynamicsAspect>(
cylinderShape);
return cylinder;
}
//==============================================================================
TEST(ForceDependentSlip, BoxSlipVelocity)
{
using Eigen::Vector3d;
const double mass = 5.0;
const double slip = 0.02;
auto skeleton1 = createBox({0.3, 0.3, 0.3}, {0, -0.5, 0.15});
skeleton1->setName("Skeleton1");
auto skeleton2 = createBox({0.3, 0.3, 0.3}, {0, +0.5, 0.15});
skeleton2->setName("Skeleton2");
auto body1 = skeleton1->getRootBodyNode();
body1->setMass(mass);
auto body1Dynamics = body1->getShapeNode(0)->getDynamicsAspect();
EXPECT_DOUBLE_EQ(body1Dynamics->getFrictionCoeff(), 1.0);
body1Dynamics->setPrimarySlipCompliance(slip);
body1Dynamics->setFirstFrictionDirection(Vector3d::UnitX());
EXPECT_DOUBLE_EQ(body1Dynamics->getPrimarySlipCompliance(), slip);
EXPECT_EQ(body1Dynamics->getFirstFrictionDirection(), Vector3d::UnitX());
auto body2 = skeleton2->getRootBodyNode();
body2->setMass(mass);
auto body2Dynamics = body2->getShapeNode(0)->getDynamicsAspect();
body2Dynamics->setFirstFrictionDirection(Vector3d::UnitX());
EXPECT_EQ(body2Dynamics->getFirstFrictionDirection(), Vector3d::UnitX());
EXPECT_DOUBLE_EQ(body2Dynamics->getFrictionCoeff(), 1.0);
// Create a world and add the rigid bodies
auto world = createWorld();
world->addSkeleton(createFloor());
world->addSkeleton(skeleton1);
world->addSkeleton(skeleton2);
const auto numSteps = 2000;
const double extForce = 10.0;
for (auto i = 0u; i < numSteps; ++i)
{
body1->addExtForce({extForce, 0, 0});
body2->addExtForce({extForce, 0, 0});
world->step();
if (i > 1000)
{
// The velocity of body1 should stabilize at F_ext * slip = 0.2 m/s
EXPECT_NEAR(extForce * slip, body1->getLinearVelocity().x(), 4e-4);
EXPECT_NEAR(0.0, body1->getLinearVelocity().y(), 2e-5);
// The second box should remain at rest because of friction
EXPECT_NEAR(0.0, body2->getLinearVelocity().x(), 2e-5);
EXPECT_NEAR(0.0, body2->getLinearVelocity().y(), 2e-5);
}
}
const double slip2 = 0.03;
// Test slip compliance in the secondary friction direction
body1Dynamics->setPrimarySlipCompliance(0);
body1Dynamics->setSecondarySlipCompliance(slip2);
EXPECT_DOUBLE_EQ(body1Dynamics->getPrimarySlipCompliance(), 0.0);
EXPECT_DOUBLE_EQ(body1Dynamics->getSecondarySlipCompliance(), slip2);
// Step without external force so the body stop moving
for (auto i = 0u; i < 500; ++i)
{
world->step();
}
EXPECT_NEAR(0.0, body1->getLinearVelocity().x(), 2e-5);
EXPECT_NEAR(0.0, body1->getLinearVelocity().y(), 2e-5);
// The second box should remain at rest because of friction
EXPECT_NEAR(0.0, body2->getLinearVelocity().x(), 2e-5);
EXPECT_NEAR(0.0, body2->getLinearVelocity().y(), 2e-5);
// Apply force in the +y direction
for (auto i = 0u; i < numSteps; ++i)
{
body1->addExtForce({0, extForce, 0});
body2->addExtForce({0, extForce, 0});
world->step();
if (i > 1500)
{
// The velocity of body1 should stabilize at F_ext * slip2 = 0.3 m/s
EXPECT_NEAR(0.0, body1->getLinearVelocity().x(), 2e-5);
EXPECT_NEAR(extForce * slip2, body1->getLinearVelocity().y(), 2e-3);
// The second box should remain at rest because of friction
EXPECT_NEAR(0.0, body2->getLinearVelocity().x(), 2e-5);
EXPECT_NEAR(0.0, body2->getLinearVelocity().y(), 2e-5);
}
}
}
//==============================================================================
// Test two cylinders, one with its z axis pointing in the z axis of the world
// so it's purely slipping, and the other with its z axis pointing in the y axis
// of the world so it's rolling and slipping.
TEST(ForceDependentSlip, CylinderSlipVelocity)
{
using Eigen::Vector3d;
const double mass = 2.0;
const double radius = 0.5;
const double slip = 0.02;
auto skeleton1 = createCylinder(radius, 0.3, {0, -5, radius});
skeleton1->setName("Skeleton1");
auto skeleton2 = createCylinder(
radius, 0.8, {0, 5, radius}, {math::constantsd::half_pi(), 0, 0});
skeleton2->setName("Skeleton2");
auto body1 = skeleton1->getRootBodyNode();
body1->setMass(5.0);
auto body1Dynamics = body1->getShapeNode(0)->getDynamicsAspect();
EXPECT_DOUBLE_EQ(body1Dynamics->getFrictionCoeff(), 1.0);
body1Dynamics->setPrimarySlipCompliance(slip);
body1Dynamics->setFirstFrictionDirection(Vector3d::UnitX());
EXPECT_DOUBLE_EQ(body1Dynamics->getPrimarySlipCompliance(), slip);
EXPECT_EQ(body1Dynamics->getFirstFrictionDirection(), Vector3d::UnitX());
auto body2 = skeleton2->getRootBodyNode();
body2->setMass(mass);
auto body2Dynamics = body2->getShapeNode(0)->getDynamicsAspect();
EXPECT_DOUBLE_EQ(body2Dynamics->getFrictionCoeff(), 1.0);
// Set the friction direction to +z in the shape frame because it will always
// be orthogonal to the floor's normal.
body2Dynamics->setFirstFrictionDirection(Vector3d::UnitZ());
// Since we want to test rolling with slipping for body2, we want to set a
// non-zero slip parameter in the direction orthogonal to the axis of rotation
// of the cylinder. The axis of rotation is in the body's +z direction, so we
// make that the first friction direction and set the non-zero slip parameter
// in the secondary direction.
body2Dynamics->setSecondarySlipCompliance(slip);
EXPECT_DOUBLE_EQ(body2Dynamics->getSecondarySlipCompliance(), slip);
EXPECT_EQ(body2Dynamics->getFirstFrictionDirection(), Vector3d::UnitZ());
// Create a world and add the rigid bodies
auto world = createWorld();
world->addSkeleton(createFloor());
world->addSkeleton(skeleton1);
world->addSkeleton(skeleton2);
const double dt = 0.001;
const auto numSteps = 2000;
const double extForceX = 1.0;
const double extTorqueY = 2.0;
auto lastVel = body2->getLinearVelocity();
for (auto i = 0u; i < numSteps; ++i)
{
body1->addExtForce({extForceX, 0, 0});
body2->addExtTorque({0, extTorqueY, 0.0}, false);
world->step();
if (i > 1000)
{
// The velocity of body1 should stabilize at F_ext * slip
EXPECT_NEAR(extForceX * slip, body1->getLinearVelocity().x(), 1e-4);
EXPECT_NEAR(0.0, body1->getLinearVelocity().y(), 1e-4);
// body2 rolls with sliding. The difference between the linear velocity
// and the expected non-sliding velocity (angular velocity * radius) is
// equal to F_fr * slip, where F_fr is the friction force. We compute the
// friction force from the linear acceleration since it's the only linear
// force on the body.
auto linVel = body2->getLinearVelocity().x();
auto spinVel = body2->getAngularVelocity().y() * radius;
// There appears to be a bug in DART in obtaining the linear acceleration
// of the body using (BodyNode::getLinearAcceleration), so we compute it
// here via finite difference.
auto accel = (body2->getLinearVelocity() - lastVel) / dt;
EXPECT_NEAR(mass * accel.x() * slip, spinVel - linVel, 3e-2);
EXPECT_NEAR(0.0, body2->getLinearVelocity().y(), 2e-1);
}
lastVel = body2->getLinearVelocity();
}
}
|