1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
/*
* Copyright (c) 2011-2022, The DART development contributors
* All rights reserved.
*
* The list of contributors can be found at:
* https://github.com/dartsim/dart/blob/master/LICENSE
*
* This file is provided under the following "BSD-style" License:
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <dart/dart.hpp>
#include <dart/gui/gui.hpp>
#include <dart/utils/urdf/urdf.hpp>
const double default_domino_height = 0.3;
const double default_domino_width = 0.4 * default_domino_height;
const double default_domino_depth = default_domino_width / 5.0;
const double default_distance = default_domino_height / 2.0;
const double default_angle = dart::math::toRadian(20.0);
const double default_domino_density = 2.6e3; // kg/m^3
const double default_domino_mass
= default_domino_density * default_domino_height * default_domino_width
* default_domino_depth;
const double default_push_force = 8.0; // N
const int default_force_duration = 200; // # iterations
const int default_push_duration = 1000; // # iterations
const double default_endeffector_offset = 0.05;
using namespace dart::common;
using namespace dart::dynamics;
using namespace dart::simulation;
using namespace dart::math;
class Controller
{
public:
Controller(const SkeletonPtr& manipulator, const SkeletonPtr& domino)
: mManipulator(manipulator)
{
// Grab the current joint angles to use them as desired angles
mQDesired = mManipulator->getPositions();
// Grab the last body in the manipulator, and use it as an end effector
mEndEffector
= mManipulator->getBodyNode(mManipulator->getNumBodyNodes() - 1);
// Compute the body frame offset for the end effector
mOffset = default_endeffector_offset * Eigen::Vector3d::UnitX();
// Create a target reference frame
mTarget = std::make_shared<SimpleFrame>(Frame::World(), "target");
// Create a transform from the center of the domino to the top of the domino
Eigen::Isometry3d target_offset(Eigen::Isometry3d::Identity());
target_offset.translation()
= default_domino_height / 2.0 * Eigen::Vector3d::UnitZ();
// Rotate the transform so that it matches the orientation of the end
// effector
target_offset.linear()
= mEndEffector->getTransform(domino->getBodyNode(0)).linear();
// Place the mTarget SimpleFrame at the top of the domino
mTarget->setTransform(target_offset, domino->getBodyNode(0));
// Set PD control gains
mKpPD = 200.0;
mKdPD = 20.0;
// Set operational space control gains
mKpOS = 5.0;
mKdOS = 0.01;
}
/// Compute a stable PD controller that also compensates for gravity and
/// Coriolis forces
void setPDForces()
{
if (nullptr == mManipulator)
return;
// Compute the joint position error
Eigen::VectorXd q = mManipulator->getPositions();
Eigen::VectorXd dq = mManipulator->getVelocities();
q += dq * mManipulator->getTimeStep();
Eigen::VectorXd q_err = mQDesired - q;
// Compute the joint velocity error
Eigen::VectorXd dq_err = -dq;
// Compute the joint forces needed to compensate for Coriolis forces and
// gravity
const Eigen::VectorXd& Cg = mManipulator->getCoriolisAndGravityForces();
// Compute the desired joint forces
const Eigen::MatrixXd& M = mManipulator->getMassMatrix();
mForces = M * (mKpPD * q_err + mKdPD * dq_err) + Cg;
mManipulator->setForces(mForces);
}
/// Compute an operational space controller to push on the first domino
void setOperationalSpaceForces()
{
if (nullptr == mManipulator)
return;
const Eigen::MatrixXd& M = mManipulator->getMassMatrix();
// Compute the Jacobian
Jacobian J = mEndEffector->getWorldJacobian(mOffset);
// Compute the pseudo-inverse of the Jacobian
Eigen::MatrixXd pinv_J
= J.transpose()
* (J * J.transpose() + 0.0025 * Eigen::Matrix6d::Identity())
.inverse();
// Compute the Jacobian time derivative
Jacobian dJ = mEndEffector->getJacobianClassicDeriv(mOffset);
// Comptue the pseudo-inverse of the Jacobian time derivative
Eigen::MatrixXd pinv_dJ
= dJ.transpose()
* (dJ * dJ.transpose() + 0.0025 * Eigen::Matrix6d::Identity())
.inverse();
// Compute the linear error
Eigen::Vector6d e;
e.tail<3>() = mTarget->getWorldTransform().translation()
- mEndEffector->getWorldTransform() * mOffset;
// Compute the angular error
Eigen::AngleAxisd aa(mTarget->getTransform(mEndEffector).linear());
e.head<3>() = aa.angle() * aa.axis();
// Compute the time derivative of the error
Eigen::Vector6d de = -mEndEffector->getSpatialVelocity(
mOffset, mTarget.get(), Frame::World());
// Compute the forces needed to compensate for Coriolis forces and gravity
const Eigen::VectorXd& Cg = mManipulator->getCoriolisAndGravityForces();
// Turn the control gains into matrix form
Eigen::Matrix6d Kp = mKpOS * Eigen::Matrix6d::Identity();
std::size_t dofs = mManipulator->getNumDofs();
Eigen::MatrixXd Kd = mKdOS * Eigen::MatrixXd::Identity(dofs, dofs);
// Compute the joint forces needed to exert the desired workspace force
Eigen::Vector6d fDesired = Eigen::Vector6d::Zero();
fDesired[3] = default_push_force;
Eigen::VectorXd f = J.transpose() * fDesired;
// Compute the control forces
Eigen::VectorXd dq = mManipulator->getVelocities();
mForces = M * (pinv_J * Kp * de + pinv_dJ * Kp * e) - Kd * dq
+ Kd * pinv_J * Kp * e + Cg + f;
mManipulator->setForces(mForces);
}
protected:
/// The manipulator Skeleton that we will be controlling
SkeletonPtr mManipulator;
/// The target pose for the controller
SimpleFramePtr mTarget;
/// End effector for the manipulator
BodyNodePtr mEndEffector;
/// Desired joint positions when not applying the operational space controller
Eigen::VectorXd mQDesired;
/// The offset of the end effector from the body origin of the last BodyNode
/// in the manipulator
Eigen::Vector3d mOffset;
/// Control gains for the proportional error terms in the PD controller
double mKpPD;
/// Control gains for the derivative error terms in the PD controller
double mKdPD;
/// Control gains for the proportional error terms in the operational
/// space controller
double mKpOS;
/// Control gains for the derivative error terms in the operational space
/// controller
double mKdOS;
/// Joint forces for the manipulator (output of the Controller)
Eigen::VectorXd mForces;
};
class MyWindow : public dart::gui::glut::SimWindow
{
public:
MyWindow(const WorldPtr& world)
: mTotalAngle(0.0),
mHasEverRun(false),
mForceCountDown(0),
mPushCountDown(0)
{
setWorld(world);
mFirstDomino = world->getSkeleton("domino");
mFloor = world->getSkeleton("floor");
mController = std::make_unique<Controller>(
world->getSkeleton("manipulator"), mFirstDomino);
}
// Attempt to create a new domino. If the new domino would be in collision
// with anything (other than the floor), then discard it.
void attemptToCreateDomino(double angle)
{
// Create a new domino
SkeletonPtr newDomino = mFirstDomino->cloneSkeleton();
newDomino->setName("domino #" + std::to_string(mDominoes.size() + 1));
const SkeletonPtr& lastDomino
= mDominoes.size() > 0 ? mDominoes.back() : mFirstDomino;
// Compute the position for the new domino
Eigen::Vector3d dx
= default_distance
* Eigen::Vector3d(cos(mTotalAngle), sin(mTotalAngle), 0.0);
Eigen::Vector6d x = lastDomino->getPositions();
x.tail<3>() += dx;
// Adjust the angle for the new domino
x[2] = mTotalAngle + angle;
newDomino->setPositions(x);
// Check if the new domino collides with anything in the world.
// Get the collision frames of all things in the world
auto collisionGroup = mWorld->getConstraintSolver()->getCollisionGroup();
// Create a new collision group which only contains the new domino
auto collisionEngine
= mWorld->getConstraintSolver()->getCollisionDetector();
auto newGroup = collisionEngine->createCollisionGroup(newDomino.get());
// Remove the floor from all things in the world, because the floor
// will always collide with the new domino.
collisionGroup->removeShapeFramesOf(mFloor.get());
// Now check if the new domino collides with all the remaining things in
// the world.
bool dominoCollision = collisionGroup->collide(newGroup.get());
// Put the floor back to all things in the world, otherwise the dominos
// will fall to neverland once the simulation starts.
collisionGroup->addShapeFramesOf(mFloor.get());
// If the new domino is not penetrating an existing one
if (!dominoCollision)
{
mWorld->addSkeleton(newDomino);
// Record the latest domino addition
mAngles.push_back(angle);
mDominoes.push_back(newDomino);
mTotalAngle += angle;
}
else
{
std::cout << "The new domino would penetrate something. I will not add"
<< std::endl;
std::cout << "it to the world. Remove some dominos with 'd' and try again"
<< std::endl;
}
}
// Delete the last domino that was added to the scene. (Do not delete the
// original domino)
void deleteLastDomino()
{
if (mDominoes.size() > 0)
{
SkeletonPtr lastDomino = mDominoes.back();
mDominoes.pop_back();
mWorld->removeSkeleton(lastDomino);
mTotalAngle -= mAngles.back();
mAngles.pop_back();
}
}
void keyboard(unsigned char key, int x, int y) override
{
if (!mHasEverRun)
{
switch (key)
{
case 'q':
attemptToCreateDomino(default_angle);
break;
case 'w':
attemptToCreateDomino(0.0);
break;
case 'e':
attemptToCreateDomino(-default_angle);
break;
case 'd':
deleteLastDomino();
break;
case ' ':
mHasEverRun = true;
break;
}
}
else
{
switch (key)
{
case 'f':
mForceCountDown = default_force_duration;
break;
case 'r':
mPushCountDown = default_push_duration;
break;
}
}
SimWindow::keyboard(key, x, y);
}
void timeStepping() override
{
// If the user has pressed the 'f' key, apply a force to the first domino in
// order to push it over
if (mForceCountDown > 0)
{
Eigen::Vector3d force = default_push_force * Eigen::Vector3d::UnitX();
Eigen::Vector3d location
= default_domino_height / 2.0 * Eigen::Vector3d::UnitZ();
mFirstDomino->getBodyNode(0)->addExtForce(force, location);
--mForceCountDown;
}
// Run the controller for the manipulator
if (mPushCountDown > 0)
{
mController->setOperationalSpaceForces();
--mPushCountDown;
}
else
{
mController->setPDForces();
}
SimWindow::timeStepping();
}
protected:
/// Base domino. Used to clone new dominoes.
SkeletonPtr mFirstDomino;
/// Floor of the scene
SkeletonPtr mFloor;
/// History of the dominoes that have been created
std::vector<SkeletonPtr> mDominoes;
/// History of the angles that the user has specified
std::vector<double> mAngles;
/// Sum of all angles so far
double mTotalAngle;
/// Set to true the first time spacebar is pressed
bool mHasEverRun;
/// The first domino will be pushed by a disembodied force while the value of
/// this is greater than zero
int mForceCountDown;
/// The manipulator will attempt to push on the first domino while the value
/// of this is greater than zero
int mPushCountDown;
std::unique_ptr<Controller> mController;
};
SkeletonPtr createDomino()
{
// Create a Skeleton with the name "domino"
SkeletonPtr domino = Skeleton::create("domino");
// Create a body for the domino
BodyNodePtr body
= domino->createJointAndBodyNodePair<FreeJoint>(nullptr).second;
// Create a shape for the domino
std::shared_ptr<BoxShape> box(new BoxShape(Eigen::Vector3d(
default_domino_depth, default_domino_width, default_domino_height)));
body->createShapeNodeWith<VisualAspect, CollisionAspect, DynamicsAspect>(box);
// Set up inertia for the domino
dart::dynamics::Inertia inertia;
inertia.setMass(default_domino_mass);
inertia.setMoment(box->computeInertia(default_domino_mass));
body->setInertia(inertia);
domino->getDof("Joint_pos_z")->setPosition(default_domino_height / 2.0);
return domino;
}
SkeletonPtr createFloor()
{
SkeletonPtr floor = Skeleton::create("floor");
// Give the floor a body
BodyNodePtr body
= floor->createJointAndBodyNodePair<WeldJoint>(nullptr).second;
// Give the body a shape
double floor_width = 10.0;
double floor_height = 0.01;
std::shared_ptr<BoxShape> box(
new BoxShape(Eigen::Vector3d(floor_width, floor_width, floor_height)));
auto shapeNode = body->createShapeNodeWith<
VisualAspect,
CollisionAspect,
DynamicsAspect>(box);
shapeNode->getVisualAspect()->setColor(dart::Color::Black());
// Put the body into position
Eigen::Isometry3d tf(Eigen::Isometry3d::Identity());
tf.translation() = Eigen::Vector3d(0.0, 0.0, -floor_height / 2.0);
body->getParentJoint()->setTransformFromParentBodyNode(tf);
return floor;
}
SkeletonPtr createManipulator()
{
// Load the Skeleton from a file
dart::utils::DartLoader loader;
SkeletonPtr manipulator
= loader.parseSkeleton("dart://sample/urdf/KR5/KR5 sixx R650.urdf");
manipulator->setName("manipulator");
// Position its base in a reasonable way
Eigen::Isometry3d tf = Eigen::Isometry3d::Identity();
tf.translation() = Eigen::Vector3d(-0.65, 0.0, 0.0);
manipulator->getJoint(0)->setTransformFromParentBodyNode(tf);
// Get it into a useful configuration
manipulator->getDof(1)->setPosition(toRadian(140.0));
manipulator->getDof(2)->setPosition(toRadian(-140.0));
return manipulator;
}
int main(int argc, char* argv[])
{
SkeletonPtr domino = createDomino();
SkeletonPtr floor = createFloor();
SkeletonPtr manipulator = createManipulator();
WorldPtr world = std::make_shared<World>();
world->addSkeleton(domino);
world->addSkeleton(floor);
world->addSkeleton(manipulator);
MyWindow window(world);
std::cout << "Before simulation has started, you can create new dominoes:"
<< std::endl;
std::cout << "'w': Create new domino angled forward" << std::endl;
std::cout << "'q': Create new domino angled to the left" << std::endl;
std::cout << "'e': Create new domino angled to the right" << std::endl;
std::cout << "'d': Delete the last domino that was created" << std::endl;
std::cout << std::endl;
std::cout << "spacebar: Begin simulation (you can no longer create or remove "
"dominoes)"
<< std::endl;
std::cout << "'p': replay simulation" << std::endl;
std::cout << "'f': Push the first domino with a disembodied force so that it "
"falls over"
<< std::endl;
std::cout
<< "'r': Push the first domino with the manipulator so that it falls over"
<< std::endl;
std::cout << "'v': Turn contact force visualization on/off" << std::endl;
glutInit(&argc, argv);
window.initWindow(640, 480, "Dominoes");
glutMainLoop();
}
|