1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* ExpansionPolicy.cpp
* Dasher
*
* Created by Alan Lawrence on 26/10/2009.
* Copyright 2009 Cavendish Laboratory. All rights reserved.
*
*/
#include "ExpansionPolicy.h"
#include "DasherModel.h"
#include <algorithm>
using namespace Dasher;
using namespace std;
void CExpansionPolicy::ExpandNode(CDasherNode *pNode) {
m_pModel->ExpandNode(pNode);
}
bool Less(pair<double,CDasherNode *> x, pair<double, CDasherNode *> y) {return x.first < y.first;}
bool More(pair<double,CDasherNode *> x, pair<double, CDasherNode *> y) {return x.first > y.first;}
BudgettingPolicy::BudgettingPolicy(CDasherModel *pModel, unsigned int iNodeBudget) : CExpansionPolicy(pModel), m_iNodeBudget(iNodeBudget) {}
double BudgettingPolicy::pushNode(CDasherNode *pNode, int iMin, int iMax, bool bExpand, double dParentCost) {
double dRes = getCost(pNode, iMin, iMax);
if (dRes<dParentCost) {
//obvious case: node is less important/costly than parent; will be collapsed first
// (or expanded but only if parent is not collapsed)
vector<pair<double, CDasherNode*> > &target = (bExpand) ? sExpand : sCollapse;
target.push_back(pair<double, CDasherNode *>(dRes,pNode));
} else {
//node has same or greater cost than parent. Take care of latter case...
dRes = dParentCost;
//Parent has children, so must have been enqueued to collapse;
// thus, avoid enqueuing child node to collapse also: if costs are accurate
// (i.e. in terms of the benefit/detriment of what's onscreen), then collapsing
// parent will free up more nodes (by recursively collapsing child)
if (bExpand) sExpand.push_back(pair<double,CDasherNode *>(dRes, pNode));
//Of course, that also removes the possibility of collapsing the parent first,
// then trying to collapse the child afterwards (=>freed pointer), if they get
// sorted the wrong way round...
}
return dRes;
}
///Expand one level per frame; note this won't really take effect until the *next* frame!
bool BudgettingPolicy::apply() {
//firstly, sort the nodes...
sort(sExpand.begin(), sExpand.end(), Less);
//sExpand now in < order: [0] < [1] < ... < [size()-1] - so last element will have highest (cost=)benefit
sort(sCollapse.begin(), sCollapse.end(),More);
//sCollapse now in > order: [0] > ... > [size()-1] - so last element will have lowest cost(=benefit)
//did we expand anything? (if so, there may be more opportunities for expansion next frame)
bool bReturnValue = false;
//maintain record of the highest cost we've incurred by collapsing a node;
// avoid expanding anything LESS beneficial than that, as (even if we've room)
// it'll be better to instead wait until next frame (and possibly re-expand the
// collapsed node! Sadly we can't rely on trading one-for-one as different nodes
// may have different numbers of children...)
double collapseCost = -std::numeric_limits<double>::infinity();
//first, make sure we are within our budget (probably only in case the budget's changed)
while (!sCollapse.empty()
&& currentNumNodeObjects() > m_iNodeBudget)
{
pair<double,CDasherNode *> node = sCollapse.back();
DASHER_ASSERT(node.first >= collapseCost);
collapseCost = node.first;
node.second->Delete_children();
sCollapse.pop_back();
}
//ok, we're now within budget. However, we may still wish to "trade off" nodes
// against each other, in case there are any unimportant (low-cost) nodes we could collapse
// to make room to expand other more important (high-benefit) nodes.
while (!sExpand.empty() && sExpand.back().first > collapseCost)
{
if (currentNumNodeObjects()+sExpand.back().second->ExpectedNumChildren() < m_iNodeBudget)
{
ExpandNode(sExpand.back().second);
sExpand.pop_back();
bReturnValue = true;
//...and loop.
}
else if (!sCollapse.empty()
&& sCollapse.back().first < sExpand.back().first)
{
//could be a beneficial trade - make room by performing collapse...
pair<double,CDasherNode *> node = sCollapse.back();
DASHER_ASSERT(node.first >= collapseCost);
collapseCost = node.first;
node.second->Delete_children();
sCollapse.pop_back();
//...and see how much room that makes
}
else break; //not enough room, nothing to collapse.
}
sExpand.clear();
sCollapse.clear();
return bReturnValue;
}
int BudgettingPolicy::getRange(int y1, int y2, int iMin, int iMax) {
if (y1>iMax || y2 < iMin) return 0;
return min(y2, iMax) - max(y1, iMin);
}
double BudgettingPolicy::getCost(CDasherNode *pNode, int iDasherMinY, int iDasherMaxY) {
return getRange(iDasherMinY, iDasherMaxY, 0, 4096);
}
AmortizedPolicy::AmortizedPolicy(CDasherModel *pModel, unsigned int iNodeBudget) : BudgettingPolicy(pModel,iNodeBudget), m_iMaxExpands(std::max(1u,(500+iNodeBudget)/1000)) {}
AmortizedPolicy::AmortizedPolicy(CDasherModel *pModel, unsigned int iNodeBudget, unsigned int iMaxExpands) : BudgettingPolicy(pModel, iNodeBudget), m_iMaxExpands(iMaxExpands) {}
double AmortizedPolicy::pushNode(CDasherNode *node, int iMin, int iMax, bool bExpand, double dParentCost) {
double dRes = BudgettingPolicy::pushNode(node,iMin,iMax,bExpand,dParentCost);
if (bExpand && sExpand.size() > 2*m_iMaxExpands) trim();
return dRes;
}
bool AmortizedPolicy::apply() {
trim();
return BudgettingPolicy::apply();
}
void AmortizedPolicy::trim() {
if (sExpand.size() <= m_iMaxExpands) return;
//ok - repeatedly find a pivot element, and place it dividing all elements into
//those more than it (in lower indices) and those less than it (in higher indices),
// until we have separated off the <m_iMaxExpands> elements with greatest benefit
#ifdef DEBUG_TRIM
vector<pair<double,CDasherNode *> > backup = sExpand; //yep, copy the lot
#endif
unsigned int start = 0, stop = sExpand.size()-1;
while (true) {
//at this point, we assume we know only that elements [start - stop] need examining....
unsigned int low = start, high = stop;
pair<double,CDasherNode *> &pivot = sExpand[low++];
while (true) {
while (low <= high && !Less(sExpand[low],pivot)) low++;
//all elements (start-low) can stay on left of pivot.
if (low <= high) {
//element <low> needs to be on R of pivot.
while (high >= low && !More(sExpand[high],pivot)) high--;
if (high >= low) {
//element <high> needs to be on L of pivot
pair<double,CDasherNode *> temp = sExpand[low];
sExpand[low++] = sExpand[high];
sExpand[high--]=temp;
continue;
} //else, fall through to break -> place pivot
}
break;
}
//place pivot at index (low-1) - if that's not where it is already!
low--;
if (start!=low) {
pair<double,CDasherNode *> temp = sExpand[start];
sExpand[start]=sExpand[low];
sExpand[low] = temp;
}
//if (low == m_iMaxExpands), elements [0 - low-1] are all <= pivot
//if (low == m_iMaxExpands-1), elements [0 - low] are all <= pivot (as pivot<=pivot!)
//finish in both cases.
if (low < m_iMaxExpands-1)
start=low+1;
else if (low>m_iMaxExpands)
stop=low-1;
else break;
}
//truncate array
sExpand.resize(m_iMaxExpands);
#ifdef DEBUG_TRIM
//now compare with the brute-force method...
sort(sExpand.begin(), sExpand.end(), Less);
sort(backup.begin(), backup.end(), Less);
backup.erase(backup.begin(), backup.end()-m_iMaxExpands);
//now compare. note we _don't_ require the node pointers to be the same;
// where the cut-off point falls within a group of nodes with the same cost,
// the two vectors could have different nodes from that group.
double dFirstCost = sExpand[sExpand.size()-1].first;
for (vector<pair<double, CDasherNode *> >::iterator it1=sExpand.begin(), it2=backup.begin(); it1!=sExpand.end(); it1++, it2++)
if (*it1 == *it2) continue;
else if (it1->first == dFirstCost && it2->first==dFirstCost) continue;
else cout << "trim not equal!\n";
#endif
}
|