1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
// CTWLanguageModel.cpp
//
// Copyright (c) 2008 The Dasher Team
//
// This file is part of Dasher.
//
// Dasher is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Dasher is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Dasher; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
// For information on the CTW method visit
// http://www.sps.ele.tue.nl/members/F.M.J.Willems/RESEARCH_files/CTW/ResearchCTW.htm
//
//#include "stdafx.h"
#include "CTWLanguageModel.h"
#include <math.h> // not in use anymore? needed it for log
#include <cstring>
using namespace Dasher;
// Track memory leaks on Windows to the line that new'd the memory
#ifdef _WIN32
#ifdef _DEBUG_MEMLEAKS
#define DEBUG_NEW new( _NORMAL_BLOCK, THIS_FILE, __LINE__ )
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#endif
CCTWLanguageModel::CCTWLanguageModel(int iNumSyms) : CLanguageModel(iNumSyms) {
Dasher::CHashTable HashTable; // create hashtable
MaxDepth = 6; // Maximum depth of the context tree
MaxTries = 15; // Max. number of attempts to find a spot in the hash table
alpha = 14; // 2: KT-estimator, 1: Laplace estimator, 14 = found by P.A.J. Volf to be 'good' for text
MaxNrNodes = 4194304; // Max number of CCTWNodes in the table, trade-off between compression and memory usage. 2^22 = 4M
TotalNodes = 0; // to keep track of how many nodes are created in the table.
MaxFill = 0.9; // Threshold to decide when to freeze the tree
Failed = 0; // keep track of how many nodes couldn't be found or created //debug
Frozen = false; // to indicate if there is still room in the array of CCTWNodes
MaxCount = 255; // Maximum value for the counts for count-halving
NrBits = 9; // number of bits used for representation of probabilities
MaxValue = (1<<NrBits) -1;
NrPhases = (int)ceil(log((double)(GetSize()))/log(2.0)); // number of bits per input-symbol
Tree = new CCTWNode[MaxNrNodes]; // create array with all CCTWNodes.
// Fill RootIndex table with indices of the RootNodes <- now I round up to next power of 2, should only create for possible symbols
// Does that make a noticable difference in memory usage? Rootnodes with no symbols associated will accumulate no counts, so they only cost 1 node each (6 bytes).
// Does it waste codespace? Do rootnodes with no symbols associated with them still get assigned a positive probability?
// Set NrTries to max+1, to identify a RootNode
for (int i = 0; i<(1<<NrPhases);i++)
{
RootIndex[i] = HashTable.GetHashOffSet(i) & (MaxNrNodes-1); // MaxNrNodes is a power of 2, & results in a mod operation, walk 'round' through the array
Tree[RootIndex[i]].NrTries = MaxTries+1; // in rootnodes the character value doesn't matter, as long as Tries = unique
TotalNodes++;
}
}
CCTWLanguageModel::~ CCTWLanguageModel(){ // destructor
delete [] Tree;
}
// **** Implementation of help functions *****
// To get the 'phase' bit in byte
#define ByteBit(byte,Phase) ((byte >> ((NrPhases-1)-Phase)) & 1)
// To find the index of the RootNode for a byte and a phase.
inline int CCTWLanguageModel::MapIndex(int b, int f){
return ((1<<f)-1 + (b>>(NrPhases-f))); //(2^phase -1) + dec. value of most significant bits
}
inline void CCTWLanguageModel::Scale(uint64 &a, uint64 &b)
{
// Instead of using the full 16 bits for the probabilities, use only 9,
// that's the only relevant information the other bits are noise <- depends on the value of MaxCount,
// should use log2(alpha) bits more than for the counts a and b
while ((a > MaxValue) | (b > MaxValue))
{ // scale to right
a = a>>1;
b = b>>1;
}
while ((a < (MaxValue>>1)) & (b < (MaxValue>>1)))
{// scale to left
a = a<<1;
b = b<<1;
}
//prevent 0
if (a == 0)
{
a = 1;
}
if (b == 0)
{
b = 1;
}
}
void CCTWLanguageModel::UpdatePath(int bit, int Update, int ValidDepth, int* & index, unsigned short int & P0, unsigned short int & P1)
{ // updates the CTW data of the nodes in 'index' with value of 'bit'.
// Update specifies yes (1) or no (0) (GetProbs). In the case 'no', the new Pws are calculated but the tree is not
// altered in any way
uint64 GammaZero; // (GammaZero / (GammaZero + GammaOne)) = Pw(0|x)
uint64 GammaOne; // (GammaOne / (GammaZero + GammaOne)) = Pw(1|x)
unsigned short int CountZero; // Number of zeros seen so far in this node
unsigned short int CountOne; // Number of ones seen so far in this node
uint64 PeBlockZero; // Local block probability of sequence (0,x)
uint64 PeBlockOne; // Local block probability of sequence (1,x)
uint64 PwCBlockZero; // Product of the weighted block probabilities of the childnodes of sequence (0,x)
uint64 PwCBlockOne; // Product of the weighted block probabilities of the childnodes of sequence (1,x)
uint64 PeCondZero; // Conditional local probability (0|x)
uint64 PeCondOne; // Conditional local probability (1|x)
uint64 PwCBlock; // Product of the weighted block probabilities of the childnodes of sequence (x)
uint64 PeBlock; // Local block probability of sequence (x)
// The deepest index can be a leaf, a failed node, or a not-placed node
const int DeepestIndex = index[ValidDepth];
if (DeepestIndex == MaxNrNodes) // node didn't exist yet, both probs. equal
{
GammaZero = MaxValue;
GammaOne = MaxValue;
}
else if (DeepestIndex == MaxNrNodes+1) // node couldn't be placed
{ // could do more fancy things here
GammaZero = MaxValue;
GammaOne = MaxValue;
}
else
{ // node has to be a leaf
CountZero = Tree[DeepestIndex].a;
CountOne = Tree[DeepestIndex].b;
GammaZero = alpha*CountZero +1;
GammaOne = alpha*CountOne +1;
if (Update == 1) // update tree
{// first update counts
if(bit)
{
if (CountOne == MaxCount)
{ // half counts
CountZero = (CountZero+1) / 2;
CountOne = (CountOne+1) / 2;
}
else
CountOne++;
}
else // bit = 0
{
if (CountZero == MaxCount)
{ // half counts
CountZero = (CountZero+1) / 2;
CountOne = (CountOne+1) / 2;
}
else
CountZero++;
}
Tree[DeepestIndex].a = CountZero;
Tree[DeepestIndex].b = CountOne;
} // end if update
} // end if/else, deepest index done
// now all the internal nodes, including the rootnode
for(int i=ValidDepth-1;i>=0;i--)
{
CountZero = Tree[index[i]].a;
CountOne = Tree[index[i]].b;
PwCBlock = Tree[index[i]].PwChild;
PeBlock = Tree[index[i]].Pe;
PeCondZero = (alpha*CountZero)+1;
PeCondOne = (alpha*CountOne) +1;
PeBlockZero = PeBlock*PeCondZero*(GammaOne+GammaZero);
PeBlockOne = PeBlock*PeCondOne*(GammaOne+GammaZero);
PwCBlockZero = PwCBlock*GammaZero*((alpha*(CountZero+CountOne))+2);
PwCBlockOne = PwCBlock*GammaOne *((alpha*(CountZero+CountOne))+2);
GammaZero = (PeBlockZero + PwCBlockZero);
GammaOne = (PeBlockOne + PwCBlockOne );
Scale(GammaZero, GammaOne);
if (Update == 1) // update tree
{// first update counts
if(bit)
{
if (CountOne == MaxCount)
{ // half counts
CountZero = (CountZero+1) / 2;
CountOne = (CountOne+1) / 2;
}
else
CountOne++;
Scale(PeBlockOne, PwCBlockOne);
Tree[index[i]].Pe = PeBlockOne; // conversion after scaling, no problem
Tree[index[i]].PwChild = PwCBlockOne;
}
else // bit = 0
{
if (CountZero == MaxCount)
{ // half counts
CountZero = (CountZero+1) / 2;
CountOne = (CountOne+1) / 2;
}
else
CountZero++;
Scale(PeBlockZero, PwCBlockZero);
Tree[index[i]].Pe = PeBlockZero;
Tree[index[i]].PwChild = PwCBlockZero;
}
Tree[index[i]].a = CountZero;
Tree[index[i]].b = CountOne;
} // end if update
}
P0 = GammaZero; // Gammas are already scaled back to 16 bits
P1 = GammaOne;
}
int CCTWLanguageModel::FindPath(CCTWContext & context, char NewChar, int phase, int create, int* & index)
{ // Puts the Tree-array indices of the CCTWNodes on the path of Context in index.
// Returns the depth till which the path is found, index[] deeper than that is garbage!
// If 'create' = 1, new nodes are created when an empty spot is found
int Stepsize = 0;
int curindex = RootIndex[MapIndex(NewChar,phase)]; // Find root, depending on current (newest) character in context
index[0] = curindex;
// From the root, find/create the nodes, corresponding to the context
for (unsigned int i=0; i<context.Context.size();i++)
{
unsigned char CurChar = context.Context.at(i);
Stepsize = (HashTable.GetHashOffSet(CurChar)<<1)+1; // get stepsize. Shift+1 to keep result odd, to prevent cycles
bool found = false;
for (int Tries = 1; Tries<MaxTries; Tries++)
{
curindex = (curindex + Stepsize) & (MaxNrNodes-1);
if (Tree[curindex].NrTries == Tries) // node in use, is it the correct node?
{// see if this is the correct node: compare tries and last (current) character
if (Tree[curindex].Symbol == CurChar) // node found
{
found = true; // to avoid 'failed'
index[i+1] = curindex; // tell calling function where to find the node, i+1 because index[0] = rootnode
break; // to escape loop and continue with next character
}
}
if (Tree[curindex].NrTries == 0) // empty node found, create new node
{
if (!create) // No need to create a new node, let calling function know empty spot found
{
index[i+1] = MaxNrNodes; // to indicate node could be placed but didn't exist yet
return (i+1); // +1 since i=0 is the rootnode, always valid
}
if (!Frozen) // Still space in the tree
{
Tree[curindex].NrTries = Tries;
Tree[curindex].Symbol = CurChar;
TotalNodes++; // new node in use
if ((float)(TotalNodes)/(float)(MaxNrNodes) > MaxFill) // Max fillratio of tree reached, freeze tree
Frozen = true;
found = true; // to avoid 'failed'
index[i+1] = curindex; // tell calling function where to find the node, i+1 because index[0] = rootnode
break; // to escape loop and continue with next character
}
else // can't create a new node
{
found = false;
index[i+1] = MaxNrNodes+1; // to indicate node could not be placed
return (i+1); // +i since i=0 is the rootnode, always valid
}
} // else collision, set next step
} // for Tries
// after MaxTries attempts:
if (!found) // check to see if we were succesfull
{ // apparently, character could not be placed
index[i+1] = MaxNrNodes+1; // to indicate node could not be placed
return i+1; // indicate node could not be found/created for this phase
} //if !found
} // for i contextsize
return context.Context.size(); // all nodes on the path found/created
} // end findpath
// **** Implementation of interface functions *****
void CCTWLanguageModel::EnterSymbol(Context CurContext, int Symbol)
{ // add Symbol to the front of Context. If there are more than MaxDepth symbols, pop the last one
CCTWLanguageModel::CCTWContext &Context = *(CCTWLanguageModel::CCTWContext *) (CurContext);
if (Context.Full == true)
Context.Context.pop_back();
Context.Context.push_front(Symbol);
if (Context.Context.size() == MaxDepth)
Context.Full = true;
}
void CCTWLanguageModel::LearnSymbol(Context CurContext, int Symbol)
{
CCTWLanguageModel::CCTWContext &Context = *(CCTWLanguageModel::CCTWContext *) (CurContext);
if (Context.Full == true) // context is complete, update the tree
{ // find indices of the tree nodes corresponding to the context
int *Index = new int[Context.Context.size()+1]; // +1 for the rootnode
int ValidDepth = 0;
for (int phase = 0;phase<NrPhases;phase++)
{
ValidDepth = FindPath(Context, Symbol, phase, 1, Index); // Find indices of the nodes for this phase and context
// nodes on the path for this phase found, update the tree
unsigned short int stubZ =0;
unsigned short int stubO =0;
UpdatePath(ByteBit(Symbol,phase), 1, ValidDepth, Index, stubZ, stubO);
}
delete [] Index;
Context.Context.pop_back(); // only delete last symbol if context is complete
}
Context.Context.push_front(Symbol); // update context with newest symbol
if (Context.Context.size() == MaxDepth)
Context.Full = true;
}
void CCTWLanguageModel::GetProbs(Context context, std::vector<unsigned int> &Probs, int Norm, int iUniform) const
{ // because we reuse findpath and updatepath function, we need to de-const the object :(
// findpath should be declared const anyway (?)
CCTWLanguageModel* self = const_cast<CCTWLanguageModel*>(this);
CCTWContext *CTWContext = ( CCTWContext *)(context);
CCTWContext LocalContext(*CTWContext);
int iNumSymbols = GetSize();
int MinProb = iUniform / iNumSymbols; //smallest probability to assign
Probs.resize(iNumSymbols);
int pLeft = 0;
// calculate probabilities of all possible symbols. Again assume all 2^NrPhases
int *Index = new int[LocalContext.Context.size()+1]; // +1 for the rootnode
vector <unsigned short int>Interval((1<<(NrPhases+1))-1); // number of rootnodes*2 (1 prob for bit 0 and 1 each)
if (Norm>65535)
{
Interval[0]=65535; // to prevent overflow
pLeft = Norm-65535; // if Norm is way bigger than 2^16 - 1, uniformly distributing the 'leftover' could still cause overflow
}
else
Interval[0] = Norm;
int ValidDepth = 0;
uint64 IntervalB = 0; // 'base' interval
uint64 IntervalZ = 0; // divided interval for the 0-branch
uint64 IntervalO = 0; // divided interval for the 1-branch
unsigned int MinInterval = 0;
unsigned short int Pw0 = 0;
unsigned short int Pw1 = 0;
for (int phase = 0;phase<NrPhases;phase++)
{
int stepsize = 1 <<(NrPhases-phase); // 2^maxphase-1 - fase
for (int steps = 0;steps < 1<<phase;steps++)
{ // find the path for all needed symbols
// FIXME now I round up to next power of 2
ValidDepth = self->FindPath(LocalContext, steps*stepsize, phase, 0, Index); // Find indices of the nodes for this phase and context
IntervalB = Interval[(1<<phase)+ steps - 1];
self->UpdatePath(0,0, ValidDepth, Index, Pw0, Pw1);
IntervalZ = (IntervalB * Pw0)/(uint64)(Pw0+Pw1); // flooring, influence of flooring P0 instead of P1 is negligible
IntervalO = IntervalB - IntervalZ;
MinInterval = MinProb*1<<(NrPhases-1-phase); // leafs for each rootnode at the current phase, assuming a full alphabet!!
//make sure all leafs from this point will get at least probability 1
if(IntervalZ < MinInterval)
{
IntervalO = IntervalO - (MinInterval-IntervalZ);
IntervalZ = IntervalZ + (MinInterval-IntervalZ);
}
else if(IntervalO < MinInterval)
{
IntervalZ = IntervalZ - (MinInterval-IntervalO);
IntervalO = IntervalO + (MinInterval-IntervalO);
}
Interval[(1<<(phase+1))+ 2*steps - 1] = IntervalZ;
Interval[(1<<(phase+1))+ 2*steps] = IntervalO;
} // for steps
} // for phase
delete [] Index;
// Copy the intervals associated with the actual symbols to the vector Probs.
Probs.assign((Interval.end()-(1<<NrPhases)), (Interval.end()-(1<<NrPhases)+iNumSymbols));
pLeft +=Probs[0]; //symbol 0 is a special dummy symbol, should get prob. 0
Probs[0] = 0;
// calculate how many extra symbols exist in tree, because iNumSymbols is not a power of 2
int Extra = (1<<NrPhases) - iNumSymbols;
// take the probabilities from non-existing symbols and re-divide it over existing symbols
for (int j = Extra; j >0; j-- ) {
pLeft +=Interval[Interval.size()-j];
}
int iLeft = iNumSymbols-1; //divide the probability that is left over the symbols
for(int j = 1; j < iNumSymbols; ++j) {
unsigned int p = pLeft / iLeft;
Probs[j] += p;
--iLeft;
pLeft -= p;
}
} // end function GetProbs
bool CCTWLanguageModel::WriteToFile(std::string strFilename, std::string AlphabetName){
SLMFileHeader GenericHeader;
// Magic number ("%DLF" in ASCII)
GenericHeader.szMagic[0] = '%';
GenericHeader.szMagic[1] = 'D';
GenericHeader.szMagic[2] = 'L';
GenericHeader.szMagic[3] = 'F';
GenericHeader.iAlphabetSize = GetSize(); // Number of characters in the alphabet
GenericHeader.iHeaderVersion = 1; // Version of the header
GenericHeader.iLMID = 5; // ID of the language model, 5 for CTW
GenericHeader.iLMMinVersion = 1; //Minimum backwards compatible version for the language model
GenericHeader.iLMVersion = 1; // Version number of the language model, version 1 is the stored hashtable, april 2007
GenericHeader.iHeaderSize = sizeof(SLMFileHeader) + AlphabetName.length(); // Total size of header (including variable length alphabet name)
FILE *OutputFile;
OutputFile = fopen(strFilename.c_str(), "wb");
if(OutputFile)
{
char * buffer;
buffer = new char[AlphabetName.length()+1];
strcpy(buffer, AlphabetName.c_str());
// write header
fwrite(GenericHeader.szMagic , sizeof(GenericHeader.szMagic[0]), sizeof(GenericHeader.szMagic), OutputFile );
fwrite(&GenericHeader.iHeaderVersion, 2,1, OutputFile);
fwrite(&GenericHeader.iHeaderSize, 2,1, OutputFile);
fwrite(&GenericHeader.iLMID, 2,1, OutputFile);
fwrite(&GenericHeader.iLMVersion, 2,1, OutputFile);
fwrite(&GenericHeader.iLMMinVersion, 2,1, OutputFile);
fwrite(&GenericHeader.iAlphabetSize, 2,1, OutputFile);
fwrite(buffer, 1, AlphabetName.length(), OutputFile ); // UTF-8 encoded alphabet name (variable length struct)
delete[] buffer;
// CTW specific, not in SLMFileHeader
fwrite(&MaxNrNodes, 4,1, OutputFile);
for(int i=0;i<MaxNrNodes;i++)
{
fwrite(&Tree[i].a, 1,1, OutputFile);
fwrite(&Tree[i].b, 1,1, OutputFile);
fwrite(&Tree[i].Symbol, 1,1,OutputFile);
fwrite(&Tree[i].NrTries, 1,1,OutputFile);
fwrite(&Tree[i].Pe, 2,1,OutputFile);
fwrite(&Tree[i].PwChild, 2,1,OutputFile);
}
fclose(OutputFile);
return true;
}
else
return false;
}
bool CCTWLanguageModel::ReadFromFile(std::string strFilename, std::string AlphabetName){
FILE *InputFile;
InputFile = fopen(strFilename.c_str(), "rb");
if(InputFile)
{
/* Read and check header, close file and return failure when header is not what we expect.
TODO: Checking of the SLMFileHeader, which is not specific to the CTW languagemodel should be done in DasherModel,
only CTW specific information (MaxNrNodes) should be checked here.
The values to compare with should be parameters and not hardcoded. */
SLMFileHeader GenericHeader;
char * ReadAlphabetName;
fread(&GenericHeader.szMagic , sizeof(GenericHeader.szMagic[0]), sizeof(GenericHeader.szMagic), InputFile);
if(memcmp(GenericHeader.szMagic,"%DLF",4))
{ // magic strings not equal
return false;
}
fread(&GenericHeader.iHeaderVersion,2,1, InputFile);
if(GenericHeader.iHeaderVersion != 1)
{ // unknown header version
return false;
}
fread(&GenericHeader.iHeaderSize,2,1, InputFile);
fread(&GenericHeader.iLMID,2,1, InputFile);
if(GenericHeader.iLMID != 5)
{ // header indicates this is not a CTW model
return false;
}
fread(&GenericHeader.iLMVersion,2,1, InputFile);
fread(&GenericHeader.iLMMinVersion,2,1, InputFile);
if(GenericHeader.iLMMinVersion > 1)
{ // header indicates stored model newer than we can handle
return false;
}
fread(&GenericHeader.iAlphabetSize,2,1, InputFile);
if(GenericHeader.iAlphabetSize != GetSize())
{ // header indicates stored model uses an alphabet of different size
return false;
}
ReadAlphabetName = new char[GenericHeader.iHeaderSize - sizeof(SLMFileHeader)+1];
fread(ReadAlphabetName,1,GenericHeader.iHeaderSize - sizeof(SLMFileHeader), InputFile);
ReadAlphabetName[GenericHeader.iHeaderSize - sizeof(SLMFileHeader)] = '\0'; // write the terminating 0 and read it in as well
if(strcmp(ReadAlphabetName,AlphabetName.c_str()))
{ // header indicates stored model uses a different alphabet
delete[] ReadAlphabetName;
return false;
}
delete[] ReadAlphabetName;
int ReadNrNodes;
fread(&ReadNrNodes,4,1, InputFile);
if(ReadNrNodes != MaxNrNodes)
{ // header indicates different number of nodes in the hashtable
return false;
}
for(int i=0;i<MaxNrNodes;i++)
{
fread(&Tree[i].a,1,1,InputFile);
fread(&Tree[i].b,1,1,InputFile);
fread(&Tree[i].Symbol, 1,1,InputFile);
fread(&Tree[i].NrTries, 1,1,InputFile);
fread(&Tree[i].Pe, 2,1,InputFile);
fread(&Tree[i].PwChild, 2,1,InputFile);
}
fclose(InputFile);
return true;
}
else
return false;
}
inline CLanguageModel::Context CCTWLanguageModel::CreateEmptyContext() {
CCTWContext *pCont = new CCTWContext;
return (Context) pCont;
}
inline CLanguageModel::Context CCTWLanguageModel::CloneContext(Context Copy) {
CCTWContext *pCont = new CCTWContext;
CCTWContext *pCopy = (CCTWContext *) Copy;
pCont->Full = pCopy->Full;
pCont->Context.assign(pCopy->Context.begin( ), pCopy->Context.end( ));
return (Context) pCont;
}
inline void CCTWLanguageModel::ReleaseContext(Context release) {
delete (CCTWContext *) release;
}
|