1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
from __future__ import annotations
import argparse
import contextlib
import html
import io
import os
import re
import shelve
import sys
import zipfile
from collections.abc import Iterator
from typing import Any, Iterable, cast
import altair
import altair_saver
import junitparser
import pandas
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
TOKEN = os.environ.get("GITHUB_TOKEN")
# Mapping between a symbol (pass, fail, skip) and a color
COLORS = {
"✓": "#acf2a5",
"x": "#f2a5a5",
"s": "#f2ef8f",
}
@contextlib.contextmanager
def get_session() -> Iterator[requests.Session]:
retry_strategy = Retry(
status_forcelist=[429, 500, 502, 503, 504],
backoff_factor=0.2,
)
adapter = HTTPAdapter(max_retries=retry_strategy)
with requests.Session() as session:
session.mount("https://", adapter)
session.mount("http://", adapter)
yield session
def parse_args(argv: list[str] | None) -> argparse.Namespace:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--repo",
default="dask/distributed",
help="github repository",
)
parser.add_argument(
"--branch",
default="main",
help="git branch",
)
parser.add_argument(
"--events",
nargs="+",
default=["push", "schedule"],
help="github events",
)
parser.add_argument(
"--max-days",
"-d",
type=int,
default=90,
help="Maximum number of days to look back from now",
)
parser.add_argument(
"--max-runs",
type=int,
default=50,
help="Maximum number of workflow runs to fetch",
)
parser.add_argument(
"--nfails",
"-n",
type=int,
default=1,
help="Show test if it failed more than this many times",
)
parser.add_argument(
"--output",
"-o",
default="test_report.html",
help="Output file name",
)
parser.add_argument("--title", "-t", default="Test Report", help="Report title")
return parser.parse_args(argv)
def get_from_github(
url: str, params: dict[str, Any], session: requests.Session
) -> requests.Response:
"""
Make an authenticated request to the GitHub REST API.
"""
r = session.get(url, params=params, headers={"Authorization": f"token {TOKEN}"})
r.raise_for_status()
return r
def maybe_get_next_page_path(response: requests.Response) -> str | None:
"""
If a response is paginated, get the url for the next page.
"""
link_regex = re.compile(r'<([^>]*)>;\s*rel="([\w]*)\"')
link_headers = response.headers.get("Link")
next_page_path = None
if link_headers:
links = {}
matched = link_regex.findall(link_headers)
for match in matched:
links[match[1]] = match[0]
next_page_path = links.get("next", None)
return next_page_path
def get_jobs(run, session):
with shelve.open("test_report_jobs") as cache:
url = run["jobs_url"]
try:
jobs = cache[url]
except KeyError:
params = {"per_page": 100}
r = get_from_github(run["jobs_url"], params, session=session)
jobs = r.json()["jobs"]
while next_page := maybe_get_next_page_path(r):
r = get_from_github(next_page, params=params, session=session)
jobs.extend(r.json()["jobs"])
cache[url] = jobs
df_jobs = pandas.DataFrame.from_records(jobs)
# Interpolate the `$TEST_ID` variable from the job name.
# Somehow the job ID is not part of the workflow schema and we have no other way to later join
# this to the JXML results.
name_components = (
df_jobs.name.str.extract(r"test \((.+)\)", expand=False)
.dropna()
.str.split(", ", expand=True)
)
if len(name_components.columns) == 4:
name_components.columns = ["OS", "python_version", "queuing", "partition"]
elif len(name_components.columns) == 3:
# Migration: handle older jobs without the `queuing` configuration.
# This branch can be removed after 2022-12-07.
name_components.columns = ["OS", "python_version", "partition"]
else:
raise ValueError(f"Job names must have 3 or 4 components:\n{name_components!r}")
# See `Set $TEST_ID` step in `tests.yaml`
name_components["partition"] = name_components.partition.str.replace(" ", "")
df_jobs["suite_name"] = name_components.iloc[:, 0].str.cat(
name_components.iloc[:, 1:], sep="-"
)
return df_jobs
def get_workflow_run_listing(
repo: str, branch: str, event: str, days: int, session: requests.Session
) -> list[dict]:
"""
Get a list of workflow runs from GitHub actions.
"""
since = (pandas.Timestamp.now(tz="UTC") - pandas.Timedelta(days=days)).date()
params = {"per_page": 100, "branch": branch, "event": event, "created": f">{since}"}
r = get_from_github(
f"https://api.github.com/repos/{repo}/actions/runs",
params=params,
session=session,
)
runs = r.json()["workflow_runs"]
next_page = maybe_get_next_page_path(r)
while next_page:
r = get_from_github(next_page, params, session=session)
runs += r.json()["workflow_runs"]
next_page = maybe_get_next_page_path(r)
return runs
def get_artifacts_for_workflow_run(
run_id: str, repo: str, session: requests.Session
) -> list:
"""
Get a list of artifacts from GitHub actions
"""
params = {"per_page": 100}
r = get_from_github(
f"https://api.github.com/repos/{repo}/actions/runs/{run_id}/artifacts",
params=params,
session=session,
)
artifacts = r.json()["artifacts"]
next_page = maybe_get_next_page_path(r)
while next_page:
r = get_from_github(next_page, params=params, session=session)
artifacts += r.json()["artifacts"]
next_page = maybe_get_next_page_path(r)
return artifacts
def suite_from_name(name: str) -> str:
"""
Get a test suite name from an artifact name. The artifact
can have matrix partitions, pytest marks, etc. Basically,
just lop off the front of the name to get the suite.
"""
parts = name.split("-")
if len(parts) == 4: # [OS, 'latest', py_version, $PARTITION_LABEL]
# Migration: handle older jobs without the `queuing` configuration.
# This branch can be removed after 2022-12-07.
parts.insert(3, "no_queue")
return "-".join(parts[:4])
def download_and_parse_artifact(
url: str, session: requests.Session
) -> junitparser.JUnitXml | None:
"""
Download the artifact at the url parse it.
"""
with shelve.open("test_report") as cache:
try:
xml_raw = cache[url]
except KeyError:
r = get_from_github(url, params={}, session=session)
f = zipfile.ZipFile(io.BytesIO(r.content))
cache[url] = xml_raw = f.read(f.filelist[0].filename)
try:
return junitparser.JUnitXml.fromstring(xml_raw)
except Exception:
# XMLs also include things like schedule which is a simple json
return None
def dataframe_from_jxml(run: Iterable) -> pandas.DataFrame:
"""
Turn a parsed JXML into a pandas dataframe
"""
fname = []
tname = []
status = []
message = []
sname = []
for suite in run:
for test in suite:
sname.append(suite.name)
fname.append(test.classname)
tname.append(test.name)
s = "✓"
result = test.result
if len(result) == 0:
status.append(s)
message.append("")
continue
result = result[0]
m = result.message if result and hasattr(result, "message") else ""
if isinstance(result, junitparser.Error):
s = "x"
elif isinstance(result, junitparser.Failure):
s = "x"
elif isinstance(result, junitparser.Skipped):
s = "s"
else:
s = "x"
status.append(s)
message.append(html.escape(m))
df = pandas.DataFrame(
{
"file": fname,
"test": tname,
"status": status,
"message": message,
"suite_name": sname,
}
)
# There are sometimes duplicate tests in the report for some unknown reason.
# If that is the case, concatenate the messages and prefer to show errors.
def dedup(group):
if len(group) > 1:
if "message" in group.name:
return group.str.cat(sep="")
else:
if (group == "x").any(axis=0):
return "x"
else:
return group.iloc[0]
else:
return group
return df.groupby(["file", "test"], as_index=False).agg(dedup)
def download_and_parse_artifacts(
repo: str, branch: str, events: list[str], max_days: int, max_runs: int
) -> Iterator[pandas.DataFrame]:
print("Getting list of workflow runs...")
runs = []
with get_session() as session:
for event in events:
runs += get_workflow_run_listing(
repo=repo, branch=branch, event=event, days=max_days, session=session
)
# Filter the workflow runs listing to be in the retention period,
# and only be test runs (i.e., no linting) that completed.
runs = [
r
for r in runs
if (
pandas.to_datetime(r["created_at"])
> pandas.Timestamp.now(tz="UTC") - pandas.Timedelta(days=max_days)
and r["conclusion"] != "cancelled"
and r["name"].lower() == "tests"
)
]
print(f"Found {len(runs)} workflow runs")
# Each workflow run processed takes ~10-15 API requests. To avoid being
# rate limited by GitHub (1000 requests per hour) we choose just the
# most recent N runs. This also keeps the viz size from blowing up.
runs = sorted(runs, key=lambda r: r["created_at"])[-max_runs:]
print(
f"Fetching artifact listing for the {len(runs)} most recent workflow runs"
)
for r in runs:
artifacts = get_artifacts_for_workflow_run(
r["id"], repo=repo, session=session
)
# We also upload timeout reports as artifacts, but we don't want them here.
r["artifacts"] = [
a
for a in artifacts
if "timeouts" not in a["name"] and "cluster_dumps" not in a["name"]
]
nartifacts = sum(len(r["artifacts"]) for r in runs)
ndownloaded = 0
print(f"Downloading and parsing {nartifacts} artifacts...")
for r in runs:
jobs_df = get_jobs(r, session=session)
r["dfs"] = []
for a in r["artifacts"]:
url = a["archive_download_url"]
df: pandas.DataFrame | None
xml = download_and_parse_artifact(url, session=session)
if xml is None:
continue
df = dataframe_from_jxml(cast(Iterable, xml))
# Note: we assign a column with the workflow run timestamp rather
# than the artifact timestamp so that artifacts triggered under
# the same workflow run can be aligned according to the same trigger
# time.
html_url = jobs_df[jobs_df["suite_name"] == a["name"]].html_url.unique()
assert (
len(html_url) == 1
), f"Artifact suite name {a['name']} did not match any jobs dataframe:\n{jobs_df['suite_name'].unique()}"
html_url = html_url[0]
assert html_url is not None
df2 = df.assign(
name=a["name"],
suite=suite_from_name(a["name"]),
date=r["created_at"],
html_url=html_url,
)
if df2 is not None:
yield df2
ndownloaded += 1
if ndownloaded and not ndownloaded % 20:
print(f"{ndownloaded}... ", end="")
def main(argv: list[str] | None = None) -> None:
args = parse_args(argv)
if not TOKEN:
raise RuntimeError("Failed to find a GitHub Token")
# Note: we drop **all** tests which did not have at least <nfails> failures.
# This is because, as nice as a block of green tests can be, there are
# far too many tests to visualize at once, so we only want to look at
# flaky tests. If the test suite has been doing well, this chart should
# dwindle to nothing!
dfs = list(
download_and_parse_artifacts(
repo=args.repo,
branch=args.branch,
events=args.events,
max_days=args.max_days,
max_runs=args.max_runs,
)
)
total = pandas.concat(dfs, axis=0)
# Reduce the size of the DF since the entire thing is encoded in the vega spec
required_columns = [
"test",
"date",
"suite",
"file",
"html_url",
"status",
"message",
]
total = total[required_columns]
grouped = (
total.groupby([total.file, total.test])
.filter(lambda g: (g.status == "x").sum() >= args.nfails)
.reset_index()
.assign(test=lambda df: df.file + "." + df.test)
.groupby("test")
)
overall = {name: grouped.get_group(name) for name in grouped.groups}
# Get all of the workflow run timestamps that we wound up with, which we can use
# below to align the different groups.
times = set()
for df in overall.values():
times.update(df.date.unique())
print("Making chart...")
altair.data_transformers.disable_max_rows()
charts = []
for name, df in overall.items():
# Don't show this suite if it has passed all tests recently.
if not len(df):
continue
# Create an aggregated form of the suite with overall pass rate
# over the time in question.
df_agg = (
df[df.status != "x"]
.groupby("suite")
.size()
.truediv(df.groupby("suite").size(), fill_value=0)
.to_frame(name="Pass Rate")
.reset_index()
)
# Create a grid with hover tooltip for error messages
charts.append(
altair.Chart(df)
.mark_rect(stroke="gray")
.encode(
x=altair.X("date:O", scale=altair.Scale(domain=sorted(list(times)))),
y=altair.Y("suite:N", title=None),
href=altair.Href("html_url:N"),
color=altair.Color(
"status:N",
scale=altair.Scale(
domain=list(COLORS.keys()),
range=list(COLORS.values()),
),
),
tooltip=["suite:N", "date:O", "status:N", "message:N", "html_url:N"],
)
.properties(title=name)
| altair.Chart(df_agg.assign(_="_"))
.mark_rect(stroke="gray")
.encode(
y=altair.Y("suite:N", title=None, axis=altair.Axis(labels=False)),
x=altair.X("_:N", title=None),
color=altair.Color(
"Pass Rate:Q",
scale=altair.Scale(
range=[COLORS["x"], COLORS["✓"]], domain=[0.0, 1.0]
),
),
tooltip=["suite:N", "Pass Rate:Q"],
)
)
# Concat the sub-charts and output to file
chart = (
altair.vconcat(*charts)
.properties(
title={
"text": [f"{args.repo} {args.title}"],
"subtitle": [" ".join(argv if argv is not None else sys.argv)],
}
)
.configure_axis(labelLimit=1000) # test names are long
.configure_title(
anchor="start",
subtitleFont="monospace",
)
.resolve_scale(x="shared") # enforce aligned x axes
)
altair_saver.save(
chart,
args.output,
embed_options={
"renderer": "svg", # Makes the text searchable
"loader": {"target": "_blank"}, # Open hrefs in a new window
},
)
if __name__ == "__main__":
main()
|