1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
from __future__ import annotations
from urllib.parse import urljoin
from tlz import memoize
from tornado import web
from tornado.ioloop import IOLoop
from distributed.dashboard.components.nvml import (
gpu_doc,
gpu_memory_doc,
gpu_utilization_doc,
)
from distributed.dashboard.components.scheduler import (
AggregateAction,
BandwidthTypes,
BandwidthWorkers,
ClusterMemory,
ComputePerKey,
CurrentLoad,
EventLoop,
ExceptionsTable,
MemoryByKey,
Occupancy,
SystemMonitor,
SystemTimeseries,
TaskGraph,
TaskGroupGraph,
TaskGroupProgress,
TaskProgress,
TaskStream,
WorkerNetworkBandwidth,
WorkersMemory,
WorkersTransferBytes,
WorkerTable,
events_doc,
exceptions_doc,
graph_doc,
hardware_doc,
individual_doc,
individual_profile_doc,
individual_profile_server_doc,
profile_doc,
profile_server_doc,
shuffling_doc,
status_doc,
stealing_doc,
systemmonitor_doc,
tasks_doc,
tg_graph_doc,
workers_doc,
)
from distributed.dashboard.core import BokehApplication
from distributed.dashboard.worker import counters_doc
applications = {
"/system": systemmonitor_doc,
"/shuffle": shuffling_doc,
"/stealing": stealing_doc,
"/workers": workers_doc,
"/exceptions": exceptions_doc,
"/events": events_doc,
"/counters": counters_doc,
"/tasks": tasks_doc,
"/status": status_doc,
"/profile": profile_doc,
"/profile-server": profile_server_doc,
"/graph": graph_doc,
"/hardware": hardware_doc,
"/groups": tg_graph_doc,
"/gpu": gpu_doc,
"/individual-task-stream": individual_doc(
TaskStream, 100, n_rectangles=1000, clear_interval="10s"
),
"/individual-progress": individual_doc(TaskProgress, 100, height=160),
"/individual-graph": individual_doc(TaskGraph, 200),
"/individual-groups": individual_doc(TaskGroupGraph, 200),
"/individual-group-progress": individual_doc(TaskGroupProgress, 200),
"/individual-workers-memory": individual_doc(WorkersMemory, 100),
"/individual-cluster-memory": individual_doc(ClusterMemory, 100),
"/individual-workers-transfer-bytes": individual_doc(WorkersTransferBytes, 100),
"/individual-cpu": individual_doc(CurrentLoad, 100, fig_attr="cpu_figure"),
"/individual-nprocessing": individual_doc(
CurrentLoad, 100, fig_attr="processing_figure"
),
"/individual-occupancy": individual_doc(Occupancy, 100),
"/individual-workers": individual_doc(WorkerTable, 500),
"/individual-exceptions": individual_doc(ExceptionsTable, 1000),
"/individual-bandwidth-types": individual_doc(BandwidthTypes, 500),
"/individual-bandwidth-workers": individual_doc(BandwidthWorkers, 500),
"/individual-workers-network": individual_doc(
WorkerNetworkBandwidth, 500, fig_attr="bandwidth"
),
"/individual-workers-disk": individual_doc(
WorkerNetworkBandwidth, 500, fig_attr="disk"
),
"/individual-workers-network-timeseries": individual_doc(
SystemTimeseries, 500, fig_attr="bandwidth"
),
"/individual-workers-cpu-timeseries": individual_doc(
SystemTimeseries, 500, fig_attr="cpu"
),
"/individual-workers-memory-timeseries": individual_doc(
SystemTimeseries, 500, fig_attr="memory"
),
"/individual-workers-disk-timeseries": individual_doc(
SystemTimeseries, 500, fig_attr="disk"
),
"/individual-memory-by-key": individual_doc(MemoryByKey, 500),
"/individual-compute-time-per-key": individual_doc(ComputePerKey, 500),
"/individual-aggregate-time-per-action": individual_doc(AggregateAction, 500),
"/individual-scheduler-system": individual_doc(SystemMonitor, 500),
"/individual-event-loop": individual_doc(EventLoop, 500),
"/individual-profile": individual_profile_doc,
"/individual-profile-server": individual_profile_server_doc,
"/individual-gpu-memory": gpu_memory_doc,
"/individual-gpu-utilization": gpu_utilization_doc,
}
@memoize
def template_variables():
from distributed.diagnostics.nvml import device_get_count
template_variables = {
"pages": [
"status",
"workers",
"tasks",
"system",
*(["gpu"] if device_get_count() > 0 else []),
"profile",
"graph",
"groups",
"info",
],
"plots": [
{
"url": x.strip("/"),
"name": " ".join(x.strip("/").split("-")[1:])
.title()
.replace("Cpu", "CPU")
.replace("Gpu", "GPU"),
}
for x in applications
if "individual" in x
]
+ [{"url": "hardware", "name": "Hardware"}],
}
template_variables["plots"] = sorted(
template_variables["plots"], key=lambda d: d["name"]
)
return template_variables
def connect(application, http_server, scheduler, prefix=""):
bokeh_app = BokehApplication(
applications, scheduler, prefix=prefix, template_variables=template_variables()
)
application.add_application(bokeh_app)
bokeh_app.initialize(IOLoop.current())
bokeh_app.add_handlers(
r".*",
[
(
r"/",
web.RedirectHandler,
{"url": urljoin((prefix or "").strip("/") + "/", r"status")},
)
],
)
bokeh_app.start()
|