File: ssh.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (463 lines) | stat: -rw-r--r-- 15,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from __future__ import annotations

import copy
import logging
import sys
import warnings
import weakref
from json import dumps
from typing import Any

import dask
import dask.config

from distributed.deploy.spec import ProcessInterface, SpecCluster

logger = logging.getLogger(__name__)


class Process(ProcessInterface):
    """A superclass for SSH Workers and Nannies

    See Also
    --------
    Worker
    Scheduler
    """

    def __init__(self, **kwargs):
        self.connection = None
        self.proc = None
        super().__init__(**kwargs)

    async def start(self):
        assert self.connection
        weakref.finalize(
            self, self.proc.kill
        )  # https://github.com/ronf/asyncssh/issues/112
        await super().start()

    async def close(self):
        if self.proc:
            self.proc.kill()  # https://github.com/ronf/asyncssh/issues/112
        if self.connection:
            self.connection.close()
        await super().close()


class Worker(Process):
    """A Remote Dask Worker controlled by SSH

    Parameters
    ----------
    scheduler: str
        The address of the scheduler
    address: str
        The hostname where we should run this worker
    worker_class: str
        The python class to use to create the worker.
    connect_options: dict
        kwargs to be passed to asyncssh connections
    remote_python: str
        Path to Python on remote node to run this worker.
    kwargs: dict
        These will be passed through the dask worker CLI to the
        dask.distributed.Worker class
    """

    def __init__(  # type: ignore[no-untyped-def]
        self,
        scheduler: str,
        address: str,
        connect_options: dict,
        kwargs: dict,
        worker_module="deprecated",
        worker_class="distributed.Nanny",
        remote_python=None,
        loop=None,
        name=None,
    ):
        super().__init__()

        if worker_module != "deprecated":
            raise ValueError(
                "worker_module has been deprecated in favor of worker_class. "
                "Please specify a Python class rather than a CLI module."
            )

        self.address = address
        self.scheduler = scheduler
        self.worker_class = worker_class
        self.connect_options = connect_options
        self.kwargs = copy.copy(kwargs)
        self.name = name
        self.remote_python = remote_python
        if kwargs.get("nprocs") is not None and kwargs.get("n_workers") is not None:
            raise ValueError(
                "Both nprocs and n_workers were specified. Use n_workers only."
            )
        elif kwargs.get("nprocs") is not None:
            warnings.warn(
                "The nprocs argument will be removed in a future release. It has been "
                "renamed to n_workers.",
                FutureWarning,
            )
            self.n_workers = self.kwargs.pop("nprocs", 1)
        else:
            self.n_workers = self.kwargs.pop("n_workers", 1)

    @property
    def nprocs(self):
        warnings.warn(
            "The nprocs attribute will be removed in a future release. It has been "
            "renamed to n_workers.",
            FutureWarning,
        )
        return self.n_workers

    @nprocs.setter
    def nprocs(self, value):
        warnings.warn(
            "The nprocs attribute will be removed in a future release. It has been "
            "renamed to n_workers.",
            FutureWarning,
        )
        self.n_workers = value

    async def start(self):
        try:
            import asyncssh  # import now to avoid adding to module startup time
        except ImportError:
            raise ImportError(
                "Dask's SSHCluster requires the `asyncssh` package to be installed. "
                "Please install it using pip or conda."
            )

        self.connection = await asyncssh.connect(self.address, **self.connect_options)

        result = await self.connection.run("uname")
        if result.exit_status == 0:
            set_env = 'env DASK_INTERNAL_INHERIT_CONFIG="{}"'.format(
                dask.config.serialize(dask.config.global_config)
            )
        else:
            result = await self.connection.run("cmd /c ver")
            if result.exit_status == 0:
                set_env = "set DASK_INTERNAL_INHERIT_CONFIG={} &&".format(
                    dask.config.serialize(dask.config.global_config)
                )
            else:
                raise Exception(
                    "Worker failed to set DASK_INTERNAL_INHERIT_CONFIG variable "
                )

        if not self.remote_python:
            self.remote_python = sys.executable

        cmd = " ".join(
            [
                set_env,
                self.remote_python,
                "-m",
                "distributed.cli.dask_spec",
                self.scheduler,
                "--spec",
                "'%s'"
                % dumps(
                    {
                        i: {
                            "cls": self.worker_class,
                            "opts": {
                                **self.kwargs,
                            },
                        }
                        for i in range(self.n_workers)
                    }
                ),
            ]
        )

        self.proc = await self.connection.create_process(cmd)

        # We watch stderr in order to get the address, then we return
        started_workers = 0
        while started_workers < self.n_workers:
            line = await self.proc.stderr.readline()
            if not line.strip():
                raise Exception("Worker failed to start")
            logger.info(line.strip())
            if "worker at" in line:
                started_workers += 1
        logger.debug("%s", line)
        await super().start()


class Scheduler(Process):
    """A Remote Dask Scheduler controlled by SSH

    Parameters
    ----------
    address: str
        The hostname where we should run this worker
    connect_options: dict
        kwargs to be passed to asyncssh connections
    remote_python: str
        Path to Python on remote node to run this scheduler.
    kwargs: dict
        These will be passed through the dask scheduler CLI to the
        dask.distributed.Scheduler class
    """

    def __init__(
        self,
        address: str,
        connect_options: dict,
        kwargs: dict,
        remote_python: str | None = None,
    ):
        super().__init__()

        self.address = address
        self.kwargs = kwargs
        self.connect_options = connect_options
        self.remote_python = remote_python or sys.executable

    async def start(self):
        try:
            import asyncssh  # import now to avoid adding to module startup time
        except ImportError:
            raise ImportError(
                "Dask's SSHCluster requires the `asyncssh` package to be installed. "
                "Please install it using pip or conda."
            )

        logger.debug("Created Scheduler Connection")

        self.connection = await asyncssh.connect(self.address, **self.connect_options)

        result = await self.connection.run("uname")
        if result.exit_status == 0:
            set_env = 'env DASK_INTERNAL_INHERIT_CONFIG="{}"'.format(
                dask.config.serialize(dask.config.global_config)
            )
        else:
            result = await self.connection.run("cmd /c ver")
            if result.exit_status == 0:
                set_env = "set DASK_INTERNAL_INHERIT_CONFIG={} &&".format(
                    dask.config.serialize(dask.config.global_config)
                )
            else:
                raise Exception(
                    "Scheduler failed to set DASK_INTERNAL_INHERIT_CONFIG variable "
                )

        cmd = " ".join(
            [
                set_env,
                self.remote_python,
                "-m",
                "distributed.cli.dask_spec",
                "--spec",
                "'%s'" % dumps({"cls": "distributed.Scheduler", "opts": self.kwargs}),
            ]
        )
        self.proc = await self.connection.create_process(cmd)

        # We watch stderr in order to get the address, then we return
        while True:
            line = await self.proc.stderr.readline()
            if not line.strip():
                raise Exception("Worker failed to start")
            logger.info(line.strip())
            if "Scheduler at" in line:
                self.address = line.split("Scheduler at:")[1].strip()
                break
        logger.debug("%s", line)
        await super().start()


old_cluster_kwargs = {
    "scheduler_addr",
    "scheduler_port",
    "worker_addrs",
    "nthreads",
    "nprocs",
    "n_workers",
    "ssh_username",
    "ssh_port",
    "ssh_private_key",
    "nohost",
    "logdir",
    "remote_python",
    "memory_limit",
    "worker_port",
    "nanny_port",
    "remote_dask_worker",
}


def SSHCluster(
    hosts: list[str] | None = None,
    connect_options: dict | list[dict] | None = None,
    worker_options: dict | None = None,
    scheduler_options: dict | None = None,
    worker_module: str = "deprecated",
    worker_class: str = "distributed.Nanny",
    remote_python: str | list[str] | None = None,
    **kwargs: Any,
) -> SpecCluster:
    """Deploy a Dask cluster using SSH

    The SSHCluster function deploys a Dask Scheduler and Workers for you on a
    set of machine addresses that you provide.  The first address will be used
    for the scheduler while the rest will be used for the workers (feel free to
    repeat the first hostname if you want to have the scheduler and worker
    co-habitate one machine.)

    You may configure the scheduler and workers by passing
    ``scheduler_options`` and ``worker_options`` dictionary keywords.  See the
    ``dask.distributed.Scheduler`` and ``dask.distributed.Worker`` classes for
    details on the available options, but the defaults should work in most
    situations.

    You may configure your use of SSH itself using the ``connect_options``
    keyword, which passes values to the ``asyncssh.connect`` function.  For
    more information on these see the documentation for the ``asyncssh``
    library https://asyncssh.readthedocs.io .

    Parameters
    ----------
    hosts
        List of hostnames or addresses on which to launch our cluster.
        The first will be used for the scheduler and the rest for workers.
    connect_options
        Keywords to pass through to :func:`asyncssh.connect`.
        This could include things such as ``port``, ``username``, ``password``
        or ``known_hosts``. See docs for :func:`asyncssh.connect` and
        :class:`asyncssh.SSHClientConnectionOptions` for full information.
        If a list it must have the same length as ``hosts``.
    worker_options
        Keywords to pass on to workers.
    scheduler_options
        Keywords to pass on to scheduler.
    worker_class
        The python class to use to create the worker(s).
    remote_python
        Path to Python on remote nodes.

    Examples
    --------
    Create a cluster with one worker:

    >>> from dask.distributed import Client, SSHCluster
    >>> cluster = SSHCluster(["localhost", "localhost"])
    >>> client = Client(cluster)

    Create a cluster with three workers, each with two threads
    and host the dashdoard on port 8797:

    >>> from dask.distributed import Client, SSHCluster
    >>> cluster = SSHCluster(
    ...     ["localhost", "localhost", "localhost", "localhost"],
    ...     connect_options={"known_hosts": None},
    ...     worker_options={"nthreads": 2},
    ...     scheduler_options={"port": 0, "dashboard_address": ":8797"}
    ... )
    >>> client = Client(cluster)

    Create a cluster with two workers on each host:

    >>> from dask.distributed import Client, SSHCluster
    >>> cluster = SSHCluster(
    ...     ["localhost", "localhost", "localhost", "localhost"],
    ...     connect_options={"known_hosts": None},
    ...     worker_options={"nthreads": 2, "n_workers": 2},
    ...     scheduler_options={"port": 0, "dashboard_address": ":8797"}
    ... )
    >>> client = Client(cluster)

    An example using a different worker class, in particular the
    ``CUDAWorker`` from the ``dask-cuda`` project:

    >>> from dask.distributed import Client, SSHCluster
    >>> cluster = SSHCluster(
    ...     ["localhost", "hostwithgpus", "anothergpuhost"],
    ...     connect_options={"known_hosts": None},
    ...     scheduler_options={"port": 0, "dashboard_address": ":8797"},
    ...     worker_class="dask_cuda.CUDAWorker")
    >>> client = Client(cluster)

    See Also
    --------
    dask.distributed.Scheduler
    dask.distributed.Worker
    asyncssh.connect
    """
    connect_options = connect_options or {}
    worker_options = worker_options or {}
    scheduler_options = scheduler_options or {}

    if worker_module != "deprecated":
        raise ValueError(
            "worker_module has been deprecated in favor of worker_class. "
            "Please specify a Python class rather than a CLI module."
        )

    if set(kwargs) & old_cluster_kwargs:
        from distributed.deploy.old_ssh import SSHCluster as OldSSHCluster

        warnings.warn(
            "Note that the SSHCluster API has been replaced.  "
            "We're routing you to the older implementation.  "
            "This will be removed in the future"
        )
        kwargs.setdefault("worker_addrs", hosts)
        return OldSSHCluster(**kwargs)  # type: ignore

    if not hosts:
        raise ValueError(
            f"`hosts` must be a non empty list, value {repr(hosts)!r} found."
        )
    if isinstance(connect_options, list) and len(connect_options) != len(hosts):
        raise RuntimeError(
            "When specifying a list of connect_options you must provide a "
            "dictionary for each address."
        )

    if isinstance(remote_python, list) and len(remote_python) != len(hosts):
        raise RuntimeError(
            "When specifying a list of remote_python you must provide a "
            "path for each address."
        )

    scheduler = {
        "cls": Scheduler,
        "options": {
            "address": hosts[0],
            "connect_options": connect_options
            if isinstance(connect_options, dict)
            else connect_options[0],
            "kwargs": scheduler_options,
            "remote_python": remote_python[0]
            if isinstance(remote_python, list)
            else remote_python,
        },
    }
    workers = {
        i: {
            "cls": Worker,
            "options": {
                "address": host,
                "connect_options": connect_options
                if isinstance(connect_options, dict)
                else connect_options[i + 1],
                "kwargs": worker_options,
                "worker_class": worker_class,
                "remote_python": remote_python[i + 1]
                if isinstance(remote_python, list)
                else remote_python,
            },
        }
        for i, host in enumerate(hosts[1:])
    }
    return SpecCluster(workers, scheduler, name="SSHCluster", **kwargs)