File: test_adaptive.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (490 lines) | stat: -rw-r--r-- 15,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from __future__ import annotations

import asyncio
import math
from time import sleep

import pytest

import dask

from distributed import (
    Adaptive,
    Client,
    LocalCluster,
    Scheduler,
    SpecCluster,
    Worker,
    wait,
)
from distributed.compatibility import LINUX, MACOS, WINDOWS
from distributed.metrics import time
from distributed.utils_test import async_wait_for, gen_test, slowinc


def test_adaptive_local_cluster(loop):
    with LocalCluster(
        n_workers=0,
        silence_logs=False,
        dashboard_address=":0",
        loop=loop,
    ) as cluster:
        alc = cluster.adapt(interval="100 ms")
        with Client(cluster, loop=loop) as c:
            assert not cluster.scheduler.workers
            future = c.submit(lambda x: x + 1, 1)
            assert future.result() == 2
            assert cluster.scheduler.workers

            sleep(0.1)
            assert cluster.scheduler.workers

            del future

            start = time()
            while cluster.scheduler.workers:
                sleep(0.01)
                assert time() < start + 30

            assert not cluster.scheduler.workers


@gen_test()
async def test_adaptive_local_cluster_multi_workers():
    async with LocalCluster(
        n_workers=0,
        silence_logs=False,
        processes=False,
        dashboard_address=":0",
        asynchronous=True,
    ) as cluster:

        cluster.scheduler.allowed_failures = 1000
        adapt = cluster.adapt(interval="100 ms")
        async with Client(cluster, asynchronous=True) as c:
            futures = c.map(slowinc, range(100), delay=0.01)

            while not cluster.scheduler.workers:
                await asyncio.sleep(0.01)

            await c.gather(futures)
            del futures

            while cluster.scheduler.workers:
                await asyncio.sleep(0.01)

            # no workers for a while
            for _ in range(10):
                assert not cluster.scheduler.workers
                await asyncio.sleep(0.05)

            futures = c.map(slowinc, range(100), delay=0.01)
            await c.gather(futures)


@pytest.mark.xfail(reason="changed API")
@gen_test()
async def test_adaptive_scale_down_override():
    class TestAdaptive(Adaptive):
        def __init__(self, *args, **kwargs):
            self.min_size = kwargs.pop("min_size", 0)
            super().__init__(*args, **kwargs)

        async def workers_to_close(self, **kwargs):
            num_workers = len(self.cluster.workers)
            to_close = await self.scheduler.workers_to_close(**kwargs)
            if num_workers - len(to_close) < self.min_size:
                to_close = to_close[: num_workers - self.min_size]

            return to_close

    class TestCluster(LocalCluster):
        def scale_up(self, n, **kwargs):
            assert False

    async with TestCluster(
        n_workers=10, processes=False, asynchronous=True, dashboard_address=":0"
    ) as cluster:
        ta = cluster.adapt(
            min_size=2, interval=0.1, scale_factor=2, Adaptive=TestAdaptive
        )
        await asyncio.sleep(0.3)

        # Assert that adaptive cycle does not reduce cluster below minimum size
        # as determined via override.
        assert len(cluster.scheduler.workers) == 2


@gen_test()
async def test_min_max():
    async with LocalCluster(
        n_workers=0,
        silence_logs=False,
        processes=False,
        dashboard_address=":0",
        asynchronous=True,
        threads_per_worker=1,
    ) as cluster:
        adapt = cluster.adapt(minimum=1, maximum=2, interval="20 ms", wait_count=10)
        async with Client(cluster, asynchronous=True) as c:
            start = time()
            while not cluster.scheduler.workers:
                await asyncio.sleep(0.01)
                assert time() < start + 1

            await asyncio.sleep(0.2)
            assert len(cluster.scheduler.workers) == 1
            assert len(adapt.log) == 1 and adapt.log[-1][1] == {"status": "up", "n": 1}

            futures = c.map(slowinc, range(100), delay=0.1)

            start = time()
            while len(cluster.scheduler.workers) < 2:
                await asyncio.sleep(0.01)
                assert time() < start + 1

            assert len(cluster.scheduler.workers) == 2
            await asyncio.sleep(0.5)
            assert len(cluster.scheduler.workers) == 2
            assert len(cluster.workers) == 2
            assert len(adapt.log) == 2 and all(
                d["status"] == "up" for _, d in adapt.log
            )

            del futures

            start = time()
            while len(cluster.scheduler.workers) != 1:
                await asyncio.sleep(0.01)
                assert time() < start + 2
            assert adapt.log[-1][1]["status"] == "down"


@gen_test()
async def test_avoid_churn():
    """We want to avoid creating and deleting workers frequently

    Instead we want to wait a few beats before removing a worker in case the
    user is taking a brief pause between work
    """
    async with LocalCluster(
        n_workers=0,
        asynchronous=True,
        processes=False,
        silence_logs=False,
        dashboard_address=":0",
    ) as cluster:
        async with Client(cluster, asynchronous=True) as client:
            adapt = cluster.adapt(interval="20 ms", wait_count=5)

            for i in range(10):
                await client.submit(slowinc, i, delay=0.040)
                await asyncio.sleep(0.040)

            assert len(adapt.log) == 1


@gen_test()
async def test_adapt_quickly():
    """We want to avoid creating and deleting workers frequently

    Instead we want to wait a few beats before removing a worker in case the
    user is taking a brief pause between work
    """
    async with LocalCluster(
        n_workers=0,
        asynchronous=True,
        processes=False,
        silence_logs=False,
        dashboard_address=":0",
    ) as cluster, Client(cluster, asynchronous=True) as client:
        adapt = cluster.adapt(interval="20 ms", wait_count=5, maximum=10)
        future = client.submit(slowinc, 1, delay=0.100)
        await wait(future)
        assert len(adapt.log) == 1

        # Scale up when there is plenty of available work
        futures = client.map(slowinc, range(1000), delay=0.100)
        while len(adapt.log) == 1:
            await asyncio.sleep(0.01)
        assert len(adapt.log) == 2
        assert adapt.log[-1][1]["status"] == "up"
        d = [x for x in adapt.log[-1] if isinstance(x, dict)][0]
        assert 2 < d["n"] <= adapt.maximum

        while len(cluster.workers) < adapt.maximum:
            await asyncio.sleep(0.01)

        del futures

        while len(cluster.scheduler.tasks) > 1:
            await asyncio.sleep(0.01)

        await cluster

        while (
            len(cluster.scheduler.workers) > 1
            or len(cluster.worker_spec) > 1
            or len(cluster.workers) > 1
        ):
            await asyncio.sleep(0.01)

        # Don't scale up for large sequential computations
        x = await client.scatter(1)
        for _ in range(100):
            x = client.submit(slowinc, x)

        await asyncio.sleep(0.1)
        assert len(cluster.workers) == 1


@gen_test()
async def test_adapt_down():
    """Ensure that redefining adapt with a lower maximum removes workers"""
    async with LocalCluster(
        n_workers=0,
        asynchronous=True,
        processes=False,
        silence_logs=False,
        dashboard_address=":0",
    ) as cluster, Client(cluster, asynchronous=True) as client:
        cluster.adapt(interval="20ms", maximum=5)

        futures = client.map(slowinc, range(1000), delay=0.1)
        while len(cluster.scheduler.workers) < 5:
            await asyncio.sleep(0.1)

        cluster.adapt(maximum=2)

        start = time()
        while len(cluster.scheduler.workers) != 2:
            await asyncio.sleep(0.1)
            assert time() < start + 60


@gen_test()
async def test_no_more_workers_than_tasks():
    with dask.config.set(
        {"distributed.scheduler.default-task-durations": {"slowinc": 1000}}
    ):
        async with LocalCluster(
            n_workers=0,
            silence_logs=False,
            processes=False,
            dashboard_address=":0",
            asynchronous=True,
        ) as cluster:
            adapt = cluster.adapt(minimum=0, maximum=4, interval="10 ms")
            async with Client(cluster, asynchronous=True) as client:
                await client.submit(slowinc, 1, delay=0.100)
                assert len(cluster.scheduler.workers) <= 1


@pytest.mark.filterwarnings("ignore:There is no current event loop:DeprecationWarning")
@pytest.mark.filterwarnings("ignore:make_current is deprecated:DeprecationWarning")
def test_basic_no_loop(cleanup):
    loop = None
    try:
        with LocalCluster(
            n_workers=0, silence_logs=False, dashboard_address=":0", loop=None
        ) as cluster:
            with Client(cluster) as client:
                cluster.adapt()
                future = client.submit(lambda x: x + 1, 1)
                assert future.result() == 2
            loop = cluster.loop
    finally:
        if loop is not None:
            loop.add_callback(loop.stop)


@pytest.mark.flaky(condition=LINUX, reruns=10, reruns_delay=5)
@pytest.mark.xfail(condition=MACOS or WINDOWS, reason="extremely flaky")
@gen_test()
async def test_target_duration():
    with dask.config.set(
        {
            "distributed.scheduler.default-task-durations": {"slowinc": 1},
            # adaptive target for queued tasks doesn't yet consider default or learned task durations
            "distributed.scheduler.worker-saturation": float("inf"),
        }
    ):
        async with LocalCluster(
            n_workers=0,
            asynchronous=True,
            processes=False,
            silence_logs=False,
            dashboard_address=":0",
        ) as cluster:
            adapt = cluster.adapt(interval="20ms", minimum=2, target_duration="5s")
            async with Client(cluster, asynchronous=True) as client:
                await client.wait_for_workers(2)
                futures = client.map(slowinc, range(100), delay=0.3)
                await wait(futures)

            assert adapt.log[0][1] == {"status": "up", "n": 2}
            assert adapt.log[1][1] == {"status": "up", "n": 20}


@gen_test()
async def test_worker_keys():
    """Ensure that redefining adapt with a lower maximum removes workers"""
    async with SpecCluster(
        scheduler={"cls": Scheduler, "options": {"dashboard_address": ":0"}},
        workers={
            "a-1": {"cls": Worker},
            "a-2": {"cls": Worker},
            "b-1": {"cls": Worker},
            "b-2": {"cls": Worker},
        },
        asynchronous=True,
    ) as cluster:

        def key(ws):
            return ws.name.split("-")[0]

        cluster._adaptive_options = {"worker_key": key}

        adaptive = cluster.adapt(minimum=1)
        await adaptive.adapt()

        while len(cluster.scheduler.workers) == 4:
            await asyncio.sleep(0.01)

        names = {ws.name for ws in cluster.scheduler.workers.values()}
        assert names == {"a-1", "a-2"} or names == {"b-1", "b-2"}


@gen_test()
async def test_adapt_cores_memory():
    async with LocalCluster(
        n_workers=0,
        threads_per_worker=2,
        memory_limit="3 GB",
        silence_logs=False,
        processes=False,
        dashboard_address=":0",
        asynchronous=True,
    ) as cluster:
        adapt = cluster.adapt(minimum_cores=3, maximum_cores=9)
        assert adapt.minimum == 2
        assert adapt.maximum == 4

        adapt = cluster.adapt(minimum_memory="7GB", maximum_memory="20 GB")
        assert adapt.minimum == 3
        assert adapt.maximum == 6

        adapt = cluster.adapt(
            minimum_cores=1,
            minimum_memory="7GB",
            maximum_cores=10,
            maximum_memory="1 TB",
        )
        assert adapt.minimum == 3
        assert adapt.maximum == 5


@gen_test()
async def test_adaptive_config():
    with dask.config.set(
        {"distributed.adaptive.minimum": 10, "distributed.adaptive.wait-count": 8}
    ):
        try:
            adapt = Adaptive(interval="5s")
            assert adapt.minimum == 10
            assert adapt.maximum == math.inf
            assert adapt.interval == 5
            assert adapt.wait_count == 8
        finally:
            adapt.stop()


@gen_test()
async def test_update_adaptive():
    async with LocalCluster(
        n_workers=0,
        threads_per_worker=2,
        memory_limit="3 GB",
        silence_logs=False,
        processes=False,
        dashboard_address=":0",
        asynchronous=True,
    ) as cluster:
        first = cluster.adapt(maximum=1)
        second = cluster.adapt(maximum=2)
        await asyncio.sleep(0.2)
        assert first.periodic_callback is None
        assert second.periodic_callback.is_running()


@gen_test()
async def test_adaptive_no_memory_limit():
    """Test that adapt() does not keep creating workers when no memory limit is set"""
    async with LocalCluster(
        n_workers=0,
        threads_per_worker=1,
        memory_limit=0,
        asynchronous=True,
        dashboard_address=":0",
    ) as cluster:
        cluster.adapt(minimum=1, maximum=10, interval="1 ms")
        async with Client(cluster, asynchronous=True) as client:
            await client.gather(client.map(slowinc, range(5), delay=0.35))
        assert (
            sum(
                state[1]["n"]
                for state in cluster._adaptive.log
                if state[1]["status"] == "up"
            )
            <= 5
        )


@gen_test()
async def test_scale_needs_to_be_awaited():
    """
    This tests that the adaptive class works fine if the scale method uses the
    `sync` method to schedule its task instead of loop.add_callback
    """

    class RequiresAwaitCluster(LocalCluster):
        def scale(self, n):
            # super invocation in the nested function scope is messy
            method = super().scale

            async def _():
                return method(n)

            return self.sync(_)

    async with RequiresAwaitCluster(
        n_workers=0, asynchronous=True, dashboard_address=":0"
    ) as cluster:
        async with Client(cluster, asynchronous=True) as client:
            futures = client.map(slowinc, range(5), delay=0.05)
            assert len(cluster.workers) == 0
            cluster.adapt()

            await client.gather(futures)

            del futures
            await async_wait_for(lambda: not cluster.workers, 10)


@gen_test()
async def test_adaptive_stopped():
    """
    We should ensure that the adapt PC is actually stopped once the cluster
    stops.
    """
    async with LocalCluster(
        n_workers=0, asynchronous=True, dashboard_address=":0"
    ) as cluster:
        instance = cluster.adapt(interval="10ms")
        assert instance.periodic_callback is not None

        await async_wait_for(lambda: instance.periodic_callback.is_running(), timeout=5)

        pc = instance.periodic_callback

    await async_wait_for(lambda: not pc.is_running(), timeout=5)