1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
from __future__ import annotations
import os
from enum import IntEnum, auto
from platform import uname
from typing import NamedTuple
from packaging.version import parse as parse_version
import dask
try:
import pynvml
except ImportError:
pynvml = None
class NVMLState(IntEnum):
UNINITIALIZED = auto()
"""No attempt yet made to initialize PyNVML"""
INITIALIZED = auto()
"""PyNVML was successfully initialized"""
DISABLED_PYNVML_NOT_AVAILABLE = auto()
"""PyNVML not installed"""
DISABLED_CONFIG = auto()
"""PyNVML diagnostics disabled by ``distributed.diagnostics.nvml`` config setting"""
DISABLED_LIBRARY_NOT_FOUND = auto()
"""PyNVML available, but NVML not installed"""
DISABLED_WSL_INSUFFICIENT_DRIVER = auto()
"""PyNVML and NVML available, but on WSL and the driver version is insufficient"""
class CudaDeviceInfo(NamedTuple):
uuid: bytes | None = None
device_index: int | None = None
mig_index: int | None = None
class CudaContext(NamedTuple):
has_context: bool
device_info: CudaDeviceInfo | None = None
# Initialisation must occur per-process, so an initialised state is a
# (state, pid) pair
NVML_STATE = (
NVMLState.DISABLED_PYNVML_NOT_AVAILABLE
if pynvml is None
else NVMLState.UNINITIALIZED
)
"""Current initialization state"""
NVML_OWNER_PID = None
"""PID of process that successfully called pynvml.nvmlInit"""
MINIMUM_WSL_VERSION = "512.15"
def is_initialized():
"""Is pynvml initialized on this process?"""
return NVML_STATE == NVMLState.INITIALIZED and NVML_OWNER_PID == os.getpid()
def _in_wsl():
"""Check if we are in Windows Subsystem for Linux; some PyNVML queries are not supported there.
Taken from https://www.scivision.dev/python-detect-wsl/
"""
return "microsoft-standard" in uname().release
def init_once():
"""Idempotent (per-process) initialization of PyNVML
Notes
-----
Modifies global variables NVML_STATE and NVML_OWNER_PID"""
global NVML_STATE, NVML_OWNER_PID
if NVML_STATE in {
NVMLState.DISABLED_PYNVML_NOT_AVAILABLE,
NVMLState.DISABLED_CONFIG,
NVMLState.DISABLED_LIBRARY_NOT_FOUND,
NVMLState.DISABLED_WSL_INSUFFICIENT_DRIVER,
}:
return
elif NVML_STATE == NVMLState.INITIALIZED and NVML_OWNER_PID == os.getpid():
return
elif NVML_STATE == NVMLState.UNINITIALIZED and not dask.config.get(
"distributed.diagnostics.nvml"
):
NVML_STATE = NVMLState.DISABLED_CONFIG
return
elif (
NVML_STATE == NVMLState.INITIALIZED and NVML_OWNER_PID != os.getpid()
) or NVML_STATE == NVMLState.UNINITIALIZED:
try:
pynvml.nvmlInit()
except (
pynvml.NVMLError_LibraryNotFound,
pynvml.NVMLError_DriverNotLoaded,
pynvml.NVMLError_Unknown,
):
NVML_STATE = NVMLState.DISABLED_LIBRARY_NOT_FOUND
return
if _in_wsl() and parse_version(
pynvml.nvmlSystemGetDriverVersion().decode()
) < parse_version(MINIMUM_WSL_VERSION):
NVML_STATE = NVMLState.DISABLED_WSL_INSUFFICIENT_DRIVER
return
else:
from distributed.worker import add_gpu_metrics
# initialization was successful
NVML_STATE = NVMLState.INITIALIZED
NVML_OWNER_PID = os.getpid()
add_gpu_metrics()
else:
raise RuntimeError(
f"Unhandled initialisation state ({NVML_STATE=}, {NVML_OWNER_PID=})"
)
def device_get_count():
init_once()
if not is_initialized():
return 0
else:
return pynvml.nvmlDeviceGetCount()
def _pynvml_handles():
count = device_get_count()
if NVML_STATE == NVMLState.DISABLED_PYNVML_NOT_AVAILABLE:
raise RuntimeError("NVML monitoring requires PyNVML and NVML to be installed")
elif NVML_STATE == NVMLState.DISABLED_LIBRARY_NOT_FOUND:
raise RuntimeError("PyNVML is installed, but NVML is not")
elif NVML_STATE == NVMLState.DISABLED_WSL_INSUFFICIENT_DRIVER:
raise RuntimeError(
"Outdated NVIDIA drivers for WSL, please upgrade to "
f"{MINIMUM_WSL_VERSION} or newer"
)
elif NVML_STATE == NVMLState.DISABLED_CONFIG:
raise RuntimeError(
"PyNVML monitoring disabled by 'distributed.diagnostics.nvml' "
"config setting"
)
elif count == 0:
raise RuntimeError("No GPUs available")
else:
try:
gpu_idx = next(
map(int, os.environ.get("CUDA_VISIBLE_DEVICES", "").split(","))
)
except ValueError:
# CUDA_VISIBLE_DEVICES is not set, take first device
gpu_idx = 0
return pynvml.nvmlDeviceGetHandleByIndex(gpu_idx)
def _running_process_matches(handle):
"""Check whether the current process is same as that of handle
Parameters
----------
handle : pyvnml.nvml.LP_struct_c_nvmlDevice_t
NVML handle to CUDA device
Returns
-------
out : bool
Whether the device handle has a CUDA context on the running process.
"""
init_once()
if hasattr(pynvml, "nvmlDeviceGetComputeRunningProcesses_v2"):
running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses_v2(handle)
else:
running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
return any(os.getpid() == proc.pid for proc in running_processes)
def has_cuda_context():
"""Check whether the current process already has a CUDA context created.
Returns
-------
out : CudaContext
Object containing information as to whether the current process has a CUDA
context created, and in the positive case containing also information about
the device the context belongs to.
"""
init_once()
if is_initialized():
for index in range(device_get_count()):
handle = pynvml.nvmlDeviceGetHandleByIndex(index)
try:
mig_current_mode, mig_pending_mode = pynvml.nvmlDeviceGetMigMode(handle)
except pynvml.NVMLError_NotSupported:
mig_current_mode = pynvml.NVML_DEVICE_MIG_DISABLE
if mig_current_mode == pynvml.NVML_DEVICE_MIG_ENABLE:
for mig_index in range(pynvml.nvmlDeviceGetMaxMigDeviceCount(handle)):
try:
mig_handle = pynvml.nvmlDeviceGetMigDeviceHandleByIndex(
handle, mig_index
)
except pynvml.NVMLError_NotFound:
# No MIG device with that index
continue
if _running_process_matches(mig_handle):
uuid = pynvml.nvmlDeviceGetUUID(mig_handle)
return CudaContext(
has_context=True,
device_info=CudaDeviceInfo(
uuid=uuid, device_index=index, mig_index=mig_index
),
)
else:
if _running_process_matches(handle):
uuid = pynvml.nvmlDeviceGetUUID(handle)
return CudaContext(
has_context=True,
device_info=CudaDeviceInfo(uuid=uuid, device_index=index),
)
return CudaContext(has_context=False)
def get_device_index_and_uuid(device):
"""Get both device index and UUID from device index or UUID
Parameters
----------
device : int, bytes or str
An ``int`` with the index of a GPU, or ``bytes`` or ``str`` with the UUID
of a CUDA (either GPU or MIG) device.
Returns
-------
out : CudaDeviceInfo
Object containing information about the device.
Examples
--------
>>> get_device_index_and_uuid(0) # doctest: +SKIP
{'device-index': 0, 'uuid': b'GPU-e1006a74-5836-264f-5c26-53d19d212dfe'}
>>> get_device_index_and_uuid('GPU-e1006a74-5836-264f-5c26-53d19d212dfe') # doctest: +SKIP
{'device-index': 0, 'uuid': b'GPU-e1006a74-5836-264f-5c26-53d19d212dfe'}
>>> get_device_index_and_uuid('MIG-7feb6df5-eccf-5faa-ab00-9a441867e237') # doctest: +SKIP
{'device-index': 0, 'uuid': b'MIG-7feb6df5-eccf-5faa-ab00-9a441867e237'}
"""
init_once()
try:
device_index = int(device)
device_handle = pynvml.nvmlDeviceGetHandleByIndex(device_index)
uuid = pynvml.nvmlDeviceGetUUID(device_handle)
except ValueError:
uuid = device if isinstance(device, bytes) else bytes(device, "utf-8")
# Validate UUID, get index and UUID as seen with `nvidia-smi -L`
uuid_handle = pynvml.nvmlDeviceGetHandleByUUID(uuid)
device_index = pynvml.nvmlDeviceGetIndex(uuid_handle)
uuid = pynvml.nvmlDeviceGetUUID(uuid_handle)
return CudaDeviceInfo(uuid=uuid, device_index=device_index)
def get_device_mig_mode(device):
"""Get MIG mode for a device index or UUID
Parameters
----------
device: int, bytes or str
An ``int`` with the index of a GPU, or ``bytes`` or ``str`` with the UUID
of a CUDA (either GPU or MIG) device.
Returns
-------
out : list
A ``list`` with two integers ``[current_mode, pending_mode]``.
"""
init_once()
try:
device_index = int(device)
handle = pynvml.nvmlDeviceGetHandleByIndex(device_index)
except ValueError:
uuid = device if isinstance(device, bytes) else bytes(device, "utf-8")
handle = pynvml.nvmlDeviceGetHandleByUUID(uuid)
try:
return pynvml.nvmlDeviceGetMigMode(handle)
except pynvml.NVMLError_NotSupported:
return [0, 0]
def _get_utilization(h):
try:
return pynvml.nvmlDeviceGetUtilizationRates(h).gpu
except pynvml.NVMLError_NotSupported:
return None
def _get_memory_used(h):
try:
return pynvml.nvmlDeviceGetMemoryInfo(h).used
except pynvml.NVMLError_NotSupported:
return None
def _get_memory_total(h):
try:
return pynvml.nvmlDeviceGetMemoryInfo(h).total
except pynvml.NVMLError_NotSupported:
return None
def _get_name(h):
try:
return pynvml.nvmlDeviceGetName(h).decode()
except pynvml.NVMLError_NotSupported:
return None
def real_time():
h = _pynvml_handles()
return {
"utilization": _get_utilization(h),
"memory-used": _get_memory_used(h),
}
def one_time():
h = _pynvml_handles()
return {
"memory-total": _get_memory_total(h),
"name": _get_name(h),
}
|