1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
from __future__ import annotations
import abc
import contextlib
import functools
import logging
import os
import socket
import subprocess
import sys
import uuid
import zipfile
from collections.abc import Awaitable
from typing import TYPE_CHECKING, Any, ClassVar
from dask.utils import funcname, tmpfile
if TYPE_CHECKING:
from distributed.scheduler import Scheduler, TaskStateState # circular imports
logger = logging.getLogger(__name__)
class SchedulerPlugin:
"""Interface to extend the Scheduler
The scheduler operates by triggering and responding to events like
``task_finished``, ``update_graph``, ``task_erred``, etc..
A plugin enables custom code to run at each of those same events. The
scheduler will run the analogous methods on this class when each event is
triggered. This runs user code within the scheduler thread that can
perform arbitrary operations in synchrony with the scheduler itself.
Plugins are often used for diagnostics and measurement, but have full
access to the scheduler and could in principle affect core scheduling.
To implement a plugin:
1. subclass this class
2. override some of its methods
3. add the plugin to the scheduler with ``Scheduler.add_plugin(myplugin)``.
Examples
--------
>>> class Counter(SchedulerPlugin):
... def __init__(self):
... self.counter = 0
...
... def transition(self, key, start, finish, *args, **kwargs):
... if start == 'processing' and finish == 'memory':
... self.counter += 1
...
... def restart(self, scheduler):
... self.counter = 0
>>> plugin = Counter()
>>> scheduler.add_plugin(plugin) # doctest: +SKIP
"""
async def start(self, scheduler: Scheduler) -> None:
"""Run when the scheduler starts up
This runs at the end of the Scheduler startup process
"""
async def before_close(self) -> None:
"""Runs prior to any Scheduler shutdown logic"""
async def close(self) -> None:
"""Run when the scheduler closes down
This runs at the beginning of the Scheduler shutdown process, but after
workers have been asked to shut down gracefully
"""
def update_graph(
self,
scheduler: Scheduler,
keys: set[str],
restrictions: dict[str, float],
**kwargs: Any,
) -> None:
"""Run when a new graph / tasks enter the scheduler"""
def restart(self, scheduler: Scheduler) -> None:
"""Run when the scheduler restarts itself"""
def transition(
self,
key: str,
start: TaskStateState,
finish: TaskStateState,
*args: Any,
**kwargs: Any,
) -> None:
"""Run whenever a task changes state
Parameters
----------
key : string
start : string
Start state of the transition.
One of released, waiting, processing, memory, error.
finish : string
Final state of the transition.
*args, **kwargs :
More options passed when transitioning
This may include worker ID, compute time, etc.
"""
def add_worker(self, scheduler: Scheduler, worker: str) -> None | Awaitable[None]:
"""Run when a new worker enters the cluster"""
def remove_worker(
self, scheduler: Scheduler, worker: str
) -> None | Awaitable[None]:
"""Run when a worker leaves the cluster"""
def add_client(self, scheduler: Scheduler, client: str) -> None:
"""Run when a new client connects"""
def remove_client(self, scheduler: Scheduler, client: str) -> None:
"""Run when a client disconnects"""
def log_event(self, topic: str, msg: Any) -> None:
"""Run when an event is logged"""
class WorkerPlugin:
"""Interface to extend the Worker
A worker plugin enables custom code to run at different stages of the Workers'
lifecycle: at setup, during task state transitions, when a task or dependency
is released, and at teardown.
A plugin enables custom code to run at each of step of a Workers's life. Whenever such
an event happens, the corresponding method on this class will be called. Note that the
user code always runs within the Worker's main thread.
To implement a plugin implement some of the methods of this class and register
the plugin to your client in order to have it attached to every existing and
future workers with ``Client.register_worker_plugin``.
Examples
--------
>>> class ErrorLogger(WorkerPlugin):
... def __init__(self, logger):
... self.logger = logger
...
... def setup(self, worker):
... self.worker = worker
...
... def transition(self, key, start, finish, *args, **kwargs):
... if finish == 'error':
... ts = self.worker.tasks[key]
... exc_info = (type(ts.exception), ts.exception, ts.traceback)
... self.logger.error(
... "Error during computation of '%s'.", key,
... exc_info=exc_info
... )
>>> import logging
>>> plugin = ErrorLogger(logging)
>>> client.register_worker_plugin(plugin) # doctest: +SKIP
"""
def setup(self, worker):
"""
Run when the plugin is attached to a worker. This happens when the plugin is registered
and attached to existing workers, or when a worker is created after the plugin has been
registered.
"""
def teardown(self, worker):
"""Run when the worker to which the plugin is attached to is closed"""
def transition(self, key, start, finish, **kwargs):
"""
Throughout the lifecycle of a task (see :doc:`Worker <worker>`), Workers are
instructed by the scheduler to compute certain tasks, resulting in transitions
in the state of each task. The Worker owning the task is then notified of this
state transition.
Whenever a task changes its state, this method will be called.
Parameters
----------
key : string
start : string
Start state of the transition.
One of waiting, ready, executing, long-running, memory, error.
finish : string
Final state of the transition.
kwargs : More options passed when transitioning
"""
class NannyPlugin:
"""Interface to extend the Nanny
A worker plugin enables custom code to run at different stages of the Workers'
lifecycle. A nanny plugin does the same thing, but benefits from being able
to run code before the worker is started, or to restart the worker if
necessary.
To implement a plugin implement some of the methods of this class and register
the plugin to your client in order to have it attached to every existing and
future nanny by passing ``nanny=True`` to
:meth:`Client.register_worker_plugin<distributed.Client.register_worker_plugin>`.
The ``restart`` attribute is used to control whether or not a running ``Worker``
needs to be restarted when registering the plugin.
See Also
--------
WorkerPlugin
SchedulerPlugin
"""
restart = False
def setup(self, nanny):
"""
Run when the plugin is attached to a nanny. This happens when the plugin is registered
and attached to existing nannies, or when a nanny is created after the plugin has been
registered.
"""
def teardown(self, nanny):
"""Run when the nanny to which the plugin is attached to is closed"""
def _get_plugin_name(plugin: SchedulerPlugin | WorkerPlugin | NannyPlugin) -> str:
"""Return plugin name.
If plugin has no name attribute a random name is used.
"""
if hasattr(plugin, "name"):
return plugin.name
else:
return funcname(type(plugin)) + "-" + str(uuid.uuid4())
class PackageInstall(WorkerPlugin, abc.ABC):
"""Abstract parent class for a worker plugin to install a set of packages
This accepts a set of packages to install on all workers.
You can also optionally ask for the worker to restart itself after
performing this installation.
.. note::
This will increase the time it takes to start up
each worker. If possible, we recommend including the
libraries in the worker environment or image. This is
primarily intended for experimentation and debugging.
Parameters
----------
packages
A list of packages (with optional versions) to install
restart
Whether or not to restart the worker after installing the packages
Only functions if the worker has an attached nanny process
See Also
--------
CondaInstall
PipInstall
"""
INSTALLER: ClassVar[str]
name: str
packages: list[str]
restart: bool
def __init__(
self,
packages: list[str],
restart: bool,
):
self.packages = packages
self.restart = restart
self.name = f"{self.INSTALLER}-install-{uuid.uuid4()}"
async def setup(self, worker):
from distributed.semaphore import Semaphore
async with (
await Semaphore(max_leases=1, name=socket.gethostname(), register=True)
):
if not await self._is_installed(worker):
logger.info(
"%s installing the following packages: %s",
self.INSTALLER,
self.packages,
)
await self._set_installed(worker)
self.install()
else:
logger.info(
"The following packages have already been installed: %s",
self.packages,
)
if self.restart and worker.nanny and not await self._is_restarted(worker):
logger.info("Restarting worker to refresh interpreter.")
await self._set_restarted(worker)
worker.loop.add_callback(
worker.close_gracefully, restart=True, reason=f"{self.name}-setup"
)
@abc.abstractmethod
def install(self) -> None:
"""Install the requested packages"""
async def _is_installed(self, worker):
return await worker.client.get_metadata(
self._compose_installed_key(), default=False
)
async def _set_installed(self, worker):
await worker.client.set_metadata(
self._compose_installed_key(),
True,
)
def _compose_installed_key(self):
return [
self.name,
"installed",
socket.gethostname(),
]
async def _is_restarted(self, worker):
return await worker.client.get_metadata(
self._compose_restarted_key(worker),
default=False,
)
async def _set_restarted(self, worker):
await worker.client.set_metadata(
self._compose_restarted_key(worker),
True,
)
def _compose_restarted_key(self, worker):
return [self.name, "restarted", worker.nanny]
class CondaInstall(PackageInstall):
"""A Worker Plugin to conda install a set of packages
This accepts a set of packages to install on all workers as well as
options to use when installing.
You can also optionally ask for the worker to restart itself after
performing this installation.
.. note::
This will increase the time it takes to start up
each worker. If possible, we recommend including the
libraries in the worker environment or image. This is
primarily intended for experimentation and debugging.
Parameters
----------
packages
A list of packages (with optional versions) to install using conda
conda_options
Additional options to pass to conda
restart
Whether or not to restart the worker after installing the packages
Only functions if the worker has an attached nanny process
Examples
--------
>>> from dask.distributed import CondaInstall
>>> plugin = CondaInstall(packages=["scikit-learn"], conda_options=["--update-deps"])
>>> client.register_worker_plugin(plugin)
See Also
--------
PackageInstall
PipInstall
"""
INSTALLER = "conda"
conda_options: list[str]
def __init__(
self,
packages: list[str],
conda_options: list[str] | None = None,
restart: bool = False,
):
super().__init__(packages, restart=restart)
self.conda_options = conda_options or []
def install(self) -> None:
try:
from conda.cli.python_api import Commands, run_command
except ModuleNotFoundError as e: # pragma: nocover
msg = (
"conda install failed because conda could not be found. "
"Please make sure that conda is installed."
)
logger.error(msg)
raise RuntimeError(msg) from e
try:
_, stderr, returncode = run_command(
Commands.INSTALL, self.conda_options + self.packages
)
except Exception as e:
msg = "conda install failed"
logger.error(msg)
raise RuntimeError(msg) from e
if returncode != 0:
msg = f"conda install failed with '{stderr.decode().strip()}'"
logger.error(msg)
raise RuntimeError(msg)
class PipInstall(PackageInstall):
"""A Worker Plugin to pip install a set of packages
This accepts a set of packages to install on all workers as well as
options to use when installing.
You can also optionally ask for the worker to restart itself after
performing this installation.
.. note::
This will increase the time it takes to start up
each worker. If possible, we recommend including the
libraries in the worker environment or image. This is
primarily intended for experimentation and debugging.
Parameters
----------
packages
A list of packages (with optional versions) to install using pip
pip_options
Additional options to pass to pip
restart
Whether or not to restart the worker after installing the packages
Only functions if the worker has an attached nanny process
Examples
--------
>>> from dask.distributed import PipInstall
>>> plugin = PipInstall(packages=["scikit-learn"], pip_options=["--upgrade"])
>>> client.register_worker_plugin(plugin)
See Also
--------
PackageInstall
CondaInstall
"""
INSTALLER = "pip"
pip_options: list[str]
def __init__(
self,
packages: list[str],
pip_options: list[str] | None = None,
restart: bool = False,
):
super().__init__(packages, restart=restart)
self.pip_options = pip_options or []
def install(self) -> None:
proc = subprocess.Popen(
[sys.executable, "-m", "pip", "install"] + self.pip_options + self.packages,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
_, stderr = proc.communicate()
returncode = proc.wait()
if returncode != 0:
msg = f"pip install failed with '{stderr.decode().strip()}'"
logger.error(msg)
raise RuntimeError(msg)
# Adapted from https://github.com/dask/distributed/issues/3560#issuecomment-596138522
class UploadFile(WorkerPlugin):
"""A WorkerPlugin to upload a local file to workers.
Parameters
----------
filepath: str
A path to the file (.py, egg, or zip) to upload
Examples
--------
>>> from distributed.diagnostics.plugin import UploadFile
>>> client.register_worker_plugin(UploadFile("/path/to/file.py")) # doctest: +SKIP
"""
name = "upload_file"
def __init__(self, filepath):
"""
Initialize the plugin by reading in the data from the given file.
"""
self.filename = os.path.basename(filepath)
with open(filepath, "rb") as f:
self.data = f.read()
async def setup(self, worker):
response = await worker.upload_file(
filename=self.filename, data=self.data, load=True
)
assert len(self.data) == response["nbytes"]
class Environ(NannyPlugin):
restart = True
def __init__(self, environ: dict | None = None):
environ = environ or {}
self.environ = {k: str(v) for k, v in environ.items()}
async def setup(self, nanny):
nanny.env.update(self.environ)
class UploadDirectory(NannyPlugin):
"""A NannyPlugin to upload a local file to workers.
Parameters
----------
path: str
A path to the directory to upload
Examples
--------
>>> from distributed.diagnostics.plugin import UploadDirectory
>>> client.register_worker_plugin(UploadDirectory("/path/to/directory"), nanny=True) # doctest: +SKIP
"""
def __init__(
self,
path,
restart=False,
update_path=False,
skip_words=(".git", ".github", ".pytest_cache", "tests", "docs"),
skip=(lambda fn: os.path.splitext(fn)[1] == ".pyc",),
):
"""
Initialize the plugin by reading in the data from the given file.
"""
path = os.path.expanduser(path)
self.path = os.path.split(path)[-1]
self.restart = restart
self.update_path = update_path
self.name = "upload-directory-" + os.path.split(path)[-1]
with tmpfile(extension="zip") as fn:
with zipfile.ZipFile(fn, "w", zipfile.ZIP_DEFLATED) as z:
for root, dirs, files in os.walk(path):
for file in files:
filename = os.path.join(root, file)
if any(predicate(filename) for predicate in skip):
continue
dirs = filename.split(os.sep)
if any(word in dirs for word in skip_words):
continue
archive_name = os.path.relpath(
os.path.join(root, file), os.path.join(path, "..")
)
z.write(filename, archive_name)
with open(fn, "rb") as f:
self.data = f.read()
async def setup(self, nanny):
fn = os.path.join(nanny.local_directory, f"tmp-{uuid.uuid4()}.zip")
with open(fn, "wb") as f:
f.write(self.data)
import zipfile
with zipfile.ZipFile(fn) as z:
z.extractall(path=nanny.local_directory)
if self.update_path:
path = os.path.join(nanny.local_directory, self.path)
if path not in sys.path:
sys.path.insert(0, path)
os.remove(fn)
class forward_stream:
def __init__(self, stream, worker):
self._worker = worker
self._original_methods = {}
self._stream = getattr(sys, stream)
if stream == "stdout":
self._file = 1
elif stream == "stderr":
self._file = 2
else:
raise ValueError(
f"Expected stream to be 'stdout' or 'stderr'; got '{stream}'"
)
self._file = 1 if stream == "stdout" else 2
self._buffer = []
def _write(self, write_fn, data):
self._forward(data)
write_fn(data)
def _forward(self, data):
self._buffer.append(data)
# Mimic line buffering
if "\n" in data or "\r" in data:
self._send()
def _send(self):
msg = {"args": self._buffer, "file": self._file, "sep": "", "end": ""}
self._worker.log_event("print", msg)
self._buffer = []
def _flush(self, flush_fn):
self._send()
flush_fn()
def _close(self, close_fn):
self._send()
close_fn()
def _intercept(self, method_name, interceptor):
original_method = getattr(self._stream, method_name)
self._original_methods[method_name] = original_method
setattr(
self._stream, method_name, functools.partial(interceptor, original_method)
)
def __enter__(self):
self._intercept("write", self._write)
self._intercept("flush", self._flush)
self._intercept("close", self._close)
return self._stream
def __exit__(self, exc_type, exc_value, traceback):
self._stream.flush()
for attr, original in self._original_methods.items():
setattr(self._stream, attr, original)
self._original_methods = {}
class ForwardOutput(WorkerPlugin):
"""A Worker Plugin that forwards ``stdout`` and ``stderr`` from workers to clients
This plugin forwards all output sent to ``stdout`` and ``stderr` on all workers
to all clients where it is written to the respective streams. Analogous to the
terminal, this plugin uses line buffering. To ensure that an output is written
without a newline, make sure to flush the stream.
.. warning::
Using this plugin will forward **all** output in ``stdout`` and ``stderr`` from
every worker to every client. If the output is very chatty, this will add
significant strain on the scheduler. Proceed with caution!
Examples
--------
>>> from dask.distributed import ForwardOutput
>>> plugin = ForwardOutput()
>>> client.register_worker_plugin(plugin)
"""
def setup(self, worker):
self._exit_stack = contextlib.ExitStack()
self._exit_stack.enter_context(forward_stream("stdout", worker=worker))
self._exit_stack.enter_context(forward_stream("stderr", worker=worker))
def teardown(self, worker):
self._exit_stack.close()
|