File: plugin.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (696 lines) | stat: -rw-r--r-- 22,023 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
from __future__ import annotations

import abc
import contextlib
import functools
import logging
import os
import socket
import subprocess
import sys
import uuid
import zipfile
from collections.abc import Awaitable
from typing import TYPE_CHECKING, Any, ClassVar

from dask.utils import funcname, tmpfile

if TYPE_CHECKING:
    from distributed.scheduler import Scheduler, TaskStateState  # circular imports

logger = logging.getLogger(__name__)


class SchedulerPlugin:
    """Interface to extend the Scheduler

    The scheduler operates by triggering and responding to events like
    ``task_finished``, ``update_graph``, ``task_erred``, etc..

    A plugin enables custom code to run at each of those same events.  The
    scheduler will run the analogous methods on this class when each event is
    triggered.  This runs user code within the scheduler thread that can
    perform arbitrary operations in synchrony with the scheduler itself.

    Plugins are often used for diagnostics and measurement, but have full
    access to the scheduler and could in principle affect core scheduling.

    To implement a plugin:

    1. subclass this class
    2. override some of its methods
    3. add the plugin to the scheduler with ``Scheduler.add_plugin(myplugin)``.

    Examples
    --------
    >>> class Counter(SchedulerPlugin):
    ...     def __init__(self):
    ...         self.counter = 0
    ...
    ...     def transition(self, key, start, finish, *args, **kwargs):
    ...         if start == 'processing' and finish == 'memory':
    ...             self.counter += 1
    ...
    ...     def restart(self, scheduler):
    ...         self.counter = 0

    >>> plugin = Counter()
    >>> scheduler.add_plugin(plugin)  # doctest: +SKIP
    """

    async def start(self, scheduler: Scheduler) -> None:
        """Run when the scheduler starts up

        This runs at the end of the Scheduler startup process
        """

    async def before_close(self) -> None:
        """Runs prior to any Scheduler shutdown logic"""

    async def close(self) -> None:
        """Run when the scheduler closes down

        This runs at the beginning of the Scheduler shutdown process, but after
        workers have been asked to shut down gracefully
        """

    def update_graph(
        self,
        scheduler: Scheduler,
        keys: set[str],
        restrictions: dict[str, float],
        **kwargs: Any,
    ) -> None:
        """Run when a new graph / tasks enter the scheduler"""

    def restart(self, scheduler: Scheduler) -> None:
        """Run when the scheduler restarts itself"""

    def transition(
        self,
        key: str,
        start: TaskStateState,
        finish: TaskStateState,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        """Run whenever a task changes state

        Parameters
        ----------
        key : string
        start : string
            Start state of the transition.
            One of released, waiting, processing, memory, error.
        finish : string
            Final state of the transition.
        *args, **kwargs :
            More options passed when transitioning
            This may include worker ID, compute time, etc.
        """

    def add_worker(self, scheduler: Scheduler, worker: str) -> None | Awaitable[None]:
        """Run when a new worker enters the cluster"""

    def remove_worker(
        self, scheduler: Scheduler, worker: str
    ) -> None | Awaitable[None]:
        """Run when a worker leaves the cluster"""

    def add_client(self, scheduler: Scheduler, client: str) -> None:
        """Run when a new client connects"""

    def remove_client(self, scheduler: Scheduler, client: str) -> None:
        """Run when a client disconnects"""

    def log_event(self, topic: str, msg: Any) -> None:
        """Run when an event is logged"""


class WorkerPlugin:
    """Interface to extend the Worker

    A worker plugin enables custom code to run at different stages of the Workers'
    lifecycle: at setup, during task state transitions, when a task or dependency
    is released, and at teardown.

    A plugin enables custom code to run at each of step of a Workers's life. Whenever such
    an event happens, the corresponding method on this class will be called. Note that the
    user code always runs within the Worker's main thread.

    To implement a plugin implement some of the methods of this class and register
    the plugin to your client in order to have it attached to every existing and
    future workers with ``Client.register_worker_plugin``.

    Examples
    --------
    >>> class ErrorLogger(WorkerPlugin):
    ...     def __init__(self, logger):
    ...         self.logger = logger
    ...
    ...     def setup(self, worker):
    ...         self.worker = worker
    ...
    ...     def transition(self, key, start, finish, *args, **kwargs):
    ...         if finish == 'error':
    ...             ts = self.worker.tasks[key]
    ...             exc_info = (type(ts.exception), ts.exception, ts.traceback)
    ...             self.logger.error(
    ...                 "Error during computation of '%s'.", key,
    ...                 exc_info=exc_info
    ...             )

    >>> import logging
    >>> plugin = ErrorLogger(logging)
    >>> client.register_worker_plugin(plugin)  # doctest: +SKIP
    """

    def setup(self, worker):
        """
        Run when the plugin is attached to a worker. This happens when the plugin is registered
        and attached to existing workers, or when a worker is created after the plugin has been
        registered.
        """

    def teardown(self, worker):
        """Run when the worker to which the plugin is attached to is closed"""

    def transition(self, key, start, finish, **kwargs):
        """
        Throughout the lifecycle of a task (see :doc:`Worker <worker>`), Workers are
        instructed by the scheduler to compute certain tasks, resulting in transitions
        in the state of each task. The Worker owning the task is then notified of this
        state transition.

        Whenever a task changes its state, this method will be called.

        Parameters
        ----------
        key : string
        start : string
            Start state of the transition.
            One of waiting, ready, executing, long-running, memory, error.
        finish : string
            Final state of the transition.
        kwargs : More options passed when transitioning
        """


class NannyPlugin:
    """Interface to extend the Nanny

    A worker plugin enables custom code to run at different stages of the Workers'
    lifecycle. A nanny plugin does the same thing, but benefits from being able
    to run code before the worker is started, or to restart the worker if
    necessary.

    To implement a plugin implement some of the methods of this class and register
    the plugin to your client in order to have it attached to every existing and
    future nanny by passing ``nanny=True`` to
    :meth:`Client.register_worker_plugin<distributed.Client.register_worker_plugin>`.

    The ``restart`` attribute is used to control whether or not a running ``Worker``
    needs to be restarted when registering the plugin.

    See Also
    --------
    WorkerPlugin
    SchedulerPlugin
    """

    restart = False

    def setup(self, nanny):
        """
        Run when the plugin is attached to a nanny. This happens when the plugin is registered
        and attached to existing nannies, or when a nanny is created after the plugin has been
        registered.
        """

    def teardown(self, nanny):
        """Run when the nanny to which the plugin is attached to is closed"""


def _get_plugin_name(plugin: SchedulerPlugin | WorkerPlugin | NannyPlugin) -> str:
    """Return plugin name.

    If plugin has no name attribute a random name is used.

    """
    if hasattr(plugin, "name"):
        return plugin.name
    else:
        return funcname(type(plugin)) + "-" + str(uuid.uuid4())


class PackageInstall(WorkerPlugin, abc.ABC):
    """Abstract parent class for a worker plugin to install a set of packages

    This accepts a set of packages to install on all workers.
    You can also optionally ask for the worker to restart itself after
    performing this installation.

    .. note::

       This will increase the time it takes to start up
       each worker. If possible, we recommend including the
       libraries in the worker environment or image. This is
       primarily intended for experimentation and debugging.

    Parameters
    ----------
    packages
        A list of packages (with optional versions) to install
    restart
        Whether or not to restart the worker after installing the packages
        Only functions if the worker has an attached nanny process

    See Also
    --------
    CondaInstall
    PipInstall
    """

    INSTALLER: ClassVar[str]

    name: str
    packages: list[str]
    restart: bool

    def __init__(
        self,
        packages: list[str],
        restart: bool,
    ):
        self.packages = packages
        self.restart = restart
        self.name = f"{self.INSTALLER}-install-{uuid.uuid4()}"

    async def setup(self, worker):
        from distributed.semaphore import Semaphore

        async with (
            await Semaphore(max_leases=1, name=socket.gethostname(), register=True)
        ):
            if not await self._is_installed(worker):
                logger.info(
                    "%s installing the following packages: %s",
                    self.INSTALLER,
                    self.packages,
                )
                await self._set_installed(worker)
                self.install()
            else:
                logger.info(
                    "The following packages have already been installed: %s",
                    self.packages,
                )

            if self.restart and worker.nanny and not await self._is_restarted(worker):
                logger.info("Restarting worker to refresh interpreter.")
                await self._set_restarted(worker)
                worker.loop.add_callback(
                    worker.close_gracefully, restart=True, reason=f"{self.name}-setup"
                )

    @abc.abstractmethod
    def install(self) -> None:
        """Install the requested packages"""

    async def _is_installed(self, worker):
        return await worker.client.get_metadata(
            self._compose_installed_key(), default=False
        )

    async def _set_installed(self, worker):
        await worker.client.set_metadata(
            self._compose_installed_key(),
            True,
        )

    def _compose_installed_key(self):
        return [
            self.name,
            "installed",
            socket.gethostname(),
        ]

    async def _is_restarted(self, worker):
        return await worker.client.get_metadata(
            self._compose_restarted_key(worker),
            default=False,
        )

    async def _set_restarted(self, worker):
        await worker.client.set_metadata(
            self._compose_restarted_key(worker),
            True,
        )

    def _compose_restarted_key(self, worker):
        return [self.name, "restarted", worker.nanny]


class CondaInstall(PackageInstall):
    """A Worker Plugin to conda install a set of packages

    This accepts a set of packages to install on all workers as well as
    options to use when installing.
    You can also optionally ask for the worker to restart itself after
    performing this installation.

    .. note::

       This will increase the time it takes to start up
       each worker. If possible, we recommend including the
       libraries in the worker environment or image. This is
       primarily intended for experimentation and debugging.

    Parameters
    ----------
    packages
        A list of packages (with optional versions) to install using conda
    conda_options
        Additional options to pass to conda
    restart
        Whether or not to restart the worker after installing the packages
        Only functions if the worker has an attached nanny process

    Examples
    --------
    >>> from dask.distributed import CondaInstall
    >>> plugin = CondaInstall(packages=["scikit-learn"], conda_options=["--update-deps"])

    >>> client.register_worker_plugin(plugin)

    See Also
    --------
    PackageInstall
    PipInstall
    """

    INSTALLER = "conda"

    conda_options: list[str]

    def __init__(
        self,
        packages: list[str],
        conda_options: list[str] | None = None,
        restart: bool = False,
    ):
        super().__init__(packages, restart=restart)
        self.conda_options = conda_options or []

    def install(self) -> None:
        try:
            from conda.cli.python_api import Commands, run_command
        except ModuleNotFoundError as e:  # pragma: nocover
            msg = (
                "conda install failed because conda could not be found. "
                "Please make sure that conda is installed."
            )
            logger.error(msg)
            raise RuntimeError(msg) from e
        try:
            _, stderr, returncode = run_command(
                Commands.INSTALL, self.conda_options + self.packages
            )
        except Exception as e:
            msg = "conda install failed"
            logger.error(msg)
            raise RuntimeError(msg) from e

        if returncode != 0:
            msg = f"conda install failed with '{stderr.decode().strip()}'"
            logger.error(msg)
            raise RuntimeError(msg)


class PipInstall(PackageInstall):
    """A Worker Plugin to pip install a set of packages

    This accepts a set of packages to install on all workers as well as
    options to use when installing.
    You can also optionally ask for the worker to restart itself after
    performing this installation.

    .. note::

       This will increase the time it takes to start up
       each worker. If possible, we recommend including the
       libraries in the worker environment or image. This is
       primarily intended for experimentation and debugging.

    Parameters
    ----------
    packages
        A list of packages (with optional versions) to install using pip
    pip_options
        Additional options to pass to pip
    restart
        Whether or not to restart the worker after installing the packages
        Only functions if the worker has an attached nanny process

    Examples
    --------
    >>> from dask.distributed import PipInstall
    >>> plugin = PipInstall(packages=["scikit-learn"], pip_options=["--upgrade"])

    >>> client.register_worker_plugin(plugin)

    See Also
    --------
    PackageInstall
    CondaInstall
    """

    INSTALLER = "pip"

    pip_options: list[str]

    def __init__(
        self,
        packages: list[str],
        pip_options: list[str] | None = None,
        restart: bool = False,
    ):
        super().__init__(packages, restart=restart)
        self.pip_options = pip_options or []

    def install(self) -> None:
        proc = subprocess.Popen(
            [sys.executable, "-m", "pip", "install"] + self.pip_options + self.packages,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )
        _, stderr = proc.communicate()
        returncode = proc.wait()
        if returncode != 0:
            msg = f"pip install failed with '{stderr.decode().strip()}'"
            logger.error(msg)
            raise RuntimeError(msg)


# Adapted from https://github.com/dask/distributed/issues/3560#issuecomment-596138522
class UploadFile(WorkerPlugin):
    """A WorkerPlugin to upload a local file to workers.

    Parameters
    ----------
    filepath: str
        A path to the file (.py, egg, or zip) to upload

    Examples
    --------
    >>> from distributed.diagnostics.plugin import UploadFile

    >>> client.register_worker_plugin(UploadFile("/path/to/file.py"))  # doctest: +SKIP
    """

    name = "upload_file"

    def __init__(self, filepath):
        """
        Initialize the plugin by reading in the data from the given file.
        """
        self.filename = os.path.basename(filepath)
        with open(filepath, "rb") as f:
            self.data = f.read()

    async def setup(self, worker):
        response = await worker.upload_file(
            filename=self.filename, data=self.data, load=True
        )
        assert len(self.data) == response["nbytes"]


class Environ(NannyPlugin):
    restart = True

    def __init__(self, environ: dict | None = None):
        environ = environ or {}
        self.environ = {k: str(v) for k, v in environ.items()}

    async def setup(self, nanny):
        nanny.env.update(self.environ)


class UploadDirectory(NannyPlugin):
    """A NannyPlugin to upload a local file to workers.

    Parameters
    ----------
    path: str
        A path to the directory to upload

    Examples
    --------
    >>> from distributed.diagnostics.plugin import UploadDirectory
    >>> client.register_worker_plugin(UploadDirectory("/path/to/directory"), nanny=True)  # doctest: +SKIP
    """

    def __init__(
        self,
        path,
        restart=False,
        update_path=False,
        skip_words=(".git", ".github", ".pytest_cache", "tests", "docs"),
        skip=(lambda fn: os.path.splitext(fn)[1] == ".pyc",),
    ):
        """
        Initialize the plugin by reading in the data from the given file.
        """
        path = os.path.expanduser(path)
        self.path = os.path.split(path)[-1]
        self.restart = restart
        self.update_path = update_path

        self.name = "upload-directory-" + os.path.split(path)[-1]

        with tmpfile(extension="zip") as fn:
            with zipfile.ZipFile(fn, "w", zipfile.ZIP_DEFLATED) as z:
                for root, dirs, files in os.walk(path):
                    for file in files:
                        filename = os.path.join(root, file)
                        if any(predicate(filename) for predicate in skip):
                            continue
                        dirs = filename.split(os.sep)
                        if any(word in dirs for word in skip_words):
                            continue

                        archive_name = os.path.relpath(
                            os.path.join(root, file), os.path.join(path, "..")
                        )
                        z.write(filename, archive_name)

            with open(fn, "rb") as f:
                self.data = f.read()

    async def setup(self, nanny):
        fn = os.path.join(nanny.local_directory, f"tmp-{uuid.uuid4()}.zip")
        with open(fn, "wb") as f:
            f.write(self.data)

        import zipfile

        with zipfile.ZipFile(fn) as z:
            z.extractall(path=nanny.local_directory)

        if self.update_path:
            path = os.path.join(nanny.local_directory, self.path)
            if path not in sys.path:
                sys.path.insert(0, path)

        os.remove(fn)


class forward_stream:
    def __init__(self, stream, worker):
        self._worker = worker
        self._original_methods = {}
        self._stream = getattr(sys, stream)
        if stream == "stdout":
            self._file = 1
        elif stream == "stderr":
            self._file = 2
        else:
            raise ValueError(
                f"Expected stream to be 'stdout' or 'stderr'; got '{stream}'"
            )

        self._file = 1 if stream == "stdout" else 2
        self._buffer = []

    def _write(self, write_fn, data):
        self._forward(data)
        write_fn(data)

    def _forward(self, data):
        self._buffer.append(data)
        # Mimic line buffering
        if "\n" in data or "\r" in data:
            self._send()

    def _send(self):
        msg = {"args": self._buffer, "file": self._file, "sep": "", "end": ""}
        self._worker.log_event("print", msg)
        self._buffer = []

    def _flush(self, flush_fn):
        self._send()
        flush_fn()

    def _close(self, close_fn):
        self._send()
        close_fn()

    def _intercept(self, method_name, interceptor):
        original_method = getattr(self._stream, method_name)
        self._original_methods[method_name] = original_method
        setattr(
            self._stream, method_name, functools.partial(interceptor, original_method)
        )

    def __enter__(self):
        self._intercept("write", self._write)
        self._intercept("flush", self._flush)
        self._intercept("close", self._close)
        return self._stream

    def __exit__(self, exc_type, exc_value, traceback):
        self._stream.flush()
        for attr, original in self._original_methods.items():
            setattr(self._stream, attr, original)
        self._original_methods = {}


class ForwardOutput(WorkerPlugin):
    """A Worker Plugin that forwards ``stdout`` and ``stderr`` from workers to clients

    This plugin forwards all output sent to ``stdout`` and ``stderr` on all workers
    to all clients where it is written to the respective streams. Analogous to the
    terminal, this plugin uses line buffering. To ensure that an output is written
    without a newline, make sure to flush the stream.

    .. warning::

        Using this plugin will forward **all** output in ``stdout`` and ``stderr`` from
        every worker to every client. If the output is very chatty, this will add
        significant strain on the scheduler. Proceed with caution!

    Examples
    --------
    >>> from dask.distributed import ForwardOutput
    >>> plugin = ForwardOutput()

    >>> client.register_worker_plugin(plugin)
    """

    def setup(self, worker):
        self._exit_stack = contextlib.ExitStack()
        self._exit_stack.enter_context(forward_stream("stdout", worker=worker))
        self._exit_stack.enter_context(forward_stream("stderr", worker=worker))

    def teardown(self, worker):
        self._exit_stack.close()