1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
from __future__ import annotations
import logging
from collections.abc import Iterator
from time import time
from typing import ClassVar
import prometheus_client
from prometheus_client.core import CounterMetricFamily, GaugeMetricFamily, Metric
from distributed.http.prometheus import PrometheusCollector
from distributed.http.utils import RequestHandler
from distributed.worker import Worker
logger = logging.getLogger("distributed.prometheus.worker")
class WorkerMetricCollector(PrometheusCollector):
server: Worker
def __init__(self, server: Worker):
super().__init__(server)
self.subsystem = "worker"
self.crick_available = True
try:
import crick # noqa: F401
except ImportError:
self.crick_available = False
logger.debug(
"Not all prometheus metrics available are exported. "
"Digest-based metrics require crick to be installed."
)
def collect(self) -> Iterator[Metric]:
ws = self.server.state
tasks = GaugeMetricFamily(
self.build_name("tasks"),
"Number of tasks at worker.",
labels=["state"],
)
for k, n in ws.task_counts.items():
if k == "memory" and hasattr(self.server.data, "slow"):
n_spilled = len(self.server.data.slow)
tasks.add_metric(["memory"], n - n_spilled)
tasks.add_metric(["disk"], n_spilled)
else:
tasks.add_metric([k], n)
yield tasks
yield GaugeMetricFamily(
self.build_name("concurrent_fetch_requests"),
(
"Deprecated: This metric has been renamed to transfer_incoming_count.\n"
"Number of open fetch requests to other workers"
),
value=ws.transfer_incoming_count,
)
yield GaugeMetricFamily(
self.build_name("threads"),
"Number of worker threads",
value=ws.nthreads,
)
yield GaugeMetricFamily(
self.build_name("latency"),
"Latency of worker connection",
unit="seconds",
value=self.server.latency,
)
try:
spilled_memory, spilled_disk = self.server.data.spilled_total # type: ignore
except AttributeError:
spilled_memory, spilled_disk = 0, 0 # spilling is disabled
process_memory = self.server.monitor.get_process_memory()
managed_memory = min(process_memory, ws.nbytes - spilled_memory)
memory = GaugeMetricFamily(
self.build_name("memory_bytes"),
"Memory breakdown",
labels=["type"],
)
memory.add_metric(["managed"], managed_memory)
memory.add_metric(["unmanaged"], process_memory - managed_memory)
memory.add_metric(["spilled"], spilled_disk)
yield memory
yield GaugeMetricFamily(
self.build_name("transfer_incoming_bytes"),
"Total size of open data transfers from other workers",
value=ws.transfer_incoming_bytes,
)
yield GaugeMetricFamily(
self.build_name("transfer_incoming_count"),
"Number of open data transfers from other workers",
value=ws.transfer_incoming_count,
)
yield CounterMetricFamily(
self.build_name("transfer_incoming_count_total"),
(
"Total number of data transfers from other workers "
"since the worker was started"
),
value=ws.transfer_incoming_count_total,
)
yield GaugeMetricFamily(
self.build_name("transfer_outgoing_bytes"),
"Total size of open data transfers to other workers",
value=self.server.transfer_outgoing_bytes,
)
yield GaugeMetricFamily(
self.build_name("transfer_outgoing_count"),
"Number of open data transfers to other workers",
value=self.server.transfer_outgoing_count,
)
yield CounterMetricFamily(
self.build_name("transfer_outgoing_bytes_total"),
(
"Total size of data transfers to other workers "
"since the worker was started (including in-progress and failed transfers)"
),
value=self.server.transfer_outgoing_bytes_total,
)
yield CounterMetricFamily(
self.build_name("transfer_outgoing_count_total"),
(
"Total number of data transfers to other workers "
"since the worker was started"
),
value=self.server.transfer_outgoing_count_total,
)
yield from self.collect_crick()
yield from self.collect_spillbuffer()
now = time()
max_tick_duration = max(
self.server.digests_max["tick_duration"],
now - self.server._last_tick,
)
yield GaugeMetricFamily(
self.build_name("tick_duration_maximum"),
"Maximum tick duration observed since Prometheus last scraped metrics",
unit="seconds",
value=max_tick_duration,
)
yield CounterMetricFamily(
self.build_name("tick_count"),
"Total number of ticks observed since the server started",
value=self.server._tick_counter,
)
# This duplicates spill_time_total; however the breakdown is different
evloop_blocked_total = CounterMetricFamily(
self.build_name("event_loop_blocked_time"),
"Total time during which the worker's event loop was blocked "
"by spill/unspill activity since the latest worker reset",
unit="seconds",
labels=["cause"],
)
# This is typically higher than spill_time_per_key_max, as multiple keys can be
# spilled/unspilled without yielding the event loop
evloop_blocked_max = GaugeMetricFamily(
self.build_name("event_loop_blocked_time_max"),
"Maximum contiguous time during which the worker's event loop was blocked "
"by spill/unspill activity since the previous Prometheus poll",
unit="seconds",
labels=["cause"],
)
for family, digest in (
(evloop_blocked_total, self.server.digests_total),
(evloop_blocked_max, self.server.digests_max),
):
for family_label, digest_label in (
("disk-write-target", "disk-write-target-duration"),
("disk-write-spill", "disk-write-spill-duration"),
("disk-read-execute", "disk-load-duration"),
("disk-read-get-data", "get-data-load-duration"),
):
family.add_metric([family_label], digest[digest_label])
yield evloop_blocked_total
yield evloop_blocked_max
self.server.digests_max.clear()
def collect_crick(self) -> Iterator[Metric]:
# All metrics using digests require crick to be installed.
# The following metrics will export NaN, if the corresponding digests are None
if not self.crick_available:
return
yield GaugeMetricFamily(
self.build_name("tick_duration_median"),
"Median tick duration at worker",
unit="seconds",
value=self.server.digests["tick-duration"].components[1].quantile(50),
)
yield GaugeMetricFamily(
self.build_name("task_duration_median"),
"Median task runtime at worker",
unit="seconds",
value=self.server.digests["task-duration"].components[1].quantile(50),
)
yield GaugeMetricFamily(
self.build_name("transfer_bandwidth_median"),
"Bandwidth for transfer at worker",
unit="bytes",
value=self.server.digests["transfer-bandwidth"].components[1].quantile(50),
)
def collect_spillbuffer(self) -> Iterator[Metric]:
"""SpillBuffer-specific metrics.
Additionally, you can obtain derived metrics as follows:
cache hit ratios:
by keys = spill_count.memory_read / (spill_count.memory_read + spill_count.disk_read)
by bytes = spill_bytes.memory_read / (spill_bytes.memory_read + spill_bytes.disk_read)
mean times per key:
pickle = spill_time.pickle / spill_count.disk_write
write = spill_time.disk_write / spill_count.disk_write
unpickle = spill_time.unpickle / spill_count.disk_read
read = spill_time.disk_read / spill_count.disk_read
mean bytes per key:
write = spill_bytes.disk_write / spill_count.disk_write
read = spill_bytes.disk_read / spill_count.disk_read
mean bytes per second:
write = spill_bytes.disk_write / spill_time.disk_write
read = spill_bytes.disk_read / spill_time.disk_read
"""
try:
get_metrics = self.server.data.get_metrics # type: ignore
except AttributeError:
return # spilling is disabled
metrics = get_metrics()
total_bytes = CounterMetricFamily(
self.build_name("spill_bytes"),
"Total size of memory and disk accesses caused by managed data "
"since the latest worker restart",
labels=["activity"],
)
# Note: memory_read is used to calculate cache hit ratios (see docstring)
for k in ("memory_read", "disk_read", "disk_write"):
total_bytes.add_metric([k], metrics[f"{k}_bytes_total"])
yield total_bytes
total_counts = CounterMetricFamily(
self.build_name("spill_count"),
"Total number of memory and disk accesses caused by managed data "
"since the latest worker restart",
labels=["activity"],
)
# Note: memory_read is used to calculate cache hit ratios (see docstring)
for k in ("memory_read", "disk_read", "disk_write"):
total_counts.add_metric([k], metrics[f"{k}_count_total"])
yield total_counts
total_times = CounterMetricFamily(
self.build_name("spill_time"),
"Total time spent spilling/unspilling since the latest worker restart",
unit="seconds",
labels=["activity"],
)
for k in ("pickle", "disk_write", "disk_read", "unpickle"):
total_times.add_metric([k], metrics[f"{k}_time_total"])
yield total_times
class PrometheusHandler(RequestHandler):
_collector: ClassVar[WorkerMetricCollector | None] = None
def __init__(self, *args, dask_server=None, **kwargs):
super().__init__(*args, dask_server=dask_server, **kwargs)
if PrometheusHandler._collector:
# Especially during testing, multiple workers are started
# sequentially in the same python process
PrometheusHandler._collector.server = self.server
return
PrometheusHandler._collector = WorkerMetricCollector(self.server)
# Register collector
prometheus_client.REGISTRY.register(PrometheusHandler._collector)
def get(self):
self.write(prometheus_client.generate_latest())
self.set_header("Content-Type", "text/plain; version=0.0.4")
|