File: test_highlevelgraph.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (188 lines) | stat: -rw-r--r-- 5,008 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import annotations

import ast

import pytest

import dask
import dask.array as da
import dask.dataframe as dd

from distributed.diagnostics import SchedulerPlugin
from distributed.utils_test import gen_cluster

np = pytest.importorskip("numpy")
pd = pytest.importorskip("pandas")

from numpy.testing import assert_array_equal


@gen_cluster(client=True)
async def test_combo_of_layer_types(c, s, a, b):
    """Check pack/unpack of a HLG that has everything!"""

    def add(x, y, z, extra_arg):
        return x + y + z + extra_arg

    y = c.submit(lambda x: x, 2)
    z = c.submit(lambda x: x, 3)
    x = da.blockwise(
        add,
        "x",
        da.zeros((3,), chunks=(1,)),
        "x",
        da.ones((3,), chunks=(1,)),
        "x",
        y,
        None,
        concatenate=False,
        dtype=int,
        extra_arg=z,
    )

    df = dd.from_pandas(pd.DataFrame({"a": np.arange(3)}), npartitions=3)
    df = df.shuffle("a", shuffle="tasks")
    df = df["a"].to_dask_array()

    res = x.sum() + df.sum()
    res = await c.compute(res, optimize_graph=False)
    assert res == 21


@gen_cluster(client=True)
async def test_blockwise(c, s, a, b):
    """Check pack/unpack of blockwise layer"""

    def add(x, y, z, extra_arg):
        return x + y + z + extra_arg

    y = c.submit(lambda x: x, 10)
    z = c.submit(lambda x: x, 3)
    x = da.blockwise(
        add,
        "x",
        da.zeros((3,), chunks=(1,)),
        "x",
        da.ones((3,), chunks=(1,)),
        "x",
        y,
        None,
        concatenate=False,
        dtype=int,
        extra_arg=z,
    )
    res = await c.compute(x.sum(), optimize_graph=False)
    assert res == 42


@gen_cluster(client=True)
async def test_shuffle(c, s, a, b):
    """Check pack/unpack of a shuffled dataframe"""

    df = dd.from_pandas(
        pd.DataFrame(
            {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)}
        ),
        npartitions=5,
    )
    df = df.shuffle("a", shuffle="tasks", max_branch=2)
    df = df["a"] + df["b"]
    res = await c.compute(df, optimize_graph=False)
    assert res.dtypes == np.float64
    assert (res == 10.0).all()


class ExampleAnnotationPlugin(SchedulerPlugin):
    def __init__(self, priority_fn=None, qux="", resource="", retries=0):
        self.priority_fn = priority_fn or (lambda k: 0)
        self.qux = qux
        self.resource = resource
        self.retries = retries

        self.priority_matches = 0
        self.resource_matches = 0
        self.retry_matches = 0
        self.qux_matches = 0

    def update_graph(self, scheduler, dsk=None, keys=None, restrictions=None, **kwargs):
        annots = kwargs["annotations"]

        if "priority" in annots:
            self.priority_matches = sum(
                int(self.priority_fn(ast.literal_eval(k)) == p)
                for k, p in annots["priority"].items()
            )

        if "qux" in annots:
            self.qux_matches = sum(int(self.qux == v) for v in annots["qux"].values())

        if "custom_resource" in annots:
            self.resource_matches = sum(
                int(self.resource == v) for v in annots["custom_resource"].values()
            )

        if "retries" in annots:
            self.retry_matches = sum(
                int(self.retries == v) for v in annots["retries"].values()
            )


@gen_cluster(client=True)
async def test_array_annotations(c, s, a, b):
    def fn(k):
        return k[1] * 5 + k[2]

    qux = "baz"
    resource = "widget"

    plugin = ExampleAnnotationPlugin(priority_fn=fn, qux=qux, resource=resource)
    s.add_plugin(plugin)

    assert plugin in s.plugins.values()

    with dask.annotate(priority=fn, qux=qux):
        A = da.ones((10, 10), chunks=(2, 2))

    with dask.annotate(custom_resource=resource):
        B = A + 1

    with dask.config.set(optimization__fuse__active=False):
        result = await c.compute(B)

    assert_array_equal(result, 2)

    # There are annotation matches per array chunk (i.e. task)
    assert plugin.qux_matches == A.npartitions
    assert plugin.priority_matches == A.npartitions
    assert plugin.resource_matches == B.npartitions


@gen_cluster(client=True)
async def test_dataframe_annotations(c, s, a, b):
    retries = 5
    plugin = ExampleAnnotationPlugin(retries=retries)
    s.add_plugin(plugin)

    assert plugin in s.plugins.values()

    df = dd.from_pandas(
        pd.DataFrame(
            {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)}
        ),
        npartitions=5,
    )
    df = df.shuffle("a", shuffle="tasks", max_branch=2)
    acol = df["a"]
    bcol = df["b"]

    with dask.annotate(retries=retries):
        df = acol + bcol

    with dask.config.set(optimization__fuse__active=False):
        rdf = await c.compute(df)

    assert rdf.dtypes == np.float64
    assert (rdf == 10.0).all()

    # There is an annotation match per partition (i.e. task)
    assert plugin.retry_matches == df.npartitions