File: test_keras.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (28 lines) | stat: -rw-r--r-- 828 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from __future__ import annotations

import pytest

keras = pytest.importorskip("keras")
np = pytest.importorskip("numpy")

from distributed.protocol import deserialize, dumps, loads, serialize, to_serialize


def test_serialize_deserialize_model():
    from numpy.testing import assert_allclose

    model = keras.models.Sequential()
    model.add(keras.layers.Dense(5, input_dim=3))
    model.add(keras.layers.Dense(2))
    model.compile(optimizer="sgd", loss="mse")
    x = np.random.random((1, 3))
    y = np.random.random((1, 2))
    model.train_on_batch(x, y)

    loaded = deserialize(*serialize(model))
    assert_allclose(loaded.predict(x), model.predict(x))

    data = {"model": to_serialize(model)}
    frames = dumps(data)
    result = loads(frames)
    assert_allclose(result["model"].predict(x), model.predict(x))