1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
from __future__ import annotations
import asyncio
import contextlib
import logging
from collections import defaultdict
from collections.abc import Iterator
from typing import TYPE_CHECKING, Any, Generic, Sized, TypeVar
from distributed.metrics import time
from distributed.shuffle._limiter import ResourceLimiter
if TYPE_CHECKING:
import pyarrow as pa
logger = logging.getLogger("distributed.shuffle")
ShardType = TypeVar("ShardType", bound=Sized)
class ShardsBuffer(Generic[ShardType]):
"""A buffer for P2P shuffle
The objects to buffer are typically bytes belonging to certain shards.
Typically the buffer is implemented on sending and receiving end.
The buffer allows for concurrent writing and buffers shards to reduce overhead of writing.
The shards are typically provided in a format like::
{
"bucket-0": [b"shard1", b"shard2"],
"bucket-1": [b"shard1", b"shard2"],
}
Buckets typically correspond to output partitions.
If exceptions occur during writing, the buffer is automatically closed. Subsequent attempts to write will raise the same exception.
Flushing will not raise an exception. To ensure that the buffer finished successfully, please call `ShardsBuffer.raise_on_exception`
"""
shards: defaultdict[str, list[ShardType]]
sizes: defaultdict[str, int]
concurrency_limit: int
memory_limiter: ResourceLimiter | None
diagnostics: dict[str, float]
max_message_size: int
bytes_total: int
bytes_memory: int
bytes_written: int
bytes_read: int
_accepts_input: bool
_inputs_done: bool
_exception: None | Exception
_tasks: list[asyncio.Task]
_shards_available: asyncio.Condition
_flush_lock: asyncio.Lock
def __init__(
self,
memory_limiter: ResourceLimiter | None,
concurrency_limit: int = 2,
max_message_size: int = -1,
) -> None:
self._accepts_input = True
self.shards = defaultdict(list)
self.sizes = defaultdict(int)
self._exception = None
self.concurrency_limit = concurrency_limit
self._inputs_done = False
self.memory_limiter = memory_limiter
self.diagnostics: dict[str, float] = defaultdict(float)
self._tasks = [
asyncio.create_task(self._background_task())
for _ in range(concurrency_limit)
]
self._shards_available = asyncio.Condition()
self._flush_lock = asyncio.Lock()
self.max_message_size = max_message_size
self.bytes_total = 0
self.bytes_memory = 0
self.bytes_written = 0
self.bytes_read = 0
def heartbeat(self) -> dict[str, Any]:
return {
"memory": self.bytes_memory,
"total": self.bytes_total,
"buckets": len(self.shards),
"written": self.bytes_written,
"read": self.bytes_read,
"diagnostics": self.diagnostics,
"memory_limit": self.memory_limiter._maxvalue if self.memory_limiter else 0,
}
async def process(self, id: str, shards: list[pa.Table], size: int) -> None:
try:
start = time()
try:
await self._process(id, shards)
self.bytes_written += size
except Exception as e:
self._exception = e
self._inputs_done = True
stop = time()
self.diagnostics["avg_size"] = (
0.98 * self.diagnostics["avg_size"] + 0.02 * size
)
self.diagnostics["avg_duration"] = 0.98 * self.diagnostics[
"avg_duration"
] + 0.02 * (stop - start)
finally:
if self.memory_limiter:
await self.memory_limiter.decrease(size)
self.bytes_memory -= size
async def _process(self, id: str, shards: list[ShardType]) -> None:
raise NotImplementedError()
def read(self, id: str) -> ShardType:
raise NotImplementedError()
@property
def empty(self) -> bool:
return not self.shards
async def _background_task(self) -> None:
def _continue() -> bool:
return bool(self.shards or self._inputs_done)
while True:
async with self._shards_available:
await self._shards_available.wait_for(_continue)
if self._inputs_done and not self.shards:
break
part_id = max(self.sizes, key=self.sizes.__getitem__)
if self.max_message_size > 0:
size = 0
shards = []
while size < self.max_message_size:
try:
shard = self.shards[part_id].pop()
shards.append(shard)
s = len(shard)
size += s
self.sizes[part_id] -= s
except IndexError:
break
finally:
if not self.shards[part_id]:
del self.shards[part_id]
assert not self.sizes[part_id]
del self.sizes[part_id]
else:
shards = self.shards.pop(part_id)
size = self.sizes.pop(part_id)
self._shards_available.notify_all()
await self.process(part_id, shards, size)
async def write(self, data: dict[str, list[ShardType]]) -> None:
"""
Writes many objects into the local buffers, blocks until ready for more
Parameters
----------
data: dict
A dictionary mapping destinations to lists of objects that should
be written to that destination
"""
if self._exception:
raise self._exception
if not self._accepts_input or self._inputs_done:
raise RuntimeError(f"Trying to put data in closed {self}.")
if not data:
return
shards = None
size = 0
sizes = {}
for id_, shards in data.items():
size = sum(map(len, shards))
sizes[id_] = size
total_batch_size = sum(sizes.values())
self.bytes_memory += total_batch_size
self.bytes_total += total_batch_size
if self.memory_limiter:
self.memory_limiter.increase(total_batch_size)
async with self._shards_available:
for id_, shards in data.items():
self.shards[id_].extend(shards)
self.sizes[id_] += sizes[id_]
self._shards_available.notify()
if self.memory_limiter:
await self.memory_limiter.wait_for_available()
del data, shards
assert size
def raise_on_exception(self) -> None:
"""Raises an exception if something went wrong during writing"""
if self._exception:
raise self._exception
async def flush(self) -> None:
"""Wait until all writes are finished.
This closes the buffer such that no new writes are allowed
"""
async with self._flush_lock:
self._accepts_input = False
async with self._shards_available:
self._shards_available.notify_all()
await self._shards_available.wait_for(
lambda: not self.shards or self._exception or self._inputs_done
)
self._inputs_done = True
self._shards_available.notify_all()
await asyncio.gather(*self._tasks)
if not self._exception:
assert not self.bytes_memory, (type(self), self.bytes_memory)
async def close(self) -> None:
"""Flush and close the buffer.
This cleans up all allocated resources.
"""
await self.flush()
if not self._exception:
assert not self.bytes_memory, (type(self), self.bytes_memory)
for t in self._tasks:
t.cancel()
self._accepts_input = False
self._inputs_done = True
self.shards.clear()
self.bytes_memory = 0
async with self._shards_available:
self._shards_available.notify_all()
await asyncio.gather(*self._tasks)
async def __aenter__(self) -> "ShardsBuffer":
return self
async def __aexit__(self, exc: Any, typ: Any, traceback: Any) -> None:
await self.close()
@contextlib.contextmanager
def time(self, name: str) -> Iterator[None]:
start = time()
yield
stop = time()
self.diagnostics[name] += stop - start
|