File: _scheduler_extension.py

package info (click to toggle)
dask.distributed 2022.12.1%2Bds.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,164 kB
  • sloc: python: 81,938; javascript: 1,549; makefile: 228; sh: 100
file content (234 lines) | stat: -rw-r--r-- 8,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import annotations

import asyncio
import contextlib
import logging
from collections import defaultdict
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any

from distributed.diagnostics.plugin import SchedulerPlugin
from distributed.shuffle._shuffle import ShuffleId, barrier_key, id_from_key

if TYPE_CHECKING:
    from distributed.scheduler import Recs, Scheduler, TaskStateState, WorkerState

logger = logging.getLogger(__name__)


@dataclass
class ShuffleState:
    id: ShuffleId
    worker_for: dict[int, str]
    schema: bytes
    column: str
    output_workers: set[str]
    completed_workers: set[str]
    participating_workers: set[str]


class ShuffleSchedulerExtension(SchedulerPlugin):
    """
    Shuffle extension for the scheduler

    Today this mostly just collects heartbeat messages for the dashboard,
    but in the future it may be responsible for more

    See Also
    --------
    ShuffleWorkerExtension
    """

    scheduler: Scheduler
    states: dict[ShuffleId, ShuffleState]
    heartbeats: defaultdict[ShuffleId, dict]
    tombstones: set[ShuffleId]
    erred_shuffles: dict[ShuffleId, Exception]

    def __init__(self, scheduler: Scheduler):
        self.scheduler = scheduler
        self.scheduler.handlers.update(
            {
                "shuffle_get": self.get,
                "shuffle_get_participating_workers": self.get_participating_workers,
                "shuffle_register_complete": self.register_complete,
            }
        )
        self.heartbeats = defaultdict(lambda: defaultdict(dict))
        self.states = {}
        self.tombstones = set()
        self.erred_shuffles = {}
        self.scheduler.add_plugin(self)

    def shuffle_ids(self) -> set[ShuffleId]:
        return set(self.states)

    def heartbeat(self, ws: WorkerState, data: dict) -> None:
        for shuffle_id, d in data.items():
            if shuffle_id in self.shuffle_ids():
                self.heartbeats[shuffle_id][ws.address].update(d)

    def get(
        self,
        id: ShuffleId,
        schema: bytes | None,
        column: str | None,
        npartitions: int | None,
        worker: str,
    ) -> dict:

        if id in self.tombstones:
            return {
                "status": "ERROR",
                "message": f"Shuffle {id} has already been forgotten",
            }
        if exception := self.erred_shuffles.get(id):
            return {"status": "ERROR", "message": str(exception)}

        if id not in self.states:
            assert schema is not None
            assert column is not None
            assert npartitions is not None
            workers = list(self.scheduler.workers)
            output_workers = set()

            name = barrier_key(id)
            mapping = {}

            for ts in self.scheduler.tasks[name].dependents:
                part = ts.annotations["shuffle"]
                if ts.worker_restrictions:
                    output_worker = list(ts.worker_restrictions)[0]
                else:
                    output_worker = get_worker_for(part, workers, npartitions)
                mapping[part] = output_worker
                output_workers.add(output_worker)
                self.scheduler.set_restrictions({ts.key: {output_worker}})

            state = ShuffleState(
                id=id,
                worker_for=mapping,
                schema=schema,
                column=column,
                output_workers=output_workers,
                completed_workers=set(),
                participating_workers=output_workers.copy(),
            )
            self.states[id] = state

        state = self.states[id]
        state.participating_workers.add(worker)
        return {
            "status": "OK",
            "worker_for": state.worker_for,
            "column": state.column,
            "schema": state.schema,
            "output_workers": state.output_workers,
        }

    def get_participating_workers(self, id: ShuffleId) -> list[str]:
        return list(self.states[id].participating_workers)

    async def remove_worker(self, scheduler: Scheduler, worker: str) -> None:
        affected_shuffles = set()
        broadcasts = []
        from time import time

        recs: Recs = {}
        stimulus_id = f"shuffle-failed-worker-left-{time()}"
        barriers = []
        for shuffle_id, state in self.states.items():
            if worker not in state.participating_workers:
                continue
            exception = RuntimeError(
                f"Worker {worker} left during active shuffle {shuffle_id}"
            )
            self.erred_shuffles[shuffle_id] = exception
            contact_workers = state.participating_workers.copy()
            contact_workers.discard(worker)
            affected_shuffles.add(shuffle_id)
            name = barrier_key(shuffle_id)
            barrier_task = self.scheduler.tasks.get(name)
            if barrier_task:
                barriers.append(barrier_task)
                broadcasts.append(
                    scheduler.broadcast(
                        msg={
                            "op": "shuffle_fail",
                            "message": str(exception),
                            "shuffle_id": shuffle_id,
                        },
                        workers=list(contact_workers),
                    )
                )

        results = await asyncio.gather(*broadcasts, return_exceptions=True)
        for barrier_task in barriers:
            if barrier_task.state == "memory":
                for dt in barrier_task.dependents:
                    if worker not in dt.worker_restrictions:
                        continue
                    dt.worker_restrictions.clear()
                    recs.update({dt.key: "waiting"})
            # TODO: Do we need to handle other states?
        self.scheduler.transitions(recs, stimulus_id=stimulus_id)

        # Assumption: No new shuffle tasks scheduled on the worker
        # + no existing tasks anymore
        # All task-finished/task-errer are queued up in batched stream

        exceptions = [result for result in results if isinstance(result, Exception)]
        if exceptions:
            # TODO: Do we need to handle errors here?
            raise RuntimeError(exceptions)

    def transition(
        self,
        key: str,
        start: TaskStateState,
        finish: TaskStateState,
        *args: Any,
        **kwargs: Any,
    ) -> None:
        if finish != "forgotten":
            return
        if not key.startswith("shuffle-barrier-"):
            return
        shuffle_id = id_from_key(key)
        if shuffle_id not in self.states:
            return
        participating_workers = self.states[shuffle_id].participating_workers
        worker_msgs = {
            worker: [
                {
                    "op": "shuffle-fail",
                    "shuffle_id": shuffle_id,
                    "message": f"Shuffle {shuffle_id} forgotten",
                }
            ]
            for worker in participating_workers
        }
        self._clean_on_scheduler(shuffle_id)
        self.scheduler.send_all({}, worker_msgs)

    def register_complete(self, id: ShuffleId, worker: str) -> None:
        """Learn from a worker that it has completed all reads of a shuffle"""
        if exception := self.erred_shuffles.get(id):
            raise exception
        if id not in self.states:
            logger.info("Worker shuffle reported complete after shuffle was removed")
            return
        self.states[id].completed_workers.add(worker)

    def _clean_on_scheduler(self, id: ShuffleId) -> None:
        self.tombstones.add(id)
        del self.states[id]
        self.erred_shuffles.pop(id, None)
        with contextlib.suppress(KeyError):
            del self.heartbeats[id]


def get_worker_for(output_partition: int, workers: list[str], npartitions: int) -> str:
    "Get the address of the worker which should hold this output partition number"
    i = len(workers) * output_partition // npartitions
    return workers[i]