1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
from __future__ import annotations
import asyncio
import pytest
pd = pytest.importorskip("pandas")
pytest.importorskip("dask.dataframe")
pytest.importorskip("pyarrow")
import dask
import dask.dataframe as dd
from dask.blockwise import Blockwise
from dask.utils_test import hlg_layer_topological
from distributed.utils_test import gen_cluster
def test_basic(client):
df = dd.demo.make_timeseries(freq="15D", partition_freq="30D")
df["name"] = df["name"].astype("string[python]")
shuffled = df.shuffle("id", shuffle="p2p")
(opt,) = dask.optimize(shuffled)
assert isinstance(hlg_layer_topological(opt.dask, 0), Blockwise)
# blockwise -> barrier -> unpack -> drop_by_shallow_copy
dd.utils.assert_eq(shuffled, df.shuffle("id", shuffle="tasks"), scheduler=client)
# ^ NOTE: this works because `assert_eq` sorts the rows before comparing
@gen_cluster([("", 2)] * 4, client=True)
async def test_basic_state(c, s, *workers):
df = dd.demo.make_timeseries(freq="15D", partition_freq="30D")
shuffled = df.shuffle("id", shuffle="p2p")
exts = [w.extensions["shuffle"] for w in workers]
for ext in exts:
assert not ext.shuffles
f = c.compute(shuffled)
# TODO this is a bad/pointless test. the `f.done()` is necessary in case the shuffle is really fast.
# To test state more thoroughly, we'd need a way to 'stop the world' at various stages. Like have the
# scheduler pause everything when the barrier is reached. Not sure yet how to implement that.
while not all(len(ext.shuffles) == 1 for ext in exts) and not f.done():
await asyncio.sleep(0.1)
await f
assert all(not ext.shuffles for ext in exts)
def test_multiple_linear(client):
df = dd.demo.make_timeseries(freq="15D", partition_freq="30D")
df["name"] = df["name"].astype("string[python]")
s1 = df.shuffle("id", shuffle="p2p")
s1["x"] = s1["x"] + 1
s2 = s1.shuffle("x", shuffle="p2p")
# TODO eventually test for fusion between s1's unpacks, the `+1`, and s2's `transfer`s
dd.utils.assert_eq(
s2,
df.assign(x=lambda df: df.x + 1).shuffle("x", shuffle="tasks"),
scheduler=client,
)
|