1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
|
from __future__ import annotations
import asyncio
import itertools
import json
import logging
import math
import operator
import pickle
import re
import sys
from itertools import product
from textwrap import dedent
from time import sleep
from typing import Collection
import cloudpickle
import psutil
import pytest
from tlz import concat, first, merge, valmap
from tornado.ioloop import IOLoop
import dask
from dask import delayed
from dask.utils import apply, parse_timedelta, stringify, tmpfile, typename
from distributed import (
CancelledError,
Client,
Event,
Lock,
Nanny,
SchedulerPlugin,
Worker,
fire_and_forget,
wait,
)
from distributed.comm.addressing import parse_host_port
from distributed.compatibility import LINUX, MACOS, WINDOWS, PeriodicCallback
from distributed.core import ConnectionPool, Status, clean_exception, connect, rpc
from distributed.metrics import time
from distributed.protocol.pickle import dumps, loads
from distributed.scheduler import KilledWorker, MemoryState, Scheduler, WorkerState
from distributed.utils import TimeoutError
from distributed.utils_test import (
NO_AMM,
BlockedGatherDep,
BrokenComm,
assert_story,
async_wait_for,
captured_logger,
cluster,
dec,
div,
freeze_batched_send,
freeze_data_fetching,
gen_cluster,
gen_test,
inc,
nodebug,
raises_with_cause,
slowadd,
slowdec,
slowidentity,
slowinc,
tls_only_security,
varying,
wait_for_state,
)
from distributed.worker import dumps_function, dumps_task, get_worker, secede
pytestmark = pytest.mark.ci1
QUEUING_ON_BY_DEFAULT = math.isfinite(
float(dask.config.get("distributed.scheduler.worker-saturation"))
)
alice = "alice:1234"
bob = "bob:1234"
@gen_cluster()
async def test_administration(s, a, b):
assert isinstance(s.address, str)
assert s.address in str(s)
assert str(len(s.workers)) in repr(s)
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)])
async def test_respect_data_in_memory(c, s, a):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(inc)(x, dask_key_name="y")
f = c.persist(y)
await wait([f])
assert s.tasks[y.key].who_has == {s.workers[a.address]}
z = delayed(operator.add)(x, y, dask_key_name="z")
f2 = c.persist(z)
while f2.key not in s.tasks or not s.tasks[f2.key]:
assert s.tasks[y.key].who_has
await asyncio.sleep(0.0001)
@gen_cluster(client=True)
async def test_recompute_released_results(c, s, a, b):
x = delayed(inc)(1)
y = delayed(inc)(x)
yy = c.persist(y)
await wait(yy)
while s.tasks[x.key].who_has or x.key in a.data or x.key in b.data: # let x go away
await asyncio.sleep(0.01)
z = delayed(dec)(x)
zz = c.compute(z)
result = await zz
assert result == 1
@gen_cluster(client=True)
async def test_decide_worker_with_many_independent_leaves(c, s, a, b):
xs = await asyncio.gather(
c.scatter(list(range(0, 100, 2)), workers=a.address),
c.scatter(list(range(1, 100, 2)), workers=b.address),
)
xs = list(concat(zip(*xs)))
ys = [delayed(inc)(x) for x in xs]
y2s = c.persist(ys)
await wait(y2s)
nhits = sum(y.key in a.data for y in y2s[::2]) + sum(
y.key in b.data for y in y2s[1::2]
)
assert nhits > 80
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_decide_worker_with_restrictions(client, s, a, b, c):
x = client.submit(inc, 1, workers=[a.address, b.address])
await x
assert x.key in a.data or x.key in b.data
@pytest.mark.parametrize("ndeps", [0, 1, 4])
@pytest.mark.parametrize(
"nthreads",
[
[("127.0.0.1", 1)] * 5,
[("127.0.0.1", 3), ("127.0.0.1", 2), ("127.0.0.1", 1)],
],
)
def test_decide_worker_coschedule_order_neighbors(ndeps, nthreads):
@gen_cluster(
client=True,
nthreads=nthreads,
config={
"distributed.scheduler.work-stealing": False,
"distributed.scheduler.worker-saturation": float("inf"),
},
)
async def test_decide_worker_coschedule_order_neighbors_(c, s, *workers):
r"""
Ensure that sibling root tasks are scheduled to the same node, reducing future
data transfer.
We generate a wide layer of "root" tasks (random NumPy arrays). All of those
tasks share 0-5 trivial dependencies. The ``ndeps=0`` and ``ndeps=1`` cases are
most common in real-world use (``ndeps=1`` is basically ``da.from_array(...,
inline_array=False)`` or ``da.from_zarr``). The graph is structured like this
(though the number of tasks and workers is different):
|-W1-| |-W2-| |-W3-| |-W4-| < ---- ideal task scheduling
q r s t < --- `sum-aggregate-`
/ \ / \ / \ / \
i j k l m n o p < --- `sum-`
| | | | | | | |
a b c d e f g h < --- `random-`
\ \ \ | | / / /
TRIVIAL * 0..5
Neighboring `random-` tasks should be scheduled on the same worker. We test that
generally, only one worker holds each row of the array, that the `random-` tasks
are never transferred, and that there are few transfers overall.
"""
da = pytest.importorskip("dask.array")
np = pytest.importorskip("numpy")
if ndeps == 0:
x = da.random.random((100, 100), chunks=(10, 10))
else:
def random(**kwargs):
assert len(kwargs) == ndeps
return np.random.random((10, 10))
trivial_deps = {f"k{i}": delayed(object()) for i in range(ndeps)}
# TODO is there a simpler (non-blockwise) way to make this sort of graph?
x = da.blockwise(
random,
"yx",
new_axes={"y": (10,) * 10, "x": (10,) * 10},
dtype=float,
**trivial_deps,
)
xx, xsum = dask.persist(x, x.sum(axis=1, split_every=20))
await xsum
# Check that each chunk-row of the array is (mostly) stored on the same worker
primary_worker_key_fractions = []
secondary_worker_key_fractions = []
for keys in x.__dask_keys__():
# Iterate along rows of the array.
keys = {stringify(k) for k in keys}
# No more than 2 workers should have any keys
assert sum(any(k in w.data for k in keys) for w in workers) <= 2
# What fraction of the keys for this row does each worker hold?
key_fractions = [
len(set(w.data).intersection(keys)) / len(keys) for w in workers
]
key_fractions.sort()
# Primary worker: holds the highest percentage of keys
# Secondary worker: holds the second highest percentage of keys
primary_worker_key_fractions.append(key_fractions[-1])
secondary_worker_key_fractions.append(key_fractions[-2])
# There may be one or two rows that were poorly split across workers,
# but the vast majority of rows should only be on one worker.
assert np.mean(primary_worker_key_fractions) >= 0.9
assert np.median(primary_worker_key_fractions) == 1.0
assert np.mean(secondary_worker_key_fractions) <= 0.1
assert np.median(secondary_worker_key_fractions) == 0.0
# Check that there were few transfers
unexpected_transfers = []
for worker in workers:
for log in worker.transfer_incoming_log:
keys = log["keys"]
# The root-ish tasks should never be transferred
assert not any(k.startswith("random") for k in keys), keys
# `object-` keys (the trivial deps of the root random tasks) should be
# transferred
if any(not k.startswith("object") for k in keys):
# But not many other things should be
unexpected_transfers.append(list(keys))
# A transfer at the very end to move aggregated results is fine (necessary with
# unbalanced workers in fact), but generally there should be very very few
# transfers.
assert len(unexpected_transfers) <= 3, unexpected_transfers
test_decide_worker_coschedule_order_neighbors_()
@pytest.mark.skipif(
QUEUING_ON_BY_DEFAULT,
reason="Not relevant with queuing on; see https://github.com/dask/distributed/issues/7204",
)
@gen_cluster(
client=True,
nthreads=[("", 1)],
config={"distributed.scheduler.work-stealing": False},
)
async def test_decide_worker_rootish_while_last_worker_is_retiring(c, s, a):
"""https://github.com/dask/distributed/issues/7063"""
# Put a task in memory on the worker to be retired and prevent the other from
# acquiring a replica. This will cause a to be stuck in closing_gracefully later on,
# until we set b.block_gather_dep.
m = (await c.scatter({"m": 1}, workers=[a.address]))["m"]
evx = [Event() for _ in range(3)]
evy = Event()
async with BlockedGatherDep(s.address, nthreads=1) as b:
xs = [
c.submit(lambda ev: ev.wait(), evx[0], key="x-0", workers=[a.address]),
c.submit(lambda ev: ev.wait(), evx[1], key="x-1", workers=[a.address]),
c.submit(lambda ev: ev.wait(), evx[2], key="x-2", workers=[b.address]),
]
ys = [
c.submit(lambda x, ev: ev.wait(), xs[0], evy, key="y-0"),
c.submit(lambda x, ev: ev.wait(), xs[0], evy, key="y-1"),
c.submit(lambda x, ev: ev.wait(), xs[1], evy, key="y-2"),
c.submit(lambda x, ev: ev.wait(), xs[2], evy, key="y-3"),
c.submit(lambda x, ev: ev.wait(), xs[2], evy, key="y-4"),
c.submit(lambda x, ev: ev.wait(), xs[2], evy, key="y-5"),
]
while a.state.executing_count != 1 or b.state.executing_count != 1:
await asyncio.sleep(0.01)
# - y-2 has no restrictions
# - TaskGroup(y) has more than 4 tasks (total_nthreads * 2)
# - TaskGroup(y) has less than 5 dependency groups
# - TaskGroup(y) has less than 5 dependency tasks
assert s.is_rootish(s.tasks["y-2"])
await evx[0].set()
await wait_for_state("y-0", "processing", s)
await wait_for_state("y-1", "processing", s)
assert s.tasks["y-2"].group.last_worker == s.workers[a.address]
assert s.tasks["y-2"].group.last_worker_tasks_left == 1
# Take a out of the running pool, but without removing it from the cluster
# completely
retire_task = asyncio.create_task(c.retire_workers([a.address]))
# Wait until AMM sends AcquireReplicasEvent to b to move away m
await b.in_gather_dep.wait()
assert s.workers[a.address].status == Status.closing_gracefully
# Transition y-2 to processing. Normally, it would be scheduled on a, but it's
# not a running worker, so we must choose b
await evx[1].set()
await wait_for_state("y-2", "processing", s)
await wait_for_state("y-2", "waiting", b) # x-1 is in memory on a
# Cleanup
b.block_gather_dep.set()
await evx[2].set()
await evy.set()
await retire_task
await wait(xs + ys)
@pytest.mark.slow
@gen_cluster(
nthreads=[("", 2)] * 4,
client=True,
config={"distributed.scheduler.worker-saturation": 1.0},
)
async def test_graph_execution_width(c, s, *workers):
"""
Test that we don't execute the graph more breadth-first than necessary.
We shouldn't start loading extra data if we're not going to use it immediately.
The number of parallel work streams match the number of threads.
"""
class Refcount:
"Track how many instances of this class exist; logs the count at creation and deletion"
count = 0
lock = dask.utils.SerializableLock()
log = []
def __init__(self):
with self.lock:
type(self).count += 1
self.log.append(self.count)
def __del__(self):
with self.lock:
self.log.append(self.count)
type(self).count -= 1
roots = [delayed(Refcount)() for _ in range(32)]
passthrough1 = [delayed(slowidentity)(r, delay=0) for r in roots]
passthrough2 = [delayed(slowidentity)(r, delay=0) for r in passthrough1]
done = [delayed(lambda r: None)(r) for r in passthrough2]
fs = c.compute(done)
await wait(fs)
# NOTE: the max should normally equal `total_nthreads`. But some macOS CI machines
# are slow enough that they aren't able to reach the full parallelism of 8 threads.
assert max(Refcount.log) <= s.total_nthreads
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_forget_tasks_while_processing(c, s, a, b):
events = [Event() for _ in range(10)]
futures = c.map(Event.wait, events)
await events[0].set()
await futures[0]
await c.close()
assert not s.tasks
@pytest.mark.slow
@gen_cluster(client=True, nthreads=[("", 1)], Worker=Nanny)
async def test_restart_while_processing(c, s, a, b):
events = [Event() for _ in range(10)]
futures = c.map(Event.wait, events)
await events[0].set()
await futures[0]
# TODO slow because worker waits a while for the task to finish
await c.restart()
assert not s.tasks
@gen_cluster(
client=True,
nthreads=[("", 1)] * 3,
config={"distributed.scheduler.worker-saturation": 1.0},
)
async def test_queued_release_multiple_workers(c, s, *workers):
async with Client(s.address, asynchronous=True) as c2:
event = Event(client=c2)
rootish_threshold = s.total_nthreads * 2 + 1
first_batch = c.map(
lambda i: event.wait(),
range(rootish_threshold),
key=[f"first-{i}" for i in range(rootish_threshold)],
)
await async_wait_for(lambda: s.queued, 5)
second_batch = c2.map(
lambda i: event.wait(),
range(rootish_threshold),
key=[f"second-{i}" for i in range(rootish_threshold)],
fifo_timeout=0,
)
await async_wait_for(lambda: second_batch[0].key in s.tasks, 5)
# All of the second batch should be queued after the first batch
assert [ts.key for ts in s.queued.sorted()] == [
f.key
for f in itertools.chain(first_batch[s.total_nthreads :], second_batch)
]
# Cancel the first batch.
# Use `Client.close` instead of `del first_batch` because deleting futures sends cancellation
# messages one at a time. We're testing here that when multiple workers have open slots, we don't
# recommend the same queued tasks for every worker, so we need a bulk cancellation operation.
await c.close()
del c, first_batch
await async_wait_for(lambda: len(s.tasks) == len(second_batch), 5)
# Second batch should move up the queue and start processing
assert len(s.queued) == len(second_batch) - s.total_nthreads, list(
s.queued.sorted()
)
await event.set()
await c2.gather(second_batch)
@gen_cluster(
client=True,
nthreads=[("", 2)] * 2,
config={
"distributed.worker.memory.pause": False,
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": False,
"distributed.scheduler.work-stealing": False,
"distributed.scheduler.worker-saturation": 1.0,
},
)
async def test_queued_paused_new_worker(c, s, a, b):
f1s = c.map(slowinc, range(16))
f2s = c.map(slowinc, f1s)
final = c.submit(sum, *f2s)
del f1s, f2s
while not a.data or not b.data:
await asyncio.sleep(0.01)
# manually pause the workers
a.status = Status.paused
b.status = Status.paused
while s.running:
# wait for workers pausing to hit the scheduler
await asyncio.sleep(0.01)
assert not s.idle
assert not s.idle_task_count
assert not s.running
async with Worker(s.address, nthreads=2) as w:
# Tasks are successfully scheduled onto a new worker
while not w.state.data:
await asyncio.sleep(0.01)
del final
while s.tasks:
await asyncio.sleep(0.01)
assert not s.queued
@pytest.mark.parametrize("queue", [True, False])
@gen_cluster(
client=True,
nthreads=[("", 2)] * 2,
config={
"distributed.worker.memory.pause": False,
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": False,
"distributed.scheduler.work-stealing": False,
},
)
async def test_queued_paused_unpaused(c, s, a, b, queue):
if queue:
s.WORKER_SATURATION = 1.0
else:
s.WORKER_SATURATION = float("inf")
f1s = c.map(slowinc, range(16))
f2s = c.map(slowinc, f1s)
final = c.submit(sum, *f2s)
del f1s, f2s
while not a.data or not b.data:
await asyncio.sleep(0.01)
# manually pause the workers
a.status = Status.paused
b.status = Status.paused
while s.running:
# wait for workers pausing to hit the scheduler
await asyncio.sleep(0.01)
assert not s.running
assert not s.idle
assert not s.idle_task_count
# un-pause
a.status = Status.running
b.status = Status.running
while not s.running:
await asyncio.sleep(0.01)
if queue:
assert not s.idle # workers should have been (or already were) filled
# If queuing is disabled, all workers might already be saturated when they un-pause.
assert not s.idle_task_count
await wait(final)
@gen_cluster(
client=True,
nthreads=[("", 2)] * 2,
config={"distributed.scheduler.worker-saturation": 1.0},
)
async def test_queued_remove_add_worker(c, s, a, b):
event = Event()
fs = c.map(lambda i: event.wait(), range(10))
await async_wait_for(lambda: len(s.queued) == 6, timeout=5)
await s.remove_worker(a.address, stimulus_id="fake")
assert len(s.queued) == 8
# Add a new worker
async with Worker(s.address, nthreads=2) as w:
await async_wait_for(lambda: len(s.queued) == 6, timeout=5)
await event.set()
await wait(fs)
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_secede_opens_slot(c, s, a):
first = Event()
second = Event()
def func(first, second):
first.wait()
secede()
second.wait()
fs = c.map(func, [first] * 5, [second] * 5)
await async_wait_for(lambda: a.state.executing, timeout=5)
await first.set()
await async_wait_for(lambda: len(a.state.long_running) == len(fs), timeout=5)
await second.set()
await c.gather(fs)
@pytest.mark.parametrize(
"saturation_config, expected_task_counts",
[
(2.5, (5, 3)),
(2.0, (4, 2)),
(1.1, (3, 2)),
(1.0, (2, 1)),
(0.1, (1, 1)),
# This is necessary because there's no way to parse a float infinite from
# a DASK_* environment variable
("inf", (6, 4)),
(float("inf"), (6, 4)),
# ^ depends on root task assignment logic; ok if changes, just needs to add up to 10
],
)
def test_saturation_factor(
saturation_config: int | float | str, expected_task_counts: tuple[int, int]
) -> None:
@gen_cluster(
client=True,
nthreads=[("", 2), ("", 1)],
config={
"distributed.scheduler.worker-saturation": saturation_config,
},
)
async def _test_saturation_factor(c, s, a, b):
saturation = float(saturation_config)
event = Event()
fs = c.map(
lambda _: event.wait(), range(10), key=[f"wait-{i}" for i in range(10)]
)
while a.state.executing_count < min(
a.state.nthreads, expected_task_counts[0]
) or b.state.executing_count < min(b.state.nthreads, expected_task_counts[1]):
await asyncio.sleep(0.01)
if math.isfinite(saturation):
assert len(a.state.tasks) == expected_task_counts[0]
assert len(b.state.tasks) == expected_task_counts[1]
else:
# Assignment is nondeterministic for some reason without queuing
assert len(a.state.tasks) > len(b.state.tasks)
await event.set()
await c.gather(fs)
_test_saturation_factor()
@gen_test()
async def test_bad_saturation_factor():
with pytest.raises(ValueError, match="foo"):
with dask.config.set({"distributed.scheduler.worker-saturation": "foo"}):
async with Scheduler(dashboard_address=":0", validate=True):
pass
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_move_data_over_break_restrictions(client, s, a, b, c):
[x] = await client.scatter([1], workers=b.address)
y = client.submit(inc, x, workers=[a.address, b.address])
await wait(y)
assert y.key in a.data or y.key in b.data
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_balance_with_restrictions(client, s, a, b, c):
[x], [y] = await asyncio.gather(
client.scatter([[1, 2, 3]], workers=a.address),
client.scatter([1], workers=c.address),
)
z = client.submit(inc, 1, workers=[a.address, c.address])
await wait(z)
assert s.tasks[z.key].who_has == {s.workers[c.address]}
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_no_valid_workers(client, s, a, b, c):
x = client.submit(inc, 1, workers="127.0.0.5:9999")
while not s.tasks:
await asyncio.sleep(0.01)
assert s.tasks[x.key] in s.unrunnable
with pytest.raises(TimeoutError):
await asyncio.wait_for(x, 0.05)
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_no_valid_workers_loose_restrictions(client, s, a, b, c):
x = client.submit(inc, 1, workers="127.0.0.5:9999", allow_other_workers=True)
result = await x
assert result == 2
@pytest.mark.parametrize("queue", [False, True])
@gen_cluster(client=True, nthreads=[])
async def test_no_workers(client, s, queue):
if queue:
s.WORKER_SATURATION = 1.0
else:
s.WORKER_SATURATION = float("inf")
x = client.submit(inc, 1)
while not s.tasks:
await asyncio.sleep(0.01)
ts = s.tasks[x.key]
if queue:
assert ts in s.queued
assert ts.state == "queued"
else:
assert ts in s.unrunnable
assert ts.state == "no-worker"
with pytest.raises(TimeoutError):
await asyncio.wait_for(x, 0.05)
async with Worker(s.address, nthreads=1):
await wait(x)
@gen_cluster(nthreads=[])
async def test_retire_workers_empty(s):
await s.retire_workers(workers=[])
@gen_cluster()
async def test_server_listens_to_other_ops(s, a, b):
async with rpc(s.address) as r:
ident = await r.identity()
assert ident["type"] == "Scheduler"
assert ident["id"].lower().startswith("scheduler")
@gen_cluster()
async def test_remove_worker_from_scheduler(s, a, b):
dsk = {("x-%d" % i): (inc, i) for i in range(20)}
s.update_graph(
tasks=valmap(dumps_task, dsk),
keys=list(dsk),
dependencies={k: set() for k in dsk},
)
assert a.address in s.stream_comms
await s.remove_worker(address=a.address, stimulus_id="test")
assert a.address not in s.workers
assert len(s.workers[b.address].processing) + len(s.queued) == len(dsk)
@gen_cluster()
async def test_remove_worker_by_name_from_scheduler(s, a, b):
assert a.address in s.stream_comms
assert await s.remove_worker(address=a.name, stimulus_id="test") == "OK"
assert a.address not in s.workers
assert (
await s.remove_worker(address=a.address, stimulus_id="test")
== "already-removed"
)
@gen_cluster(config={"distributed.scheduler.events-cleanup-delay": "10 ms"})
async def test_clear_events_worker_removal(s, a, b):
assert a.address in s.events
assert a.address in s.workers
assert b.address in s.events
assert b.address in s.workers
await s.remove_worker(address=a.address, stimulus_id="test")
# Shortly after removal, the events should still be there
assert a.address in s.events
assert a.address not in s.workers
s.validate_state()
start = time()
while a.address in s.events:
await asyncio.sleep(0.01)
assert time() < start + 2
assert b.address in s.events
@gen_cluster(
config={"distributed.scheduler.events-cleanup-delay": "10 ms"}, client=True
)
async def test_clear_events_client_removal(c, s, a, b):
assert c.id in s.events
s.remove_client(c.id)
assert c.id in s.events
assert c.id not in s.clients
assert c not in s.clients
s.remove_client(c.id)
# If it doesn't reconnect after a given time, the events log should be cleared
start = time()
while c.id in s.events:
await asyncio.sleep(0.01)
assert time() < start + 2
@gen_cluster(client=True, nthreads=[])
async def test_add_worker(c, s):
x = c.submit(inc, 1, key="x")
await wait_for_state("x", ("queued", "no-worker"), s)
s.validate_state()
async with Worker(s.address) as w:
s.validate_state()
assert w.ip in s.host_info
assert s.host_info[w.ip]["addresses"] == {w.address}
assert await x == 2
@gen_cluster(scheduler_kwargs={"blocked_handlers": ["feed"]})
async def test_blocked_handlers_are_respected(s, a, b):
def func(scheduler):
return dumps(dict(scheduler.worker_info))
comm = await connect(s.address)
await comm.write({"op": "feed", "function": dumps(func), "interval": 0.01})
response = await comm.read()
_, exc, _ = clean_exception(response["exception"], response["traceback"])
assert isinstance(exc, ValueError)
assert "'feed' handler has been explicitly disallowed" in repr(exc)
await comm.close()
@gen_cluster(
nthreads=[], config={"distributed.scheduler.blocked-handlers": ["test-handler"]}
)
async def test_scheduler_init_pulls_blocked_handlers_from_config(s):
assert s.blocked_handlers == ["test-handler"]
@gen_cluster()
async def test_feed(s, a, b):
def func(scheduler):
return dumps({addr: ws.clean() for addr, ws in scheduler.workers.items()})
comm = await connect(s.address)
await comm.write({"op": "feed", "function": dumps(func), "interval": 0.01})
for _ in range(5):
response = await comm.read()
expected = {addr: ws.clean() for addr, ws in s.workers.items()}
assert cloudpickle.loads(response) == expected
await comm.close()
@gen_cluster()
async def test_feed_setup_teardown(s, a, b):
def setup(scheduler):
return 1
def func(scheduler, state):
assert state == 1
return "OK"
def teardown(scheduler, state):
scheduler.flag = "done"
comm = await connect(s.address)
await comm.write(
{
"op": "feed",
"function": dumps(func),
"setup": dumps(setup),
"teardown": dumps(teardown),
"interval": 0.01,
}
)
for _ in range(5):
response = await comm.read()
assert response == "OK"
await comm.close()
start = time()
while not hasattr(s, "flag"):
await asyncio.sleep(0.01)
assert time() - start < 5
@gen_cluster()
async def test_feed_large_bytestring(s, a, b):
np = pytest.importorskip("numpy")
x = np.ones(10000000)
def func(scheduler):
y = x
return True
comm = await connect(s.address)
await comm.write({"op": "feed", "function": dumps(func), "interval": 0.05})
for _ in range(5):
response = await comm.read()
assert response is True
await comm.close()
@gen_cluster(client=True)
async def test_delete_data(c, s, a, b):
d = await c.scatter({"x": 1, "y": 2, "z": 3})
assert {ts.key for ts in s.tasks.values() if ts.who_has} == {"x", "y", "z"}
assert set(a.data) | set(b.data) == {"x", "y", "z"}
assert merge(a.data, b.data) == {"x": 1, "y": 2, "z": 3}
del d["x"]
del d["y"]
start = time()
while set(a.data) | set(b.data) != {"z"}:
await asyncio.sleep(0.01)
assert time() < start + 5
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)])
async def test_delete(c, s, a):
x = c.submit(inc, 1)
await x
assert x.key in s.tasks
assert x.key in a.data
await c._cancel(x)
start = time()
while x.key in a.data:
await asyncio.sleep(0.01)
assert time() < start + 5
assert x.key not in s.tasks
s.report_on_key(key=x.key)
@gen_cluster()
async def test_filtered_communication(s, a, b):
c = await connect(s.address)
f = await connect(s.address)
await c.write({"op": "register-client", "client": "c", "versions": {}})
await f.write({"op": "register-client", "client": "f", "versions": {}})
await c.read()
await f.read()
assert set(s.client_comms) == {"c", "f"}
await c.write(
{
"op": "update-graph",
"tasks": {"x": dumps_task((inc, 1)), "y": dumps_task((inc, "x"))},
"dependencies": {"x": [], "y": ["x"]},
"client": "c",
"keys": ["y"],
}
)
await f.write(
{
"op": "update-graph",
"tasks": {
"x": dumps_task((inc, 1)),
"z": dumps_task((operator.add, "x", 10)),
},
"dependencies": {"x": [], "z": ["x"]},
"client": "f",
"keys": ["z"],
}
)
(msg,) = await c.read()
assert msg["op"] == "key-in-memory"
assert msg["key"] == "y"
(msg,) = await f.read()
assert msg["op"] == "key-in-memory"
assert msg["key"] == "z"
def test_dumps_function():
a = dumps_function(inc)
assert cloudpickle.loads(a)(10) == 11
b = dumps_function(inc)
assert a is b
c = dumps_function(dec)
assert a != c
def test_dumps_task():
d = dumps_task((inc, 1))
assert set(d) == {"function", "args"}
def f(x, y=2):
return x + y
d = dumps_task((apply, f, (1,), {"y": 10}))
assert cloudpickle.loads(d["function"])(1, 2) == 3
assert cloudpickle.loads(d["args"]) == (1,)
assert cloudpickle.loads(d["kwargs"]) == {"y": 10}
d = dumps_task((apply, f, (1,)))
assert cloudpickle.loads(d["function"])(1, 2) == 3
assert cloudpickle.loads(d["args"]) == (1,)
assert set(d) == {"function", "args"}
@pytest.mark.parametrize("worker_saturation", [1.0, float("inf")])
@gen_cluster()
async def test_ready_remove_worker(s, a, b, worker_saturation):
s.WORKER_SATURATION = worker_saturation
s.update_graph(
tasks={"x-%d" % i: dumps_task((inc, i)) for i in range(20)},
keys=["x-%d" % i for i in range(20)],
client="client",
dependencies={"x-%d" % i: [] for i in range(20)},
)
if s.WORKER_SATURATION == 1:
cmp = operator.eq
elif math.isinf(s.WORKER_SATURATION):
cmp = operator.gt
else:
pytest.fail(f"{s.WORKER_SATURATION=}, must be 1 or inf")
assert all(cmp(len(w.processing), w.nthreads) for w in s.workers.values()), (
list(s.workers.values()),
s.WORKER_SATURATION,
)
assert sum(len(w.processing) for w in s.workers.values()) + len(s.queued) == len(
s.tasks
)
await s.remove_worker(address=a.address, stimulus_id="test")
assert set(s.workers) == {b.address}
assert all(cmp(len(w.processing), w.nthreads) for w in s.workers.values()), (
list(s.workers.values()),
s.WORKER_SATURATION,
)
assert sum(len(w.processing) for w in s.workers.values()) + len(s.queued) == len(
s.tasks
)
@gen_cluster(client=True, Worker=Nanny, timeout=60)
async def test_restart(c, s, a, b):
with captured_logger("distributed.scheduler") as caplog:
futures = c.map(inc, range(20))
await wait(futures)
with captured_logger("distributed.nanny") as nanny_logger:
await s.restart()
assert "Reason: scheduler-restart" in nanny_logger.getvalue()
assert not s.computations
assert not s.task_prefixes
assert not s.task_groups
assert len(s.workers) == 2
for ws in s.workers.values():
assert not ws.occupancy
assert not ws.processing
assert not s.tasks
assert all(f.status == "cancelled" for f in futures)
x = c.submit(inc, 1)
assert await x == 2
assert "restart" in caplog.getvalue().lower()
@pytest.mark.slow
@gen_cluster(client=True, Worker=Nanny, nthreads=[("", 1)] * 5)
async def test_restart_waits_for_new_workers(c, s, *workers):
original_procs = {n.process.process for n in workers}
original_workers = dict(s.workers)
await c.restart()
assert len(s.workers) == len(original_workers)
for w in workers:
assert w.address not in s.workers
# Confirm they restarted
# NOTE: == for `psutil.Process` compares PID and creation time
new_procs = {n.process.process for n in workers}
assert new_procs != original_procs
# The workers should have new addresses
assert s.workers.keys().isdisjoint(original_workers.keys())
# The old WorkerState instances should be replaced
assert set(s.workers.values()).isdisjoint(original_workers.values())
class SlowKillNanny(Nanny):
def __init__(self, *args, **kwargs):
self.kill_proceed = asyncio.Event()
self.kill_called = asyncio.Event()
super().__init__(*args, **kwargs)
async def kill(self, *, timeout, reason=None):
self.kill_called.set()
print("kill called")
await asyncio.wait_for(self.kill_proceed.wait(), timeout)
print("kill proceed")
return await super().kill(timeout=timeout, reason=reason)
@gen_cluster(client=True, Worker=SlowKillNanny, nthreads=[("", 1)] * 2)
async def test_restart_nanny_timeout_exceeded(c, s, a, b):
f = c.submit(div, 1, 0)
fr = c.submit(inc, 1, resources={"FOO": 1})
await wait(f)
assert s.erred_tasks
assert s.computations
assert s.unrunnable
assert s.tasks
with pytest.raises(
TimeoutError, match=r"2/2 nanny worker\(s\) did not shut down within 1s"
):
await c.restart(timeout="1s")
assert a.kill_called.is_set()
assert b.kill_called.is_set()
assert not s.workers
assert not s.erred_tasks
assert not s.computations
assert not s.unrunnable
assert not s.tasks
assert not c.futures
assert f.status == "cancelled"
assert fr.status == "cancelled"
@gen_cluster(client=True, nthreads=[("", 1)] * 2)
async def test_restart_not_all_workers_return(c, s, a, b):
with pytest.raises(TimeoutError, match="Waited for 2 worker"):
await c.restart(timeout="1s")
assert not s.workers
assert a.status in (Status.closed, Status.closing)
assert b.status in (Status.closed, Status.closing)
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_restart_worker_rejoins_after_timeout_expired(c, s, a):
"""
We don't want to see an error message like:
``Waited for 1 worker(s) to reconnect after restarting, but after 0s, only 1 have returned.``
If a worker rejoins after our last poll for new workers, but before we raise the error,
we shouldn't raise the error.
"""
# We'll use a 0s timeout on the restart, so it always expires.
# And we'll use a plugin to block the restart process, and spin up a new worker
# in the middle of it.
class Plugin(SchedulerPlugin):
removed = asyncio.Event()
proceed = asyncio.Event()
async def remove_worker(self, *args, **kwargs):
self.removed.set()
await self.proceed.wait()
s.add_plugin(Plugin())
task = asyncio.create_task(c.restart(timeout=0))
await Plugin.removed.wait()
assert not s.workers
async with Worker(s.address, nthreads=1) as w:
assert len(s.workers) == 1
Plugin.proceed.set()
# New worker has joined, but the timeout has expired (since it was 0).
# Still, we should not time out.
await task
@gen_cluster(client=True, nthreads=[("", 1)] * 2)
async def test_restart_no_wait_for_workers(c, s, a, b):
await c.restart(timeout="1s", wait_for_workers=False)
assert not s.workers
# Workers are not immediately closed because of https://github.com/dask/distributed/issues/6390
# (the message is still waiting in the BatchedSend)
await a.finished()
await b.finished()
@pytest.mark.slow
@gen_cluster(client=True, Worker=Nanny)
async def test_restart_some_nannies_some_not(c, s, a, b):
original_addrs = set(s.workers)
async with Worker(s.address, nthreads=1) as w:
await c.wait_for_workers(3)
# FIXME how to make this not always take 20s if the nannies do restart quickly?
with pytest.raises(TimeoutError, match=r"The 1 worker\(s\) not using Nannies"):
await c.restart(timeout="20s")
assert w.status == Status.closed
assert len(s.workers) == 2
assert set(s.workers).isdisjoint(original_addrs)
assert w.address not in s.workers
@gen_cluster(
client=True,
nthreads=[("", 1)],
Worker=SlowKillNanny,
worker_kwargs={"heartbeat_interval": "1ms"},
)
async def test_restart_heartbeat_before_closing(c, s, n):
"""
Ensure that if workers heartbeat in the middle of `Scheduler.restart`, they don't close themselves.
https://github.com/dask/distributed/issues/6494
"""
prev_workers = dict(s.workers)
restart_task = asyncio.create_task(s.restart())
await n.kill_called.wait()
await asyncio.sleep(0.5) # significantly longer than the heartbeat interval
# WorkerState should not be removed yet, because the worker hasn't been told to close
assert s.workers
n.kill_proceed.set()
# Wait until the worker has left (possibly until it's come back too)
while s.workers == prev_workers:
await asyncio.sleep(0.01)
await restart_task
await c.wait_for_workers(1)
@gen_cluster()
async def test_broadcast(s, a, b):
result = await s.broadcast(msg={"op": "ping"})
assert result == {a.address: b"pong", b.address: b"pong"}
result = await s.broadcast(msg={"op": "ping"}, workers=[a.address])
assert result == {a.address: b"pong"}
result = await s.broadcast(msg={"op": "ping"}, hosts=[a.ip])
assert result == {a.address: b"pong", b.address: b"pong"}
@gen_cluster(security=tls_only_security())
async def test_broadcast_tls(s, a, b):
result = await s.broadcast(msg={"op": "ping"})
assert result == {a.address: b"pong", b.address: b"pong"}
result = await s.broadcast(msg={"op": "ping"}, workers=[a.address])
assert result == {a.address: b"pong"}
result = await s.broadcast(msg={"op": "ping"}, hosts=[a.ip])
assert result == {a.address: b"pong", b.address: b"pong"}
@gen_cluster(Worker=Nanny)
async def test_broadcast_nanny(s, a, b):
result1 = await s.broadcast(msg={"op": "identity"}, nanny=True)
assert all(d["type"] == "Nanny" for d in result1.values())
result2 = await s.broadcast(
msg={"op": "identity"}, workers=[a.worker_address], nanny=True
)
assert len(result2) == 1
assert first(result2.values())["id"] == a.id
result3 = await s.broadcast(msg={"op": "identity"}, hosts=[a.ip], nanny=True)
assert result1 == result3
@gen_cluster(config={"distributed.comm.timeouts.connect": "200ms"})
async def test_broadcast_on_error(s, a, b):
a.stop()
with pytest.raises(OSError):
await s.broadcast(msg={"op": "ping"}, on_error="raise")
with pytest.raises(ValueError, match="on_error must be"):
await s.broadcast(msg={"op": "ping"}, on_error="invalid")
out = await s.broadcast(msg={"op": "ping"}, on_error="return")
assert isinstance(out[a.address], OSError)
assert out[b.address] == b"pong"
out = await s.broadcast(msg={"op": "ping"}, on_error="return_pickle")
assert isinstance(loads(out[a.address]), OSError)
assert out[b.address] == b"pong"
out = await s.broadcast(msg={"op": "ping"}, on_error="ignore")
assert out == {b.address: b"pong"}
@gen_cluster()
async def test_broadcast_deprecation(s, a, b):
out = await s.broadcast(msg={"op": "ping"})
assert out == {a.address: b"pong", b.address: b"pong"}
@gen_cluster(nthreads=[])
async def test_worker_name(s):
async with Worker(s.address, name="alice") as w:
assert s.workers[w.address].name == "alice"
assert s.aliases["alice"] == w.address
with raises_with_cause(RuntimeError, None, ValueError, None):
async with Worker(s.address, name="alice"):
pass
@gen_cluster(nthreads=[])
async def test_coerce_address(s):
print("scheduler:", s.address, s.listen_address)
a = Worker(s.address, name="alice")
b = Worker(s.address, name=123)
c = Worker("127.0.0.1", s.port, name="charlie")
await asyncio.gather(a, b, c)
assert s.coerce_address("127.0.0.1:8000") == "tcp://127.0.0.1:8000"
assert s.coerce_address("[::1]:8000") == "tcp://[::1]:8000"
assert s.coerce_address("tcp://127.0.0.1:8000") == "tcp://127.0.0.1:8000"
assert s.coerce_address("tcp://[::1]:8000") == "tcp://[::1]:8000"
assert s.coerce_address("localhost:8000") in (
"tcp://127.0.0.1:8000",
"tcp://[::1]:8000",
)
assert s.coerce_address("localhost:8000") in (
"tcp://127.0.0.1:8000",
"tcp://[::1]:8000",
)
assert s.coerce_address(a.address) == a.address
# Aliases
assert s.coerce_address("alice") == a.address
assert s.coerce_address(123) == b.address
assert s.coerce_address("charlie") == c.address
assert s.coerce_hostname("127.0.0.1") == "127.0.0.1"
assert s.coerce_hostname("alice") == a.ip
assert s.coerce_hostname(123) == b.ip
assert s.coerce_hostname("charlie") == c.ip
assert s.coerce_hostname("jimmy") == "jimmy"
assert s.coerce_address("zzzt:8000", resolve=False) == "tcp://zzzt:8000"
await asyncio.gather(a.close(), b.close(), c.close())
@gen_cluster(nthreads=[], config={"distributed.scheduler.work-stealing": True})
async def test_config_stealing(s):
"""Regression test for https://github.com/dask/distributed/issues/3409"""
assert "stealing" in s.extensions
@gen_cluster(nthreads=[], config={"distributed.scheduler.work-stealing": False})
async def test_config_no_stealing(s):
assert "stealing" not in s.extensions
@pytest.mark.skipif(WINDOWS, reason="num_fds not supported on windows")
@gen_cluster(nthreads=[])
async def test_file_descriptors_dont_leak(s):
proc = psutil.Process()
before = proc.num_fds()
async with Worker(s.address):
assert proc.num_fds() > before
while proc.num_fds() > before:
await asyncio.sleep(0.01)
@gen_cluster()
async def test_update_graph_culls(s, a, b):
s.update_graph(
tasks={
"x": dumps_task((inc, 1)),
"y": dumps_task((inc, "x")),
"z": dumps_task((inc, 2)),
},
keys=["y"],
dependencies={"y": "x", "x": [], "z": []},
client="client",
)
assert "z" not in s.tasks
def test_io_loop(loop):
async def main():
with pytest.warns(
DeprecationWarning, match=r"the loop kwarg to Scheduler is deprecated"
):
s = Scheduler(loop=loop, dashboard_address=":0", validate=True)
assert s.io_loop is IOLoop.current()
asyncio.run(main())
@gen_cluster(client=True)
async def test_story(c, s, a, b):
x = delayed(inc)(1)
y = delayed(inc)(x)
f = c.persist(y)
await wait([f])
assert s.transition_log
story = s.story(x.key)
assert all(line in s.transition_log for line in story)
assert len(story) < len(s.transition_log)
assert all(x.key == line[0] or x.key in line[3] for line in story)
assert len(s.story(x.key, y.key)) > len(story)
assert s.story(x.key) == s.story(s.tasks[x.key])
@pytest.mark.parametrize("direct", [False, True])
@gen_cluster(client=True, nthreads=[])
async def test_scatter_no_workers(c, s, direct):
with pytest.raises(TimeoutError):
await s.scatter(data={"x": 1}, client="alice", timeout=0.1)
start = time()
with pytest.raises(TimeoutError):
await c.scatter(123, timeout=0.1, direct=direct)
assert time() < start + 1.5
fut = c.scatter({"y": 2}, timeout=5, direct=direct)
await asyncio.sleep(0.1)
async with Worker(s.address) as w:
await fut
assert w.data["y"] == 2
# Test race condition between worker init and scatter
w = Worker(s.address)
await asyncio.gather(c.scatter({"z": 3}, timeout=5, direct=direct), w)
assert w.data["z"] == 3
await w.close()
@gen_cluster(nthreads=[])
async def test_scheduler_sees_memory_limits(s):
async with Worker(s.address, nthreads=3, memory_limit=12345) as w:
assert s.workers[w.address].memory_limit == 12345
@gen_cluster(client=True)
async def test_retire_workers(c, s, a, b):
[x] = await c.scatter([1], workers=a.address)
[y] = await c.scatter([list(range(1000))], workers=b.address)
assert s.workers_to_close() == [a.address]
workers = await s.retire_workers()
assert list(workers) == [a.address]
assert workers[a.address]["nthreads"] == a.state.nthreads
assert list(s.workers) == [b.address]
assert s.workers_to_close() == []
assert s.workers[b.address].has_what == {s.tasks[x.key], s.tasks[y.key]}
workers = await s.retire_workers()
assert not workers
@gen_cluster(client=True)
async def test_retire_workers_n(c, s, a, b):
await s.retire_workers(n=1, close_workers=True)
assert len(s.workers) == 1
await s.retire_workers(n=0, close_workers=True)
assert len(s.workers) == 1
await s.retire_workers(n=1, close_workers=True)
assert len(s.workers) == 0
await s.retire_workers(n=0, close_workers=True)
assert len(s.workers) == 0
while not (
a.status in (Status.closed, Status.closing, Status.closing_gracefully)
and b.status in (Status.closed, Status.closing, Status.closing_gracefully)
):
await asyncio.sleep(0.01)
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 4)
async def test_workers_to_close(cl, s, *workers):
with dask.config.set(
{"distributed.scheduler.default-task-durations": {"a": 4, "b": 4, "c": 1}}
):
futures = cl.map(slowinc, [1, 1, 1], key=["a-4", "b-4", "c-1"])
while sum(len(w.processing) for w in s.workers.values()) < 3:
await asyncio.sleep(0.001)
wtc = s.workers_to_close()
assert all(not s.workers[w].processing for w in wtc)
assert len(wtc) == 1
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 4)
async def test_workers_to_close_grouped(c, s, *workers):
groups = {
workers[0].address: "a",
workers[1].address: "a",
workers[2].address: "b",
workers[3].address: "b",
}
def key(ws):
return groups[ws.address]
assert set(s.workers_to_close(key=key)) == {w.address for w in workers}
# Assert that job in one worker blocks closure of group
future = c.submit(slowinc, 1, delay=0.2, workers=workers[0].address)
while not any(ws.processing for ws in s.workers.values()):
await asyncio.sleep(0.001)
assert set(s.workers_to_close(key=key)) == {workers[2].address, workers[3].address}
del future
while any(ws.processing for ws in s.workers.values()):
await asyncio.sleep(0.001)
# Assert that *total* byte count in group determines group priority
av = await c.scatter("a" * 100, workers=workers[0].address)
bv = await c.scatter("b" * 75, workers=workers[2].address)
cv = await c.scatter("c" * 75, workers=workers[3].address)
assert set(s.workers_to_close(key=key)) == {workers[0].address, workers[1].address}
@gen_cluster(client=True)
async def test_retire_workers_no_suspicious_tasks(c, s, a, b):
future = c.submit(
slowinc, 100, delay=0.5, workers=a.address, allow_other_workers=True
)
await asyncio.sleep(0.2)
await s.retire_workers(workers=[a.address])
assert all(ts.suspicious == 0 for ts in s.tasks.values())
assert all(tp.suspicious == 0 for tp in s.task_prefixes.values())
@pytest.mark.slow
@pytest.mark.skipif(WINDOWS, reason="num_fds not supported on windows")
@gen_cluster(client=True, nthreads=[], timeout=120)
async def test_file_descriptors(c, s):
await asyncio.sleep(0.1)
da = pytest.importorskip("dask.array")
proc = psutil.Process()
num_fds_1 = proc.num_fds()
N = 20
nannies = await asyncio.gather(*(Nanny(s.address) for _ in range(N)))
while len(s.workers) < N:
await asyncio.sleep(0.1)
num_fds_2 = proc.num_fds()
await asyncio.sleep(0.2)
num_fds_3 = proc.num_fds()
assert num_fds_3 <= num_fds_2 + N # add some heartbeats
x = da.random.random(size=(1000, 1000), chunks=(25, 25))
x = c.persist(x)
await wait(x)
num_fds_4 = proc.num_fds()
assert num_fds_4 <= num_fds_2 + 2 * N
y = c.persist(x + x.T)
await wait(y)
num_fds_5 = proc.num_fds()
assert num_fds_5 < num_fds_4 + N
await asyncio.sleep(1)
num_fds_6 = proc.num_fds()
assert num_fds_6 < num_fds_5 + N
await asyncio.gather(*(n.close() for n in nannies))
await c.close()
assert not s.rpc.open
for occ in c.rpc.occupied.values():
for comm in occ:
assert comm.closed() or comm.peer_address != s.address, comm
assert not s.stream_comms
while proc.num_fds() > num_fds_1 + N:
await asyncio.sleep(0.01)
@pytest.mark.slow
@nodebug
@gen_cluster(client=True)
async def test_learn_occupancy(c, s, a, b):
futures = c.map(slowinc, range(1000), delay=0.2)
while sum(len(ts.who_has) for ts in s.tasks.values()) < 10:
await asyncio.sleep(0.01)
nproc = sum(ts.state == "processing" for ts in s.tasks.values())
assert nproc * 0.1 < s.total_occupancy < nproc * 0.4
for w in [a, b]:
ws = s.workers[w.address]
occ = ws.occupancy
proc = len(ws.processing)
assert proc * 0.1 < occ < proc * 0.4
@pytest.mark.slow
@nodebug
@gen_cluster(client=True)
async def test_learn_occupancy_2(c, s, a, b):
future = c.map(slowinc, range(1000), delay=0.2)
while not any(ts.who_has for ts in s.tasks.values()):
await asyncio.sleep(0.01)
nproc = sum(ts.state == "processing" for ts in s.tasks.values())
assert nproc * 0.1 < s.total_occupancy < nproc * 0.4
@nodebug
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 30)
async def test_balance_many_workers(c, s, *workers):
futures = c.map(slowinc, range(20), delay=0.2)
await wait(futures)
assert {len(w.has_what) for w in s.workers.values()} == {0, 1}
# FIXME test is very timing-based; if some threads are consistently slower than others,
# they'll receive fewer tasks from the queue (a good thing).
@pytest.mark.skipif(
MACOS
and math.isfinite(
float(dask.config.get("distributed.scheduler.worker-saturation"))
),
reason="flaky on macOS with queuing active",
)
@nodebug
@gen_cluster(
client=True,
nthreads=[("127.0.0.1", 1)] * 30,
config={"distributed.scheduler.work-stealing": False},
)
async def test_balance_many_workers_2(c, s, *workers):
futures = c.map(slowinc, range(90), delay=0.2)
await wait(futures)
assert {len(w.has_what) for w in s.workers.values()} == {3}
@gen_cluster(
client=True,
worker_kwargs={
"heartbeat_interval": "10s", # prevent worker from updating executing task durations
},
)
async def test_include_communication_in_occupancy(c, s, a, b):
x = c.submit(operator.mul, b"0", int(s.bandwidth) * 2, workers=a.address)
y = c.submit(operator.mul, b"1", int(s.bandwidth * 3), workers=b.address)
event = Event()
def add_blocked(x, y, event):
event.wait()
return x + y
with freeze_data_fetching(b):
z = c.submit(add_blocked, x, y, event=event, pure=False)
while z.key not in s.tasks or not s.tasks[z.key].processing_on:
await asyncio.sleep(0.01)
ts = s.tasks[z.key]
ws = s.workers[b.address]
assert ts.processing_on == ws
# Occ should be 0.5s (CPU, unknown) + 2s (network)
occ = ws.occupancy
assert occ == 2.5
z2 = c.submit(add_blocked, x, y, event=event, pure=False, workers=b.address)
while z2.key not in s.tasks or not s.tasks[z2.key].processing_on:
await asyncio.sleep(0.01)
# Occ should be 2 * 0.5 (CPU, unknown) + 2s (network)
# Network cost for the same key should only cost once
occ2 = ws.occupancy
assert occ2 == 3
while s.tasks[x.key] not in ws.has_what:
await asyncio.sleep(0.01)
occ3 = ws.occupancy
# Occ should be 2 * 0.5 (CPU, unknown)
assert occ3 == 1
await event.set()
await wait(z)
@gen_cluster(nthreads=[])
async def test_new_worker_with_data_rejected(s):
w = Worker(s.address, nthreads=1)
w.update_data(data={"x": 0})
with captured_logger(
"distributed.worker", level=logging.WARNING
) as wlog, captured_logger("distributed.scheduler", level=logging.WARNING) as slog:
with pytest.raises(RuntimeError, match="Worker failed to start"):
await w
assert "connected with 1 key(s) in memory" in slog.getvalue()
assert "Register worker" not in slog.getvalue()
assert "connected with 1 key(s) in memory" in wlog.getvalue()
assert w.status == Status.failed
assert not s.workers
assert not s.stream_comms
assert not s.host_info
@gen_cluster(client=True)
async def test_worker_arrives_with_processing_data(c, s, a, b):
# A worker arriving with data we need should still be rejected,
# and not affect other computations
x = delayed(slowinc)(1, delay=0.4)
y = delayed(slowinc)(x, delay=0.4)
z = delayed(slowinc)(y, delay=0.4)
yy, zz = c.persist([y, z])
while not any(w.processing for w in s.workers.values()):
await asyncio.sleep(0.01)
w = Worker(s.address, nthreads=1)
w.update_data(data={y.key: 3})
with pytest.raises(RuntimeError, match="Worker failed to start"):
await w
assert w.status == Status.failed
assert len(s.workers) == 2
await wait([yy, zz])
def test_run_on_scheduler_sync(loop):
def f(dask_scheduler=None):
return dask_scheduler.address
with cluster() as (s, [a, b]):
with Client(s["address"], loop=loop) as c:
address = c.run_on_scheduler(f)
assert address == s["address"]
with pytest.raises(ZeroDivisionError):
c.run_on_scheduler(div, 1, 0)
@gen_cluster(client=True)
async def test_run_on_scheduler(c, s, a, b):
def f(dask_scheduler=None):
return dask_scheduler.address
response = await c._run_on_scheduler(f)
assert response == s.address
@gen_cluster(client=True, config={"distributed.scheduler.pickle": False})
async def test_run_on_scheduler_disabled(c, s, a, b):
def f(dask_scheduler=None):
return dask_scheduler.address
with pytest.raises(ValueError, match="disallowed from deserializing"):
await c._run_on_scheduler(f)
@gen_cluster()
async def test_close_worker(s, a, b):
assert len(s.workers) == 2
s.close_worker(a.address)
while len(s.workers) != 1:
await asyncio.sleep(0.01)
assert a.address not in s.workers
await asyncio.sleep(0.2)
assert len(s.workers) == 1
# @pytest.mark.slow
@gen_cluster(Worker=Nanny)
async def test_close_nanny(s, a, b):
assert len(s.workers) == 2
assert a.process.is_alive()
a_worker_address = a.worker_address
await s.remove_worker(a_worker_address, stimulus_id="test")
assert len(s.workers) == 1
assert a_worker_address not in s.workers
start = time()
while a.is_alive():
await asyncio.sleep(0.1)
assert time() < start + 5
assert not a.is_alive()
assert a.pid is None
for _ in range(10):
await asyncio.sleep(0.1)
assert len(s.workers) == 1
assert not a.is_alive()
assert a.pid is None
while a.status != Status.closed:
await asyncio.sleep(0.05)
assert time() < start + 10
@gen_cluster(client=True)
async def test_retire_workers_close(c, s, a, b):
await s.retire_workers(close_workers=True)
assert not s.workers
while a.status != Status.closed and b.status != Status.closed:
await asyncio.sleep(0.01)
@gen_cluster(client=True, Worker=Nanny)
async def test_retire_nannies_close(c, s, a, b):
nannies = [a, b]
await s.retire_workers(close_workers=True, remove=True)
assert not s.workers
start = time()
while any(n.status != Status.closed for n in nannies):
await asyncio.sleep(0.05)
assert time() < start + 10
assert not any(n.is_alive() for n in nannies)
assert not s.workers
@gen_cluster(client=True, nthreads=[("127.0.0.1", 2)])
async def test_fifo_submission(c, s, w):
futures = []
for i in range(20):
future = c.submit(slowinc, i, delay=0.1, key="inc-%02d" % i, fifo_timeout=0.01)
futures.append(future)
await asyncio.sleep(0.02)
await wait(futures[-1])
assert futures[10].status == "finished"
@gen_test()
async def test_scheduler_file():
with tmpfile() as fn:
async with Scheduler(scheduler_file=fn, dashboard_address=":0") as s:
with open(fn) as f:
data = json.load(f)
assert data["address"] == s.address
async with Client(scheduler_file=fn, loop=s.loop, asynchronous=True):
pass
@pytest.mark.parametrize(
"host", ["tcp://0.0.0.0", "tcp://127.0.0.1", "tcp://127.0.0.1:38275"]
)
@pytest.mark.parametrize(
"dashboard_address,expect",
[
(None, ("::", "0.0.0.0")),
("127.0.0.1:0", ("127.0.0.1",)),
],
)
@gen_test()
async def test_dashboard_host(host, dashboard_address, expect):
"""Dashboard is accessible from any host by default, but it can be also bound to
localhost.
"""
async with Scheduler(host=host, dashboard_address=dashboard_address) as s:
sock = first(s.http_server._sockets.values())
assert sock.getsockname()[0] in expect
@gen_cluster(client=True, worker_kwargs={"profile_cycle_interval": "100ms"})
async def test_profile_metadata(c, s, a, b):
start = time() - 1
futures = c.map(slowinc, range(10), delay=0.05, workers=a.address)
await wait(futures)
await asyncio.sleep(0.200)
meta = await s.get_profile_metadata(profile_cycle_interval=0.100)
now = time() + 1
assert meta
assert all(start < t < now for t, count in meta["counts"])
assert all(0 <= count < 30 for t, count in meta["counts"][:4])
assert not meta["counts"][-1][1]
@gen_cluster(
client=True,
config={
"distributed.worker.profile.enabled": True,
"distributed.worker.profile.cycle": "100ms",
},
)
async def test_profile_metadata_timeout(c, s, a, b):
start = time() - 1
def raise_timeout(*args, **kwargs):
raise TimeoutError
b.handlers["profile_metadata"] = raise_timeout
futures = c.map(slowinc, range(10), delay=0.05, workers=a.address)
await wait(futures)
await asyncio.sleep(0.200)
meta = await s.get_profile_metadata(profile_cycle_interval=0.100)
now = time() + 1
assert meta
assert all(start < t < now for t, count in meta["counts"])
assert all(0 <= count < 30 for t, count in meta["counts"][:4])
assert not meta["counts"][-1][1]
@gen_cluster(
client=True,
config={
"distributed.worker.profile.enabled": True,
"distributed.worker.profile.cycle": "100ms",
},
)
async def test_profile_metadata_keys(c, s, a, b):
x = c.map(slowinc, range(10), delay=0.05)
y = c.map(slowdec, range(10), delay=0.05)
await wait(x + y)
meta = await s.get_profile_metadata(profile_cycle_interval=0.100)
assert set(meta["keys"]) == {"slowinc", "slowdec"}
assert (
len(meta["counts"]) - 3 <= len(meta["keys"]["slowinc"]) <= len(meta["counts"])
)
@gen_cluster(
client=True,
config={
"distributed.worker.profile.enabled": True,
"distributed.worker.profile.interval": "1ms",
"distributed.worker.profile.cycle": "100ms",
},
)
async def test_statistical_profiling(c, s, a, b):
futures = c.map(slowinc, range(10), delay=0.1)
await wait(futures)
profile = await s.get_profile()
assert profile["count"]
@gen_cluster(
client=True,
config={
"distributed.worker.profile.enabled": True,
"distributed.worker.profile.interval": "1ms",
"distributed.worker.profile.cycle": "100ms",
},
)
async def test_statistical_profiling_failure(c, s, a, b):
futures = c.map(slowinc, range(10), delay=0.1)
def raise_timeout(*args, **kwargs):
raise TimeoutError
b.handlers["profile"] = raise_timeout
await wait(futures)
profile = await s.get_profile()
assert profile["count"]
@gen_cluster(client=True)
async def test_cancel_fire_and_forget(c, s, a, b):
ev1 = Event()
ev2 = Event()
@delayed
def f(_):
pass
@delayed
def g(_, ev1, ev2):
ev1.set()
ev2.wait()
x = f(None, dask_key_name="x")
y = g(x, ev1, ev2, dask_key_name="y")
z = f(y, dask_key_name="z")
future = c.compute(z)
fire_and_forget(future)
await ev1.wait()
# Cancel the future for z when
# - x is in memory
# - y is processing
# - z is pending
await future.cancel(force=True)
assert future.status == "cancelled"
while s.tasks:
await asyncio.sleep(0.01)
await ev2.set()
@gen_cluster(
client=True, Worker=Nanny, clean_kwargs={"processes": False, "threads": False}
)
async def test_log_tasks_during_restart(c, s, a, b):
future = c.submit(sys.exit, 0)
await wait(future)
assert "exit" in str(s.events)
@gen_cluster(client=True)
async def test_get_task_status(c, s, a, b):
future = c.submit(inc, 1)
await wait(future)
result = await a.scheduler.get_task_status(keys=[future.key])
assert result == {future.key: "memory"}
@gen_cluster(nthreads=[])
async def test_deque_handler(s):
from distributed.scheduler import logger
deque_handler = s._deque_handler
logger.info("foo123")
assert len(deque_handler.deque) >= 1
msg = deque_handler.deque[-1]
assert "distributed.scheduler" in deque_handler.format(msg)
assert any(msg.msg == "foo123" for msg in deque_handler.deque)
@gen_cluster(client=True)
async def test_retries(c, s, a, b):
args = [ZeroDivisionError("one"), ZeroDivisionError("two"), 42]
future = c.submit(varying(args), retries=3)
result = await future
assert result == 42
assert s.tasks[future.key].retries == 1
assert not s.tasks[future.key].exception
future = c.submit(varying(args), retries=2, pure=False)
result = await future
assert result == 42
assert s.tasks[future.key].retries == 0
assert not s.tasks[future.key].exception
future = c.submit(varying(args), retries=1, pure=False)
with pytest.raises(ZeroDivisionError) as exc_info:
await future
exc_info.match("two")
future = c.submit(varying(args), retries=0, pure=False)
with pytest.raises(ZeroDivisionError) as exc_info:
await future
exc_info.match("one")
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3, config=NO_AMM)
async def test_missing_data_errant_worker(c, s, w1, w2, w3):
with dask.config.set({"distributed.comm.timeouts.connect": "1s"}):
np = pytest.importorskip("numpy")
x = c.submit(np.random.random, 10000000, workers=w1.address)
await wait(x)
await c.replicate(x, workers=[w1.address, w2.address])
y = c.submit(len, x, workers=w3.address)
while not w3.state.tasks:
await asyncio.sleep(0.001)
await w1.close()
await wait(y)
@gen_cluster(client=True)
async def test_dont_recompute_if_persisted(c, s, a, b):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(inc)(x, dask_key_name="y")
yy = y.persist()
await wait(yy)
old = list(s.transition_log)
yyy = y.persist()
await wait(yyy)
await asyncio.sleep(0.100)
assert list(s.transition_log) == old
@gen_cluster(client=True)
async def test_dont_recompute_if_persisted_2(c, s, a, b):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(inc)(x, dask_key_name="y")
z = delayed(inc)(y, dask_key_name="z")
yy = y.persist()
await wait(yy)
old = s.story("x", "y")
zz = z.persist()
await wait(zz)
await asyncio.sleep(0.100)
assert s.story("x", "y") == old
@gen_cluster(client=True)
async def test_dont_recompute_if_persisted_3(c, s, a, b):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(inc)(2, dask_key_name="y")
z = delayed(inc)(y, dask_key_name="z")
w = delayed(operator.add)(x, z, dask_key_name="w")
ww = w.persist()
await wait(ww)
old = list(s.transition_log)
www = w.persist()
await wait(www)
await asyncio.sleep(0.100)
assert list(s.transition_log) == old
@gen_cluster(client=True)
async def test_dont_recompute_if_persisted_4(c, s, a, b):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(inc)(x, dask_key_name="y")
z = delayed(inc)(x, dask_key_name="z")
yy = y.persist()
await wait(yy)
old = s.story("x")
while s.tasks["x"].state == "memory":
await asyncio.sleep(0.01)
yyy, zzz = dask.persist(y, z)
await wait([yyy, zzz])
new = s.story("x")
assert len(new) > len(old)
@gen_cluster(client=True)
async def test_dont_forget_released_keys(c, s, a, b):
x = c.submit(inc, 1, key="x")
y = c.submit(inc, x, key="y")
z = c.submit(dec, x, key="z")
del x
await wait([y, z])
del z
while "z" in s.tasks:
await asyncio.sleep(0.01)
assert "x" in s.tasks
@gen_cluster(client=True)
async def test_dont_recompute_if_erred(c, s, a, b):
x = delayed(inc)(1, dask_key_name="x")
y = delayed(div)(x, 0, dask_key_name="y")
yy = y.persist()
await wait(yy)
old = list(s.transition_log)
yyy = y.persist()
await wait(yyy)
await asyncio.sleep(0.100)
assert list(s.transition_log) == old
@gen_cluster()
async def test_closing_scheduler_closes_workers(s, a, b):
await s.close()
start = time()
while a.status != Status.closed or b.status != Status.closed:
await asyncio.sleep(0.01)
assert time() < start + 2
@gen_cluster(
client=True, nthreads=[("127.0.0.1", 1)], worker_kwargs={"resources": {"A": 1}}
)
async def test_resources_reset_after_cancelled_task(c, s, w):
lock = Lock()
def block(lock):
with lock:
return
await lock.acquire()
future = c.submit(block, lock, resources={"A": 1})
while not w.state.executing_count:
await asyncio.sleep(0.01)
await future.cancel()
await lock.release()
while w.state.executing_count:
await asyncio.sleep(0.01)
assert not s.workers[w.address].used_resources["A"]
assert w.state.available_resources == {"A": 1}
await c.submit(inc, 1, resources={"A": 1})
@gen_cluster(client=True)
async def test_gh2187(c, s, a, b):
def foo():
return "foo"
def bar(x):
return x + "bar"
def baz(x):
return x + "baz"
def qux(x):
sleep(0.1)
return x + "qux"
w = c.submit(foo, key="w")
x = c.submit(bar, w, key="x")
y = c.submit(baz, x, key="y")
await y
z = c.submit(qux, y, key="z")
del y
await asyncio.sleep(0.1)
f = c.submit(bar, x, key="y")
await f
@gen_cluster(client=True)
async def test_collect_versions(c, s, a, b):
cs = s.clients[c.id]
(w1, w2) = s.workers.values()
assert cs.versions
assert w1.versions
assert w2.versions
assert "dask" in str(cs.versions)
assert cs.versions == w1.versions == w2.versions
@gen_cluster(client=True)
async def test_idle_timeout(c, s, a, b):
beginning = time()
s.idle_timeout = 0.500
pc = PeriodicCallback(s.check_idle, 10)
future = c.submit(slowinc, 1)
while not s.tasks:
await asyncio.sleep(0.01)
pc.start()
await future
assert s.idle_since is None or s.idle_since > beginning
with captured_logger("distributed.scheduler") as logs:
start = time()
while s.status != Status.closed:
await asyncio.sleep(0.01)
assert time() < start + 3
start = time()
while not (a.status == Status.closed and b.status == Status.closed):
await asyncio.sleep(0.01)
assert time() < start + 1
assert "idle" in logs.getvalue()
assert "500" in logs.getvalue()
assert "ms" in logs.getvalue()
assert s.idle_since > beginning
pc.stop()
@gen_cluster(
client=True,
nthreads=[],
)
async def test_idle_timeout_no_workers(c, s):
s.idle_timeout = 0.1
future = c.submit(inc, 1)
while not s.tasks:
await asyncio.sleep(0.1)
s.check_idle()
assert not s.idle_since
for _ in range(10):
await asyncio.sleep(0.01)
s.check_idle()
assert not s.idle_since
assert s.tasks
async with Worker(s.address):
await future
s.check_idle()
assert not s.idle_since
del future
while s.tasks:
await asyncio.sleep(0.1)
# We only set idleness once nothing happened between two consecutive
# check_idle calls
s.check_idle()
assert not s.idle_since
s.check_idle()
assert s.idle_since
@gen_cluster(client=True, config={"distributed.scheduler.bandwidth": "100 GB"})
async def test_bandwidth(c, s, a, b):
start = s.bandwidth
x = c.submit(operator.mul, b"0", 1000001, workers=a.address)
y = c.submit(lambda x: x, x, workers=b.address)
await y
await b.heartbeat()
assert s.bandwidth < start # we've learned that we're slower
assert b.latency
assert typename(bytes) in s.bandwidth_types
assert (b.address, a.address) in s.bandwidth_workers
await a.close()
assert not s.bandwidth_workers
@gen_cluster(client=True, Worker=Nanny, timeout=60)
async def test_bandwidth_clear(c, s, a, b):
np = pytest.importorskip("numpy")
x = c.submit(np.arange, 1000000, workers=[a.worker_address], pure=False)
y = c.submit(np.arange, 1000000, workers=[b.worker_address], pure=False)
z = c.submit(operator.add, x, y) # force communication
await z
async def f(dask_worker):
await dask_worker.heartbeat()
await c.run(f)
assert s.bandwidth_workers
await s.restart()
assert not s.bandwidth_workers
@gen_cluster()
async def test_workerstate_clean(s, a, b):
ws = s.workers[a.address].clean()
assert ws.address == a.address
b = pickle.dumps(ws)
assert len(b) < 1000
@gen_cluster(client=True)
async def test_result_type(c, s, a, b):
x = c.submit(lambda: 1)
await x
assert "int" in s.tasks[x.key].type
@gen_cluster()
async def test_close_workers(s, *workers):
await s.close()
for w in workers:
if not w.status == Status.closed:
await asyncio.sleep(0.1)
@pytest.mark.skipif(not LINUX, reason="Need 127.0.0.2 to mean localhost")
@gen_test()
async def test_host_address():
s = await Scheduler(host="127.0.0.2", dashboard_address=":0")
assert "127.0.0.2" in s.address
await s.close()
@gen_test()
async def test_dashboard_address():
pytest.importorskip("bokeh")
async with Scheduler(dashboard_address="127.0.0.1:8901") as s:
assert s.services["dashboard"].port == 8901
async with Scheduler(dashboard_address="127.0.0.1") as s:
assert s.services["dashboard"].port
async with Scheduler(dashboard_address="127.0.0.1:8901,127.0.0.1:8902") as s:
assert s.services["dashboard"].port == 8901
async with Scheduler(dashboard_address=":8901,:8902") as s:
assert s.services["dashboard"].port == 8901
async with Scheduler(dashboard_address=[8901, 8902]) as s:
assert s.services["dashboard"].port == 8901
@gen_cluster(client=True)
async def test_adaptive_target(c, s, a, b):
with dask.config.set(
{"distributed.scheduler.default-task-durations": {"slowinc": 10}}
):
assert s.adaptive_target() == 0
x = c.submit(inc, 1)
await x
assert s.adaptive_target() == 1
# Long task
x = c.submit(slowinc, 1, delay=0.5)
while x.key not in s.tasks:
await asyncio.sleep(0.01)
assert s.adaptive_target(target_duration=".1s") == 1 # still one
L = c.map(slowinc, range(100), delay=0.5)
while len(s.tasks) < 100:
await asyncio.sleep(0.01)
assert 10 < s.adaptive_target(target_duration=".1s") <= 100
del x, L
while s.tasks:
await asyncio.sleep(0.01)
assert s.adaptive_target(target_duration=".1s") == 0
@pytest.mark.parametrize("queue", [True, False])
@gen_cluster(
client=True,
nthreads=[],
)
async def test_adaptive_target_empty_cluster(c, s, queue):
if queue:
s.WORKER_SATURATION = 1.0
else:
s.WORKER_SATURATION = float("inf")
assert s.adaptive_target() == 0
f = c.submit(inc, -1)
await async_wait_for(lambda: s.tasks, timeout=5)
assert s.adaptive_target() == 1
del f
if queue:
# only queuing supports fast scale-up for empty clusters https://github.com/dask/distributed/issues/6962
fs = c.map(inc, range(100))
await async_wait_for(lambda: len(s.tasks) == len(fs), timeout=5)
assert s.adaptive_target() > 1
@gen_test()
async def test_async_context_manager():
async with Scheduler(dashboard_address=":0") as s:
assert s.status == Status.running
async with Worker(s.address) as w:
assert w.status == Status.running
assert s.workers
assert not s.workers
@gen_test()
async def test_allowed_failures_config():
async with Scheduler(dashboard_address=":0", allowed_failures=10) as s:
assert s.allowed_failures == 10
with dask.config.set({"distributed.scheduler.allowed_failures": 100}):
async with Scheduler(dashboard_address=":0") as s:
assert s.allowed_failures == 100
with dask.config.set({"distributed.scheduler.allowed_failures": 0}):
async with Scheduler(dashboard_address=":0") as s:
assert s.allowed_failures == 0
@gen_test()
async def test_finished():
async with Scheduler(dashboard_address=":0") as s:
async with Worker(s.address) as w:
pass
await s.finished()
await w.finished()
@gen_cluster(nthreads=[], client=True)
async def test_retire_names_str(c, s):
async with Worker(s.address, name="0") as a, Worker(s.address, name="1") as b:
futures = c.map(inc, range(5), workers=[a.address])
futures.extend(c.map(inc, range(5, 10), workers=[b.address]))
await wait(futures)
assert a.data and b.data
await s.retire_workers(names=[0])
assert all(f.done() for f in futures)
assert len(b.data) == 10
@gen_cluster(
client=True, config={"distributed.scheduler.default-task-durations": {"inc": 100}}
)
async def test_get_task_duration(c, s, a, b):
future = c.submit(inc, 1)
await future
assert 10 < s.task_prefixes["inc"].duration_average < 100
ts_pref1 = s.new_task("inc-abcdefab", None, "released")
assert 10 < s.get_task_duration(ts_pref1) < 100
# make sure get_task_duration adds TaskStates to unknown dict
assert len(s.unknown_durations) == 0
x = c.submit(slowinc, 1, delay=0.5)
while len(s.tasks) < 3:
await asyncio.sleep(0.01)
ts = s.tasks[x.key]
assert s.get_task_duration(ts) == 0.5 # default
assert len(s.unknown_durations) == 1
assert len(s.unknown_durations["slowinc"]) == 1
@gen_cluster(client=True)
async def test_default_task_duration_splits(c, s, a, b):
"""Ensure that the default task durations for shuffle split tasks are, by default,
aligned with the task names of dask.dask
"""
pd = pytest.importorskip("pandas")
dd = pytest.importorskip("dask.dataframe")
# We don't care about the actual computation here but we'll schedule one anyhow to verify that we're looking for the correct key
npart = 10
df = dd.from_pandas(pd.DataFrame({"A": range(100), "B": 1}), npartitions=npart)
graph = df.shuffle(
"A",
shuffle="tasks",
# If we don't have enough partitions, we'll fall back to a simple shuffle
max_branch=npart - 1,
).sum()
fut = c.compute(graph)
await wait(fut)
split_prefix = [pre for pre in s.task_prefixes.keys() if "split" in pre]
assert len(split_prefix) == 1
split_prefix = split_prefix[0]
default_time = parse_timedelta(
dask.config.get("distributed.scheduler.default-task-durations")[split_prefix]
)
assert default_time <= 1e-6
@gen_test()
async def test_no_dangling_asyncio_tasks():
start = asyncio.all_tasks()
async with Scheduler(dashboard_address=":0") as s:
async with Worker(s.address, name="0"):
async with Client(s.address, asynchronous=True) as c:
await c.submit(lambda: 1)
tasks = asyncio.all_tasks()
assert tasks == start
class NoSchedulerDelayWorker(Worker):
"""Custom worker class which does not update `scheduler_delay`.
This worker class is useful for some tests which make time
comparisons using times reported from workers.
"""
@property
def scheduler_delay(self):
return 0
@scheduler_delay.setter
def scheduler_delay(self, value):
pass
@gen_cluster(client=True, Worker=NoSchedulerDelayWorker, config=NO_AMM)
async def test_task_groups(c, s, a, b):
start = time()
da = pytest.importorskip("dask.array")
x = da.arange(100, chunks=(20,))
y = (x + 1).persist(optimize_graph=False)
y = await y
stop = time()
tg = s.task_groups[x.name]
tp = s.task_prefixes["arange"]
repr(tg)
repr(tp)
assert tg.states["memory"] == 0
assert tg.states["released"] == 5
assert tp.states["memory"] == 0
assert tp.states["released"] == 5
assert tp.groups == [tg]
assert tg.prefix is tp
# these must be true since in this simple case there is a 1to1 mapping
# between prefix and group
assert tg.duration == tp.duration
assert tg.nbytes_total == tp.nbytes_total
# It should map down to individual tasks
assert tg.nbytes_total == sum(
ts.get_nbytes() for ts in s.tasks.values() if ts.group is tg
)
tg = s.task_groups[y.name]
assert tg.states["memory"] == 5
assert s.task_groups[y.name].dependencies == {s.task_groups[x.name]}
await c.replicate(y)
# TODO: Are we supposed to track replicated memory here? See also Scheduler.add_keys
assert "array" in str(tg.types)
assert "array" in str(tp.types)
del y
while s.tasks:
await asyncio.sleep(0.01)
assert tg.states["forgotten"] == 5
assert tg.name not in s.task_groups
assert tg.start > start
assert tg.stop < stop
assert "compute" in tg.all_durations
@gen_cluster(client=True)
async def test_task_prefix(c, s, a, b):
da = pytest.importorskip("dask.array")
x = da.arange(100, chunks=(20,))
y = (x + 1).sum().persist()
y = await y
assert s.task_prefixes["sum-aggregate"].states["memory"] == 1
a = da.arange(101, chunks=(20,))
b = (a + 1).sum().persist()
b = await b
assert s.task_prefixes["sum-aggregate"].states["memory"] == 2
@gen_cluster(
client=True, Worker=Nanny, config={"distributed.scheduler.allowed-failures": 0}
)
async def test_failing_task_increments_suspicious(client, s, a, b):
future = client.submit(sys.exit, 0)
await wait(future)
assert s.task_prefixes["exit"].suspicious == 1
assert sum(tp.suspicious for tp in s.task_prefixes.values()) == sum(
ts.suspicious for ts in s.tasks.values()
)
@gen_cluster(client=True)
async def test_task_group_non_tuple_key(c, s, a, b):
da = pytest.importorskip("dask.array")
np = pytest.importorskip("numpy")
x = da.arange(100, chunks=(20,))
y = (x + 1).sum().persist()
y = await y
assert s.task_prefixes["sum"].states["released"] == 4
assert "sum" not in s.task_groups
f = c.submit(np.sum, [1, 2, 3])
await f
assert s.task_prefixes["sum"].states["released"] == 4
assert s.task_prefixes["sum"].states["memory"] == 1
assert "sum" in s.task_groups
@gen_cluster(client=True)
async def test_task_unique_groups(c, s, a, b):
"""This test ensure that task groups remain unique when using submit"""
x = c.submit(sum, [1, 2])
y = c.submit(len, [1, 2])
z = c.submit(sum, [3, 4])
await asyncio.gather(x, y, z)
assert s.task_prefixes["len"].states["memory"] == 1
assert s.task_prefixes["sum"].states["memory"] == 2
@gen_cluster(client=True)
async def test_task_group_on_fire_and_forget(c, s, a, b):
# Regression test for https://github.com/dask/distributed/issues/3465
with captured_logger("distributed.scheduler") as logs:
x = await c.scatter(list(range(10)))
fire_and_forget([c.submit(slowadd, i, x[i]) for i in range(len(x))])
await asyncio.sleep(1)
assert "Error transitioning" not in logs.getvalue()
class FlakyConnectionPool(ConnectionPool):
def __init__(self, *args, failing_connections=0, **kwargs):
self.cnn_count = 0
self.failing_connections = failing_connections
super().__init__(*args, **kwargs)
async def connect(self, *args, **kwargs):
self.cnn_count += 1
if self.cnn_count > self.failing_connections:
return await super().connect(*args, **kwargs)
else:
return BrokenComm()
@gen_cluster(client=True)
async def test_gather_failing_cnn_recover(c, s, a, b):
orig_rpc = s.rpc
x = await c.scatter({"x": 1}, workers=a.address)
s.rpc = await FlakyConnectionPool(failing_connections=1)
with dask.config.set({"distributed.comm.retry.count": 1}):
res = await s.gather(keys=["x"])
assert res["status"] == "OK"
@gen_cluster(client=True)
async def test_gather_failing_cnn_error(c, s, a, b):
orig_rpc = s.rpc
x = await c.scatter({"x": 1}, workers=a.address)
s.rpc = await FlakyConnectionPool(failing_connections=10)
res = await s.gather(keys=["x"])
assert res["status"] == "error"
assert list(res["keys"]) == ["x"]
@gen_cluster(client=True)
async def test_gather_no_workers(c, s, a, b):
await asyncio.sleep(1)
x = await c.scatter({"x": 1}, workers=a.address)
await a.close()
await b.close()
res = await s.gather(keys=["x"])
assert res["status"] == "error"
assert list(res["keys"]) == ["x"]
@gen_cluster(client=True, client_kwargs={"direct_to_workers": False})
async def test_gather_bad_worker_removed(c, s, a, b):
"""
Upon connection failure or missing expected keys during gather, a worker is
shut down. The tasks should be rescheduled onto different workers, transparently
to `client.gather`.
"""
x = c.submit(slowinc, 1, workers=[a.address], allow_other_workers=True)
def finalizer(*args):
return get_worker().address
fin = c.submit(
finalizer, x, key="final", workers=[a.address], allow_other_workers=True
)
s.rpc = await FlakyConnectionPool(failing_connections=1)
# This behaviour is independent of retries. Remove them to reduce complexity
# of this setup
with dask.config.set({"distributed.comm.retry.count": 0}):
with captured_logger(
logging.getLogger("distributed.scheduler")
) as sched_logger, captured_logger(
logging.getLogger("distributed.client")
) as client_logger:
# Gather using the client (as an ordinary user would)
# Upon a missing key, the client will remove the bad worker and
# reschedule the computations
# Both tasks are rescheduled onto `b`, since `a` was removed.
assert await fin == b.address
await a.finished()
assert list(s.workers) == [b.address]
sched_logger = sched_logger.getvalue()
client_logger = client_logger.getvalue()
assert "Shut down workers that don't have promised key" in sched_logger
assert "Couldn't gather 1 keys, rescheduling" in client_logger
assert s.tasks[fin.key].who_has == {s.workers[b.address]}
assert a.state.executed_count == 2
assert b.state.executed_count >= 1
# ^ leave room for a future switch from `remove_worker` to `retire_workers`
# Ensure that the communication was done via the scheduler, i.e. we actually hit a
# bad connection
assert s.rpc.cnn_count > 0
@gen_cluster(client=True)
async def test_too_many_groups(c, s, a, b):
x = dask.delayed(inc)(1)
y = dask.delayed(dec)(2)
z = dask.delayed(operator.add)(x, y)
await c.compute(z)
while s.tasks:
await asyncio.sleep(0.01)
assert len(s.task_groups) < 3
@gen_test()
async def test_multiple_listeners():
with captured_logger(logging.getLogger("distributed.scheduler")) as log:
async with Scheduler(dashboard_address=":0", protocol=["inproc", "tcp"]) as s:
async with Worker(s.listeners[0].contact_address) as a:
async with Worker(s.listeners[1].contact_address) as b:
assert a.address.startswith("inproc")
assert a.scheduler.address.startswith("inproc")
assert b.address.startswith("tcp")
assert b.scheduler.address.startswith("tcp")
async with Client(s.address, asynchronous=True) as c:
futures = c.map(inc, range(20))
await wait(futures)
# Force inter-worker communication both ways
await c.submit(sum, futures, workers=[a.address])
await c.submit(len, futures, workers=[b.address])
log = log.getvalue()
assert re.search(r"Scheduler at:\s*tcp://", log)
assert re.search(r"Scheduler at:\s*inproc://", log)
@gen_cluster(nthreads=[("127.0.0.1", 1)])
async def test_worker_name_collision(s, a):
# test that a name collision for workers produces the expected response
# and leaves the data structures of Scheduler in a good state
# is not updated by the second worker
with captured_logger(logging.getLogger("distributed.scheduler")) as log:
with raises_with_cause(
RuntimeError, None, ValueError, f"name taken, {a.name!r}"
):
await Worker(s.address, name=a.name, host="127.0.0.1")
s.validate_state()
assert set(s.workers) == {a.address}
assert s.aliases == {a.name: a.address}
log = log.getvalue()
assert "duplicate" in log
assert str(a.name) in log
@gen_cluster(client=True, config={"distributed.scheduler.unknown-task-duration": "1h"})
async def test_unknown_task_duration_config(client, s, a, b):
future = client.submit(slowinc, 1)
while not s.tasks:
await asyncio.sleep(0.001)
assert sum(s.get_task_duration(ts) for ts in s.tasks.values()) == 3600
assert len(s.unknown_durations) == 1
await wait(future)
assert len(s.unknown_durations) == 0
@gen_cluster()
async def test_unknown_task_duration_config_2(s, a, b):
assert s.idle_since == s.time_started
@gen_cluster(client=True)
async def test_retire_state_change(c, s, a, b):
np = pytest.importorskip("numpy")
y = c.map(lambda x: x**2, range(10))
await c.scatter(y)
coros = []
for _ in range(2):
v = c.map(lambda i: i * np.random.randint(1000), y)
k = c.map(lambda i: i * np.random.randint(1000), v)
foo = c.map(lambda j: j * 6, k)
step = c.compute(foo)
coros.append(c.gather(step))
await c.retire_workers(workers=[a.address])
await asyncio.gather(*coros)
@gen_cluster(client=True, config={"distributed.scheduler.events-log-length": 3})
async def test_configurable_events_log_length(c, s, a, b):
s.log_event("test", "dummy message 1")
assert len(s.events["test"]) == 1
s.log_event("test", "dummy message 2")
s.log_event("test", "dummy message 3")
assert len(s.events["test"]) == 3
# adding a forth message will drop the first one and length stays at 3
s.log_event("test", "dummy message 4")
assert len(s.events["test"]) == 3
assert s.events["test"][0][1] == "dummy message 2"
assert s.events["test"][1][1] == "dummy message 3"
assert s.events["test"][2][1] == "dummy message 4"
@gen_cluster()
async def test_get_worker_monitor_info(s, a, b):
res = await s.get_worker_monitor_info()
ms = ["cpu", "time", "host_net_io.read_bps", "host_net_io.write_bps"]
if not WINDOWS:
ms += ["num_fds"]
for w in (a, b):
assert all(res[w.address]["range_query"][m] is not None for m in ms)
assert res[w.address]["count"] is not None
assert res[w.address]["last_time"] is not None
@gen_cluster(client=True)
async def test_quiet_cluster_round_robin(c, s, a, b):
await c.submit(inc, 1)
await c.submit(inc, 2)
await c.submit(inc, 3)
assert a.state.log and b.state.log
def test_memorystate():
m = MemoryState(
process=100,
unmanaged_old=15,
managed_in_memory=68,
managed_spilled=12,
)
assert m.process == 100
assert m.managed == 80
assert m.managed_in_memory == 68
assert m.managed_spilled == 12
assert m.unmanaged == 32
assert m.unmanaged_old == 15
assert m.unmanaged_recent == 17
assert m.optimistic == 83
assert (
repr(m)
== dedent(
"""
Process memory (RSS) : 100 B
- managed by Dask : 68 B
- unmanaged (old) : 15 B
- unmanaged (recent): 17 B
Spilled to disk : 12 B
"""
).lstrip()
)
def test_memorystate_sum():
m1 = MemoryState(
process=100,
unmanaged_old=15,
managed_in_memory=68,
managed_spilled=12,
)
m2 = MemoryState(
process=80,
unmanaged_old=10,
managed_in_memory=58,
managed_spilled=2,
)
m3 = MemoryState.sum(m1, m2)
assert m3.process == 180
assert m3.unmanaged_old == 25
assert m3.managed == 140
assert m3.managed_spilled == 14
@pytest.mark.parametrize(
"process,unmanaged_old,managed_in_memory,managed_spilled",
list(product(*[[0, 1, 2, 3]] * 4)),
)
def test_memorystate_adds_up(
process, unmanaged_old, managed_in_memory, managed_spilled
):
"""Input data is massaged by __init__ so that everything adds up by construction"""
m = MemoryState(
process=process,
unmanaged_old=unmanaged_old,
managed_in_memory=managed_in_memory,
managed_spilled=managed_spilled,
)
assert m.managed_in_memory + m.unmanaged == m.process
assert m.managed_in_memory + m.managed_spilled == m.managed
assert m.unmanaged_old + m.unmanaged_recent == m.unmanaged
assert m.optimistic + m.unmanaged_recent == m.process
_test_leak = []
def leaking(out_mib, leak_mib, sleep_time):
out = "x" * (out_mib * 2**20)
_test_leak.append("x" * (leak_mib * 2**20))
sleep(sleep_time)
return out
def clear_leak():
_test_leak.clear()
async def assert_memory(
scheduler_or_workerstate: Scheduler | WorkerState,
attr: str,
/,
min_mib: float,
max_mib: float,
*,
timeout: float = 10,
) -> None:
t0 = time()
while True:
minfo = scheduler_or_workerstate.memory
nmib = getattr(minfo, attr) / 2**20
if min_mib <= nmib <= max_mib:
return
if time() - t0 > timeout:
raise AssertionError(
f"Expected {min_mib} MiB <= {attr} <= {max_mib} MiB; got:\n{minfo!r}"
)
await asyncio.sleep(0.01)
@pytest.mark.slow
@gen_cluster(
client=True,
Worker=Nanny,
config={
"distributed.worker.memory.recent-to-old-time": "4s",
"distributed.worker.memory.spill": 0.7,
},
worker_kwargs={
"heartbeat_interval": "20ms",
"memory_limit": "700 MiB",
},
)
async def test_memory(c, s, *nannies):
# WorkerState objects, as opposed to the Nanny objects passed by gen_cluster
a, b = s.workers.values()
def print_memory_info(msg: str) -> None:
print(f"==== {msg} ====")
print(f"---- a ----\n{a.memory}")
print(f"---- b ----\n{b.memory}")
print(f"---- s ----\n{s.memory}")
s_m0 = s.memory
assert s_m0.process == a.memory.process + b.memory.process
assert s_m0.managed == 0
assert a.memory.managed == 0
assert b.memory.managed == 0
# Trigger potential imports inside WorkerPlugin.transition
await c.submit(inc, 0, workers=[a.address])
await c.submit(inc, 1, workers=[b.address])
# Wait for the memory readings to stabilize after workers go online
await asyncio.sleep(2)
await asyncio.gather(
assert_memory(a, "unmanaged_recent", 0, 5, timeout=10),
assert_memory(b, "unmanaged_recent", 0, 5, timeout=10),
assert_memory(s, "unmanaged_recent", 0, 10, timeout=10.1),
)
print()
print_memory_info("Starting memory")
# 50 MiB heap + 100 MiB leak
# Note that runtime=2s is less than recent-to-old-time=4s
f1 = c.submit(leaking, 50, 100, 2, key="f1", workers=[a.name])
f2 = c.submit(leaking, 50, 100, 2, key="f2", workers=[b.name])
await asyncio.gather(
assert_memory(a, "unmanaged_recent", 150, 170, timeout=1.8),
assert_memory(b, "unmanaged_recent", 150, 170, timeout=1.8),
assert_memory(s, "unmanaged_recent", 300, 340, timeout=1.9),
)
await wait([f1, f2])
# On each worker, we now have 50 MiB managed + 100 MiB fresh leak
await asyncio.gather(
assert_memory(a, "managed_in_memory", 50, 51, timeout=0),
assert_memory(b, "managed_in_memory", 50, 51, timeout=0),
assert_memory(s, "managed_in_memory", 100, 101, timeout=0),
assert_memory(a, "unmanaged_recent", 100, 120, timeout=0),
assert_memory(b, "unmanaged_recent", 100, 120, timeout=0),
assert_memory(s, "unmanaged_recent", 200, 240, timeout=0),
)
# Force the output of f1 and f2 to spill to disk
print_memory_info("Before spill")
a_leak = round(700 * 0.7 - a.memory.process / 2**20)
b_leak = round(700 * 0.7 - b.memory.process / 2**20)
assert a_leak > 50 and b_leak > 50
a_leak += 10
b_leak += 10
print(f"Leaking additional memory: {a_leak=}; {b_leak=}")
await wait(
[
c.submit(leaking, 0, a_leak, 0, pure=False, workers=[a.name]),
c.submit(leaking, 0, b_leak, 0, pure=False, workers=[b.name]),
]
)
# dask serialization compresses ("x" * 50 * 2**20) from 50 MiB to ~200 kiB.
# Test that managed_spilled reports the actual size on disk and not the output of
# sizeof().
# FIXME https://github.com/dask/distributed/issues/5807
# This would be more robust if we could just enable zlib compression in
# @gen_cluster
from distributed.protocol.compression import default_compression
if default_compression:
await asyncio.gather(
assert_memory(a, "managed_spilled", 0.1, 0.5, timeout=3),
assert_memory(b, "managed_spilled", 0.1, 0.5, timeout=3),
assert_memory(s, "managed_spilled", 0.2, 1.0, timeout=3.1),
)
else:
# Long timeout to allow spilling 100 MiB to disk
await asyncio.gather(
assert_memory(a, "managed_spilled", 50, 51, timeout=10),
assert_memory(b, "managed_spilled", 50, 51, timeout=10),
assert_memory(s, "managed_spilled", 100, 102, timeout=10.1),
)
# FIXME on Windows and MacOS we occasionally observe managed_in_memory = 49 bytes
await asyncio.gather(
assert_memory(a, "managed_in_memory", 0, 0.1, timeout=0),
assert_memory(b, "managed_in_memory", 0, 0.1, timeout=0),
assert_memory(s, "managed_in_memory", 0, 0.1, timeout=0),
)
print_memory_info("After spill")
# Delete spilled keys
del f1
del f2
await asyncio.gather(
assert_memory(a, "managed_spilled", 0, 0, timeout=3),
assert_memory(b, "managed_spilled", 0, 0, timeout=3),
assert_memory(s, "managed_spilled", 0, 0, timeout=3.1),
)
print_memory_info("After clearing spilled keys")
# Wait until 4s have passed since the spill to observe unmanaged_recent
# transition into unmanaged_old
await asyncio.gather(
assert_memory(a, "unmanaged_recent", 0, 5, timeout=4.5),
assert_memory(b, "unmanaged_recent", 0, 5, timeout=4.5),
assert_memory(s, "unmanaged_recent", 0, 10, timeout=4.6),
)
# When the leaked memory is cleared, unmanaged and unmanaged_old drop.
# On MacOS and Windows, the process memory of the Python interpreter does not shrink
# as fast as on Linux. Note that this behaviour is heavily impacted by OS tweaks,
# meaning that what you observe on your local host may behave differently on CI.
if not LINUX:
return
print_memory_info("Before clearing memory leak")
prev_unmanaged_a = a.memory.unmanaged / 2**20
prev_unmanaged_b = b.memory.unmanaged / 2**20
await c.run(clear_leak)
await asyncio.gather(
assert_memory(a, "unmanaged", 0, prev_unmanaged_a - 50, timeout=10),
assert_memory(b, "unmanaged", 0, prev_unmanaged_b - 50, timeout=10),
)
await asyncio.gather(
assert_memory(a, "unmanaged_recent", 0, 5, timeout=0),
assert_memory(b, "unmanaged_recent", 0, 5, timeout=0),
)
@gen_cluster(client=True, worker_kwargs={"memory_limit": 0})
async def test_memory_no_zict(c, s, a, b):
"""When Worker.data is not a SpillBuffer, test that querying managed_spilled
defaults to 0 and doesn't raise KeyError
"""
await c.wait_for_workers(2)
assert isinstance(a.data, dict)
assert isinstance(b.data, dict)
f = c.submit(leaking, 10, 0, 0)
await f
assert 10 * 2**20 < s.memory.managed_in_memory < 11 * 2**20
assert s.memory.managed_spilled == 0
@gen_cluster(nthreads=[])
async def test_memory_no_workers(s):
assert s.memory.process == 0
assert s.memory.managed == 0
@gen_cluster(config={"distributed.admin.system-monitor.interval": "999s"})
async def test_infrequent_sysmon(s, a, b):
"""It doesn't matter how infrequently SystemMonitor.update() is called; there's
always one invocation before the first heartbeat.
"""
assert s.memory.process > 0
@gen_cluster()
async def test_close_scheduler__close_workers_Worker(s, a, b):
with captured_logger("distributed.comm", level=logging.DEBUG) as log:
await s.close()
while not a.status == Status.closed:
await asyncio.sleep(0.05)
log = log.getvalue()
assert "retry" not in log
@gen_cluster(Worker=Nanny)
async def test_close_scheduler__close_workers_Nanny(s, a, b):
with captured_logger("distributed.comm", level=logging.DEBUG) as log:
await s.close()
while not a.status == Status.closed:
await asyncio.sleep(0.05)
log = log.getvalue()
assert "retry" not in log
async def assert_ndata(client, by_addr, total=None):
"""Test that the number of elements in Worker.data is as expected.
To be used when the worker is wrapped by a nanny.
by_addr: dict of either exact numbers or (min, max) tuples
total: optional exact match on the total number of keys (with duplicates) across all
workers
"""
out = await client.run(lambda dask_worker: len(dask_worker.data))
try:
for k, v in by_addr.items():
if isinstance(v, tuple):
assert v[0] <= out[k] <= v[1]
else:
assert out[k] == v
if total is not None:
assert sum(out.values()) == total
except AssertionError:
raise AssertionError(f"Expected {by_addr}; {total=}; got {out}")
@gen_cluster(
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "1 GiB"},
config=merge(NO_AMM, {"distributed.worker.memory.rebalance.sender-min": 0.3}),
)
async def test_rebalance(c, s, a, b):
# We used nannies to have separate processes for each worker
# Generate 500 buffers worth 512 MiB total on worker a. This sends its memory
# utilisation slightly above 50% (after counting unmanaged) which is above the
# distributed.worker.memory.rebalance.sender-min threshold.
futures = c.map(
lambda _: "x" * (2**29 // 500), range(500), workers=[a.worker_address]
)
await wait(futures)
# Wait for heartbeats
await assert_memory(s, "process", 512, 1024)
await assert_ndata(c, {a.worker_address: 500, b.worker_address: 0})
await s.rebalance()
# Allow for some uncertainty as the unmanaged memory is not stable
await assert_ndata(
c, {a.worker_address: (50, 450), b.worker_address: (50, 450)}, total=500
)
# rebalance() when there is nothing to do
await s.rebalance()
await assert_ndata(
c, {a.worker_address: (50, 450), b.worker_address: (50, 450)}, total=500
)
# Set rebalance() to work predictably on small amounts of managed memory. By default, it
# uses optimistic memory, which would only be possible to test by allocating very large
# amounts of managed memory, so that they would hide variations in unmanaged memory.
REBALANCE_MANAGED_CONFIG = merge(
NO_AMM,
{
"distributed.worker.memory.rebalance.measure": "managed",
"distributed.worker.memory.rebalance.sender-min": 0,
"distributed.worker.memory.rebalance.sender-recipient-gap": 0,
},
)
@gen_cluster(client=True, config=REBALANCE_MANAGED_CONFIG)
async def test_rebalance_managed_memory(c, s, a, b):
futures = await c.scatter(range(100), workers=[a.address])
assert len(a.data) == 100
assert len(b.data) == 0
await s.rebalance()
assert len(a.data) == 50
assert len(b.data) == 50
@gen_cluster(nthreads=[("", 1)] * 3, client=True, config=REBALANCE_MANAGED_CONFIG)
async def test_rebalance_workers_and_keys(client, s, a, b, c):
futures = await client.scatter(range(100), workers=[a.address])
assert (len(a.data), len(b.data), len(c.data)) == (100, 0, 0)
# Passing empty iterables is not the same as omitting the arguments
await s.rebalance(keys=[])
await s.rebalance(workers=[])
assert (len(a.data), len(b.data), len(c.data)) == (100, 0, 0)
# Limit rebalancing to two arbitrary keys and two arbitrary workers.
await s.rebalance(
keys=[futures[3].key, futures[7].key], workers=[a.address, b.address]
)
assert (len(a.data), len(b.data), len(c.data)) == (98, 2, 0)
with pytest.raises(KeyError):
await s.rebalance(workers=["notexist"])
@gen_cluster(config=NO_AMM)
async def test_rebalance_missing_data1(s, a, b):
"""key never existed"""
out = await s.rebalance(keys=["notexist"])
assert out == {"status": "partial-fail", "keys": ["notexist"]}
@gen_cluster(client=True, config=NO_AMM)
async def test_rebalance_missing_data2(c, s, a, b):
"""keys exist but belong to unfinished futures. Unlike Client.rebalance(),
Scheduler.rebalance() does not wait for unfinished futures.
"""
futures = c.map(slowinc, range(10), delay=0.05, workers=a.address)
await asyncio.sleep(0.1)
out = await s.rebalance(keys=[f.key for f in futures])
assert out["status"] == "partial-fail"
assert 8 <= len(out["keys"]) <= 10
@pytest.mark.parametrize("explicit", [False, True])
@gen_cluster(client=True, config=REBALANCE_MANAGED_CONFIG)
async def test_rebalance_raises_missing_data3(c, s, a, b, explicit):
"""keys exist when the sync part of rebalance runs, but are gone by the time the
actual data movement runs.
There is an error message only if the keys are explicitly listed in the API call.
"""
futures = await c.scatter(range(100), workers=[a.address])
if explicit:
pytest.xfail(
reason="""Freeing keys and gathering data is using different
channels (stream vs explicit RPC). Therefore, the
partial-fail is very timing sensitive and subject to a race
condition. This test assumes that the data is freed before
the rebalance get_data requests come in but merely deleting
the futures is not sufficient to guarantee this"""
)
keys = [f.key for f in futures]
del futures
out = await s.rebalance(keys=keys)
assert out["status"] == "partial-fail"
assert 1 <= len(out["keys"]) <= 100
else:
del futures
out = await s.rebalance()
assert out == {"status": "OK"}
@gen_cluster(nthreads=[])
async def test_rebalance_no_workers(s):
await s.rebalance()
@gen_cluster(
client=True,
worker_kwargs={"memory_limit": 0},
config=merge(NO_AMM, {"distributed.worker.memory.rebalance.measure": "managed"}),
)
async def test_rebalance_no_limit(c, s, a, b):
futures = await c.scatter(range(100), workers=[a.address])
assert len(a.data) == 100
assert len(b.data) == 0
await s.rebalance()
# Disabling memory_limit made us ignore all % thresholds set in the config
assert len(a.data) == 50
assert len(b.data) == 50
@gen_cluster(
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "1000 MiB"},
config=merge(
NO_AMM,
{
"distributed.worker.memory.rebalance.measure": "managed",
"distributed.worker.memory.rebalance.sender-min": 0.2,
"distributed.worker.memory.rebalance.recipient-max": 0.1,
},
),
)
async def test_rebalance_no_recipients(c, s, a, b):
"""There are sender workers, but no recipient workers"""
# Fill 25% of the memory of a and 10% of the memory of b
fut_a = c.map(lambda _: "x" * (2**20), range(250), workers=[a.worker_address])
fut_b = c.map(lambda _: "x" * (2**20), range(100), workers=[b.worker_address])
await wait(fut_a + fut_b)
await assert_memory(s, "managed", 350, 351)
await assert_ndata(c, {a.worker_address: 250, b.worker_address: 100})
await s.rebalance()
await assert_ndata(c, {a.worker_address: 250, b.worker_address: 100})
@gen_cluster(
nthreads=[("", 1)] * 3,
client=True,
worker_kwargs={"memory_limit": 0},
config=merge(NO_AMM, {"distributed.worker.memory.rebalance.measure": "managed"}),
)
async def test_rebalance_skip_recipient(client, s, a, b, c):
"""A recipient is skipped because it already holds a copy of the key to be sent"""
futures = await client.scatter(range(10), workers=[a.address])
await client.replicate(futures[0:2], workers=[a.address, b.address])
await client.replicate(futures[2:4], workers=[a.address, c.address])
assert (len(a.data), len(b.data), len(c.data)) == (10, 2, 2)
await client.rebalance(futures[:2])
assert (len(a.data), len(b.data), len(c.data)) == (8, 2, 4)
@gen_cluster(
client=True,
worker_kwargs={"memory_limit": 0},
config=merge(NO_AMM, {"distributed.worker.memory.rebalance.measure": "managed"}),
)
async def test_rebalance_skip_all_recipients(c, s, a, b):
"""All recipients are skipped because they already hold copies"""
futures = await c.scatter(range(10), workers=[a.address])
await wait(futures)
await c.replicate([futures[0]])
assert (len(a.data), len(b.data)) == (10, 1)
await c.rebalance(futures[:2])
assert (len(a.data), len(b.data)) == (9, 2)
@gen_cluster(
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "1000 MiB"},
config=merge(NO_AMM, {"distributed.worker.memory.rebalance.measure": "managed"}),
)
async def test_rebalance_sender_below_mean(c, s, *_):
"""A task remains on the sender because moving it would send it below the mean"""
a, b = s.workers
f1 = c.submit(lambda: "x" * (400 * 2**20), workers=[a])
await wait([f1])
f2 = c.submit(lambda: "x" * (10 * 2**20), workers=[a])
await wait([f2])
await assert_memory(s, "managed", 410, 411)
await assert_ndata(c, {a: 2, b: 0})
await s.rebalance()
assert await c.has_what() == {a: (f1.key,), b: (f2.key,)}
@gen_cluster(
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "1000 MiB"},
config=merge(
NO_AMM,
{
"distributed.worker.memory.rebalance.measure": "managed",
"distributed.worker.memory.rebalance.sender-min": 0.3,
},
),
)
async def test_rebalance_least_recently_inserted_sender_min(c, s, *_):
"""
1. keys are picked using a least recently inserted policy
2. workers below sender-min are never senders
"""
a, b = s.workers
small_futures = c.map(lambda _: "x", range(10), workers=[a])
await wait(small_futures)
await assert_ndata(c, {a: 10, b: 0})
await s.rebalance()
await assert_ndata(c, {a: 10, b: 0})
large_future = c.submit(lambda: "x" * (300 * 2**20), workers=[a])
await wait([large_future])
await assert_memory(s, "managed", 300, 301)
await assert_ndata(c, {a: 11, b: 0})
await s.rebalance()
await assert_ndata(c, {a: 1, b: 10})
has_what = await c.has_what()
assert has_what[a] == (large_future.key,)
assert sorted(has_what[b]) == sorted(f.key for f in small_futures)
@gen_cluster(client=True)
async def test_gather_on_worker(c, s, a, b):
x = await c.scatter("x", workers=[a.address])
x_ts = s.tasks[x.key]
a_ws = s.workers[a.address]
b_ws = s.workers[b.address]
assert a_ws.nbytes > 0
assert b_ws.nbytes == 0
assert x_ts in a_ws.has_what
assert x_ts not in b_ws.has_what
assert x_ts.who_has == {a_ws}
out = await s.gather_on_worker(b.address, {x.key: [a.address]})
assert out == set()
assert a.data[x.key] == "x"
assert b.data[x.key] == "x"
assert b_ws.nbytes == a_ws.nbytes
assert x_ts in b_ws.has_what
assert x_ts.who_has == {a_ws, b_ws}
@gen_cluster(client=True, scheduler_kwargs={"timeout": "100ms"})
async def test_gather_on_worker_bad_recipient(c, s, a, b):
"""The recipient is missing"""
x = await c.scatter("x")
await b.close()
assert s.workers.keys() == {a.address}
out = await s.gather_on_worker(b.address, {x.key: [a.address]})
assert out == {x.key}
@gen_cluster(client=True, worker_kwargs={"timeout": "100ms"})
async def test_gather_on_worker_bad_sender(c, s, a, b):
"""The only sender for a key is missing"""
out = await s.gather_on_worker(a.address, {"x": ["tcp://127.0.0.1:12345"]})
assert out == {"x"}
@pytest.mark.parametrize("missing_first", [False, True])
@gen_cluster(client=True, worker_kwargs={"timeout": "100ms"})
async def test_gather_on_worker_bad_sender_replicated(c, s, a, b, missing_first):
"""One of the senders for a key is missing, but the key is available somewhere else"""
x = await c.scatter("x", workers=[a.address])
bad_addr = "tcp://127.0.0.1:12345"
# Order matters; test both
addrs = [bad_addr, a.address] if missing_first else [a.address, bad_addr]
out = await s.gather_on_worker(b.address, {x.key: addrs})
assert out == set()
assert a.data[x.key] == "x"
assert b.data[x.key] == "x"
@gen_cluster(client=True)
async def test_gather_on_worker_key_not_on_sender(c, s, a, b):
"""The only sender for a key does not actually hold it"""
out = await s.gather_on_worker(a.address, {"x": [b.address]})
assert out == {"x"}
@pytest.mark.parametrize("missing_first", [False, True])
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3)
async def test_gather_on_worker_key_not_on_sender_replicated(
client, s, a, b, c, missing_first
):
"""One of the senders for a key does not actually hold it, but the key is available
somewhere else
"""
x = await client.scatter("x", workers=[a.address])
# Order matters; test both
addrs = [b.address, a.address] if missing_first else [a.address, b.address]
out = await s.gather_on_worker(c.address, {x.key: addrs})
assert out == set()
assert a.data[x.key] == "x"
assert c.data[x.key] == "x"
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 3, config=NO_AMM)
async def test_gather_on_worker_duplicate_task(client, s, a, b, c):
"""Race condition where the recipient worker receives the same task twice.
Test that the task nbytes are not double-counted on the recipient.
"""
x = await client.scatter("x", workers=[a.address, b.address], broadcast=True)
assert a.data[x.key] == "x"
assert b.data[x.key] == "x"
assert x.key not in c.data
out = await asyncio.gather(
s.gather_on_worker(c.address, {x.key: [a.address]}),
s.gather_on_worker(c.address, {x.key: [b.address]}),
)
assert out == [set(), set()]
assert c.data[x.key] == "x"
a_ws = s.workers[a.address]
b_ws = s.workers[b.address]
c_ws = s.workers[c.address]
assert a_ws.nbytes > 0
assert c_ws.nbytes == b_ws.nbytes == a_ws.nbytes
@gen_cluster(
client=True,
nthreads=[("127.0.0.1", 1)] * 3,
scheduler_kwargs={"timeout": "100ms"},
config=NO_AMM,
)
async def test_rebalance_dead_recipient(client, s, a, b, c):
"""A key fails to be rebalanced due to recipient failure.
The key is not deleted from the sender.
Unrelated, successful keys are deleted from the senders.
"""
x, y = await client.scatter(["x", "y"], workers=[a.address])
a_ws = s.workers[a.address]
b_ws = s.workers[b.address]
c_ws = s.workers[c.address]
x_ts = s.tasks[x.key]
y_ts = s.tasks[y.key]
await c.close()
assert s.workers.keys() == {a.address, b.address}
out = await s._rebalance_move_data(
[(a_ws, b_ws, x_ts), (a_ws, c_ws, y_ts)], stimulus_id="test"
)
assert out == {"status": "partial-fail", "keys": [y.key]}
assert a.data == {y.key: "y"}
assert b.data == {x.key: "x"}
assert await client.has_what() == {a.address: (y.key,), b.address: (x.key,)}
@gen_cluster(client=True, config=NO_AMM)
async def test_delete_worker_data(c, s, a, b):
# delete only copy of x
# delete one of the copies of y
# don't touch z
x, y, z = await c.scatter(["x", "y", "z"], workers=[a.address])
await c.replicate(y)
assert a.data == {x.key: "x", y.key: "y", z.key: "z"}
assert b.data == {y.key: "y"}
assert s.tasks.keys() == {x.key, y.key, z.key}
await s.delete_worker_data(a.address, [x.key, y.key], stimulus_id="test")
assert a.data == {z.key: "z"}
assert b.data == {y.key: "y"}
assert s.tasks.keys() == {y.key, z.key}
assert s.workers[a.address].nbytes == s.tasks[z.key].nbytes
@gen_cluster(nthreads=[("127.0.0.1", 1)], client=True)
async def test_delete_worker_data_double_delete(c, s, a):
"""_delete_worker_data race condition where the same key is deleted twice.
WorkerState.nbytes is not double-decreased.
"""
x, y = await c.scatter(["x", "y"])
await asyncio.gather(
s.delete_worker_data(a.address, [x.key], stimulus_id="test"),
s.delete_worker_data(a.address, [x.key], stimulus_id="test"),
)
assert a.data == {y.key: "y"}
a_ws = s.workers[a.address]
y_ts = s.tasks[y.key]
assert a_ws.nbytes == y_ts.nbytes
@gen_cluster(scheduler_kwargs={"timeout": "100ms"})
async def test_delete_worker_data_bad_worker(s, a, b):
"""_delete_worker_data gracefully handles a non-existing worker;
e.g. a sender died in the middle of rebalance()
"""
await a.close()
assert s.workers.keys() == {b.address}
await s.delete_worker_data(a.address, ["x"], stimulus_id="test")
@pytest.mark.parametrize("bad_first", [False, True])
@gen_cluster(nthreads=[("127.0.0.1", 1)], client=True)
async def test_delete_worker_data_bad_task(c, s, a, bad_first):
"""_delete_worker_data gracefully handles a non-existing key;
e.g. a task was stolen by work stealing in the middle of a rebalance().
Other tasks on the same worker are deleted.
"""
x, y = await c.scatter(["x", "y"])
assert a.data == {x.key: "x", y.key: "y"}
assert s.tasks.keys() == {x.key, y.key}
keys = ["notexist", x.key] if bad_first else [x.key, "notexist"]
await s.delete_worker_data(a.address, keys, stimulus_id="test")
assert a.data == {y.key: "y"}
assert s.tasks.keys() == {y.key}
assert s.workers[a.address].nbytes == s.tasks[y.key].nbytes
@gen_cluster(client=True)
async def test_computations(c, s, a, b):
da = pytest.importorskip("dask.array")
x = da.ones(100, chunks=(10,))
y = (x + 1).persist()
await y
z = (x - 2).persist()
await z
assert len(s.computations) == 2
assert "add" in str(s.computations[0].groups)
assert "sub" in str(s.computations[1].groups)
assert "sub" not in str(s.computations[0].groups)
assert isinstance(repr(s.computations[1]), str)
assert s.computations[1].stop == max(tg.stop for tg in s.task_groups.values())
assert s.computations[0].states["memory"] == y.npartitions
@gen_cluster(client=True)
async def test_computations_futures(c, s, a, b):
futures = [c.submit(inc, i) for i in range(10)]
total = c.submit(sum, futures)
await total
[computation] = s.computations
assert "sum" in str(computation.groups)
assert "inc" in str(computation.groups)
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_transition_counter(c, s, a):
assert s.transition_counter == 0
assert a.state.transition_counter == 0
await c.submit(inc, 1)
assert s.transition_counter > 1
assert a.state.transition_counter > 1
@pytest.mark.slow
@gen_cluster(client=True)
async def test_transition_counter_max_scheduler(c, s, a, b):
# This is set by @gen_cluster; it's False in production
assert s.transition_counter_max > 0
s.transition_counter_max = 1
with captured_logger("distributed.scheduler") as logger:
with pytest.raises(CancelledError):
await c.submit(inc, 2)
assert s.transition_counter > 1
with pytest.raises(AssertionError):
s.validate_state()
assert "transition_counter_max" in logger.getvalue()
# Scheduler state is corrupted. Avoid test failure on gen_cluster teardown.
s.validate = False
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_transition_counter_max_worker(c, s, a):
# This is set by @gen_cluster; it's False in production
assert s.transition_counter_max > 0
a.state.transition_counter_max = 1
with captured_logger("distributed.worker") as logger:
fut = c.submit(inc, 2)
while True:
try:
a.validate_state()
except AssertionError:
break
await asyncio.sleep(0.01)
assert "TransitionCounterMaxExceeded" in logger.getvalue()
# Worker state is corrupted. Avoid test failure on gen_cluster teardown.
a.state.validate = False
@gen_cluster(
client=True,
nthreads=[("", 1)],
scheduler_kwargs={"transition_counter_max": False},
worker_kwargs={"transition_counter_max": False},
)
async def test_disable_transition_counter_max(c, s, a, b):
"""Test that the cluster can run indefinitely if transition_counter_max is disabled.
This is the default outside of @gen_cluster.
"""
assert s.transition_counter_max is False
assert a.state.transition_counter_max is False
assert await c.submit(inc, 1) == 2
assert s.transition_counter > 1
assert a.state.transition_counter > 1
s.validate_state()
a.validate_state()
@gen_cluster(
client=True,
nthreads=[("127.0.0.1", 1) for _ in range(10)],
)
async def test_worker_heartbeat_after_cancel(c, s, *workers):
"""This test is intended to ensure that after cancellation of a graph, the
worker heartbeat is always successful. The heartbeat may not be successful if
the worker and scheduler state drift and the scheduler doesn't handle
unknown information gracefully. One example would be a released/cancelled
computation where the worker returns metrics about duration, type, etc. and
the scheduler doesn't handle the forgotten task gracefully.
See also https://github.com/dask/distributed/issues/4587
"""
for w in workers:
w.periodic_callbacks["heartbeat"].stop()
futs = c.map(slowinc, range(100), delay=0.1)
while sum(w.state.executing_count for w in workers) < len(workers):
await asyncio.sleep(0.001)
await c.cancel(futs)
while any(w.state.tasks for w in workers):
await asyncio.gather(*(w.heartbeat() for w in workers))
@gen_cluster(client=True, nthreads=[("", 1)] * 2)
async def test_set_restrictions(c, s, a, b):
f = c.submit(inc, 1, key="f", workers=[b.address])
await f
s.set_restrictions(worker={f.key: a.address})
assert s.tasks[f.key].worker_restrictions == {a.address}
await b.close()
await f
@gen_cluster(
client=True,
nthreads=[("", 1)] * 3,
config={"distributed.worker.memory.pause": False},
)
async def test_avoid_paused_workers(c, s, w1, w2, w3):
w2.status = Status.paused
while s.workers[w2.address].status != Status.paused:
await asyncio.sleep(0.01)
futures = c.map(slowinc, range(8), delay=0.1)
await wait(futures)
assert w1.data
assert not w2.data
assert w3.data
assert len(w1.data) + len(w3.data) == 8
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_Scheduler__to_dict(c, s, a):
futs = c.map(inc, range(2))
await c.gather(futs)
d = s._to_dict()
assert d.keys() == {
"type",
"id",
"address",
"extensions",
"services",
"started",
"workers",
"status",
"thread_id",
"transition_log",
"transition_counter",
"memory",
"tasks",
"task_groups",
"events",
"clients",
}
# TaskStates are serialized as dicts under tasks and as strings under
# workers.*.has_what and under clients.*.wants_what
# WorkerStates are serialized s dicts under workers and as
# strings under tasks.*.who_has
assert d["tasks"][futs[0].key]["who_has"] == [
f"<WorkerState '{a.address}', "
"name: 0, status: running, memory: 2, processing: 0>"
]
assert sorted(d["workers"][a.address]["has_what"]) == sorted(
[
f"<TaskState '{futs[0].key}' memory>",
f"<TaskState '{futs[1].key}' memory>",
]
)
assert sorted(d["clients"][c.id]["wants_what"]) == sorted(
[
f"<TaskState '{futs[0].key}' memory>",
f"<TaskState '{futs[1].key}' memory>",
]
)
# TaskGroups are serialized as dicts under task_groups and as strings under
# tasks.*.group
assert d["tasks"][futs[0].key]["group"] == "<inc: memory: 2>"
assert d["task_groups"]["inc"]["prefix"] == "<inc: memory: 2>"
# ClientStates are serialized as dicts under clients and as strings under
# tasks.*.who_wants
assert d["clients"][c.id]["client_key"] == c.id
assert d["tasks"][futs[0].key]["who_wants"] == [f"<Client '{c.id}'>"]
# Test MemoryState dump
assert isinstance(d["memory"]["process"], int)
assert isinstance(d["workers"][a.address]["memory"]["process"], int)
@gen_cluster(
client=True, nthreads=[], config={"distributed.scheduler.worker-saturation": 1.0}
)
async def test_TaskState__to_dict(c, s):
"""tasks that are listed as dependencies of other tasks are dumped as a short repr
and always appear in full under Scheduler.tasks
"""
x = c.submit(inc, 1, key="x")
y = c.submit(inc, x, key="y")
z = c.submit(inc, 2, key="z")
while len(s.tasks) < 3:
await asyncio.sleep(0.01)
tasks = s._to_dict()["tasks"]
assert isinstance(tasks["x"], dict)
assert isinstance(tasks["y"], dict)
assert isinstance(tasks["z"], dict)
assert tasks["x"]["dependents"] == ["<TaskState 'y' waiting>"]
assert tasks["y"]["dependencies"] == ["<TaskState 'x' queued>"]
def _verify_cluster_state(
state: dict, workers: Collection[Worker], allow_missing: bool = False
) -> None:
addrs = {w.address for w in workers}
assert state.keys() == {"scheduler", "workers", "versions"}
assert state["workers"].keys() == addrs
if allow_missing:
assert state["versions"]["workers"].keys() <= addrs
else:
assert state["versions"]["workers"].keys() == addrs
@gen_cluster(nthreads=[("", 1)] * 2)
async def test_get_cluster_state(s, *workers):
state = await s.get_cluster_state([])
_verify_cluster_state(state, workers)
await asyncio.gather(*(w.close() for w in workers))
while s.workers:
await asyncio.sleep(0.01)
state_no_workers = await s.get_cluster_state([])
_verify_cluster_state(state_no_workers, [])
@gen_cluster(
nthreads=[("", 1)] * 2,
config={"distributed.comm.timeouts.connect": "200ms"},
)
async def test_get_cluster_state_worker_error(s, a, b):
a.stop()
state = await s.get_cluster_state([])
_verify_cluster_state(state, [a, b], allow_missing=True)
assert state["workers"][a.address] == (
f"OSError('Timed out trying to connect to {a.address} after 0.2 s')"
)
assert isinstance(state["workers"][b.address], dict)
assert state["versions"]["workers"].keys() == {b.address}
def _verify_cluster_dump(url: str, format: str, workers: Collection[Worker]) -> dict:
import fsspec
if format == "msgpack":
import msgpack
url += ".msgpack.gz"
loader = msgpack.unpack
else:
import yaml
url += ".yaml"
loader = yaml.safe_load
with fsspec.open(url, mode="rb", compression="infer") as f:
state = loader(f)
_verify_cluster_state(state, workers)
return state
@pytest.mark.parametrize("format", ["msgpack", "yaml"])
@gen_cluster(nthreads=[("", 1)] * 2)
async def test_dump_cluster_state(s, *workers, format):
fsspec = pytest.importorskip("fsspec")
try:
await s.dump_cluster_state_to_url(
"memory://state-dumps/two-workers", [], format
)
_verify_cluster_dump("memory://state-dumps/two-workers", format, workers)
await asyncio.gather(*(w.close() for w in workers))
while s.workers:
await asyncio.sleep(0.01)
await s.dump_cluster_state_to_url("memory://state-dumps/no-workers", [], format)
_verify_cluster_dump("memory://state-dumps/no-workers", format, [])
finally:
fs = fsspec.filesystem("memory")
fs.rm("state-dumps", recursive=True)
@gen_cluster(nthreads=[])
async def test_idempotent_plugins(s):
class IdempotentPlugin(SchedulerPlugin):
def __init__(self, instance=None):
self.name = "idempotentplugin"
self.instance = instance
def start(self, scheduler):
if self.instance != "first":
raise RuntimeError(
"Only the first plugin should be started when idempotent is set"
)
first = IdempotentPlugin(instance="first")
await s.register_scheduler_plugin(plugin=dumps(first), idempotent=True)
assert "idempotentplugin" in s.plugins
second = IdempotentPlugin(instance="second")
await s.register_scheduler_plugin(plugin=dumps(second), idempotent=True)
assert "idempotentplugin" in s.plugins
assert s.plugins["idempotentplugin"].instance == "first"
@gen_cluster(nthreads=[])
async def test_non_idempotent_plugins(s):
class NonIdempotentPlugin(SchedulerPlugin):
def __init__(self, instance=None):
self.name = "nonidempotentplugin"
self.instance = instance
first = NonIdempotentPlugin(instance="first")
await s.register_scheduler_plugin(plugin=dumps(first), idempotent=False)
assert "nonidempotentplugin" in s.plugins
second = NonIdempotentPlugin(instance="second")
await s.register_scheduler_plugin(plugin=dumps(second), idempotent=False)
assert "nonidempotentplugin" in s.plugins
assert s.plugins["nonidempotentplugin"].instance == "second"
@gen_cluster(nthreads=[("", 1)])
async def test_repr(s, a):
async with Worker(s.address, nthreads=2) as b: # name = address by default
ws_a = s.workers[a.address]
ws_b = s.workers[b.address]
while ws_b.status != Status.running:
await asyncio.sleep(0.01)
assert repr(s) == f"<Scheduler {s.address!r}, workers: 2, cores: 3, tasks: 0>"
assert (
repr(a)
== f"<Worker {a.address!r}, name: 0, status: running, stored: 0, running: 0/1, ready: 0, comm: 0, waiting: 0>"
)
assert (
repr(b)
== f"<Worker {b.address!r}, status: running, stored: 0, running: 0/2, ready: 0, comm: 0, waiting: 0>"
)
assert (
repr(ws_a)
== f"<WorkerState {a.address!r}, name: 0, status: running, memory: 0, processing: 0>"
)
assert (
repr(ws_b)
== f"<WorkerState {b.address!r}, status: running, memory: 0, processing: 0>"
)
@gen_cluster(client=True, config={"distributed.comm.timeouts.connect": "2s"})
async def test_ensure_events_dont_include_taskstate_objects(c, s, a, b):
event = Event()
def block(x, event):
event.wait()
return x
futs = c.map(block, range(100), event=event)
while not a.state.tasks:
await asyncio.sleep(0.1)
await a.close(executor_wait=False)
await event.set()
await c.gather(futs)
assert "TaskState" not in str(s.events)
@gen_cluster(nthreads=[("", 1)])
async def test_worker_state_unique_regardless_of_address(s, w):
ws1 = s.workers[w.address]
host, port = parse_host_port(ws1.address)
await w.close()
while s.workers:
await asyncio.sleep(0.1)
async with Worker(s.address, port=port, host=host) as w2:
ws2 = s.workers[w2.address]
assert ws1 is not ws2
assert ws1 != ws2
assert hash(ws1) != ws2
@gen_cluster(nthreads=[("", 1)])
async def test_scheduler_close_fast_deprecated(s, w):
with pytest.warns(FutureWarning):
await s.close(fast=True)
def test_runspec_regression_sync(loop):
# https://github.com/dask/distributed/issues/6624
da = pytest.importorskip("dask.array")
np = pytest.importorskip("numpy")
with Client(loop=loop):
v = da.random.random((20, 20), chunks=(5, 5))
overlapped = da.map_overlap(np.sum, v, depth=2, boundary="reflect")
# This computation is somehow broken but we want to avoid catching any
# serialization errors that result in KilledWorker
with pytest.raises(IndexError):
overlapped.compute()
@gen_cluster(config={"distributed.scheduler.allowed-failures": 666})
async def test_KilledWorker_informative_message(s, a, b):
ws = s.workers[a.address].clean()
ex = KilledWorker("foo-bar", ws, s.allowed_failures)
with pytest.raises(KilledWorker) as excinfo:
raise ex
msg = str(excinfo.value)
assert "Attempted to run task foo-bar" in msg
assert str(s.allowed_failures) in msg
assert "worker logs" in msg
assert "https://distributed.dask.org/en/stable/killed.html" in msg
@gen_cluster(client=True)
async def test_count_task_prefix(c, s, a, b):
futures = c.map(inc, range(10))
await c.gather(futures)
assert s.task_prefixes["inc"].state_counts["memory"] == 10
assert s.task_prefixes["inc"].state_counts["erred"] == 0
futures = c.map(inc, range(10, 20))
await c.gather(futures)
assert s.task_prefixes["inc"].state_counts["memory"] == 20
assert s.task_prefixes["inc"].state_counts["erred"] == 0
@gen_cluster(client=True)
async def test_transition_waiting_memory(c, s, a, b):
"""Test race condition where a task transitions to memory while its state on the
scheduler is waiting:
1. worker a finishes x
2. y transitions to processing and is assigned to worker b
3. b fetches x and sends an add_keys message to the scheduler
4. In the meantime, a dies and causes x to be scheduled back to released/waiting.
5. Scheduler queues up a free-keys intended for b to cancel both x and y
6. Before free-keys arrives to b, the worker runs and completes y, sending a
finished-task message to the scheduler
7. {op: add-keys, keys=[x]} from b finally arrives to the scheduler. This triggers
a {op: remove-replicas, keys=[x]} message from the scheduler to worker b, because
add-keys when the task state is not memory triggers a cleanup of redundant
replicas (see Scheduler.add_keys) - in this, add-keys differs from task-finished!
8. {op: task-finished, key=y} from b arrives to the scheduler and it is ignored.
"""
x = c.submit(inc, 1, key="x", workers=[a.address])
y = c.submit(inc, x, key="y", workers=[b.address])
await wait_for_state("x", "memory", b, interval=0)
# Note interval=0 above. It means that x has just landed on b this instant and the
# scheduler doesn't know yet.
assert b.state.tasks["y"].state == "executing"
assert s.tasks["x"].who_has == {s.workers[a.address]}
with freeze_batched_send(b.batched_stream):
with freeze_batched_send(s.stream_comms[b.address]):
await s.remove_worker(a.address, stimulus_id="remove_a")
assert s.tasks["x"].state == "no-worker"
assert s.tasks["y"].state == "waiting"
await wait_for_state("y", "memory", b)
await async_wait_for(lambda: not b.state.tasks, timeout=5)
assert s.tasks["x"].state == "no-worker"
assert s.tasks["y"].state == "waiting"
assert_story(s.story("y"), [("y", "waiting", "waiting", {})])
@pytest.mark.parametrize(
"rootish",
[
pytest.param(
True,
marks=pytest.mark.skipif(
not QUEUING_ON_BY_DEFAULT,
reason="Nothing will be classified as root-ish",
),
),
False,
],
)
@gen_cluster(client=True, nthreads=[("", 1)])
async def test_deadlock_resubmit_queued_tasks_fast(c, s, a, rootish):
# See https://github.com/dask/distributed/issues/7200
block = Event()
block2 = Event()
executing = Event()
executing2 = Event()
def block_on_event(*args, block, executing):
executing.set()
block.wait()
if rootish:
ntasks = s.total_nthreads * 2 + 1
else:
ntasks = 1
keys = [f"fut-{i}" for i in range(ntasks)]
def submit_tasks():
# Use case would be a client rescheduling the same or a similar graph
# multiple times, closely followed
# df.head()
# df.size.compute()
# We're emulating this by submitting the sames *keys*
return c.map(
block_on_event, range(len(keys)), block=block, executing=executing, key=keys
)
def assert_rootish():
# Just to verify our assumptions in case the definition changes. This is
# currently a bit brittle
if rootish:
assert all(s.is_rootish(s.tasks[k]) for k in keys)
else:
assert not any(s.is_rootish(s.tasks[k]) for k in keys)
f1 = submit_tasks()
# Make sure that the worker is properly saturated
nblocking_tasks = 5
# This set of tasks is there to guarantee that the worker is saturated after
# releasing the first set of tasks s.t. a subsequent submission would run
# into queuing
fut2 = c.map(
block_on_event, range(nblocking_tasks), block=block2, executing=executing2
)
# Once the task is on the threadpool, the client/scheduler may start its
# release chain
await executing.wait()
assert len(a.state.tasks)
# To trigger this condition, the scheduler needs to receive the
# `task-finished` message after it performed the client release transitions
# Therefore, the worker must not receive the `free-keys`` signal before it
# can finish the task since otherwise the worker would recognize it as
# cancelled and would forget about it. We emulate this behavior by blocking
# the outgoing scheduler stream until that happens, i.e. this introduces
# artifical latency
with freeze_batched_send(s.stream_comms[a.address]):
del f1
while any(k in s.tasks for k in keys):
await asyncio.sleep(0.005)
assert len(s.tasks) == nblocking_tasks
fut3 = submit_tasks()
while len(s.tasks) == nblocking_tasks:
await asyncio.sleep(0.005)
assert_rootish()
if rootish:
assert all(s.tasks[k] in s.queued for k in keys), [s.tasks[k] for k in keys]
await block.set()
# At this point we need/want to wait for the task-finished message to
# arrive on the scheduler. There is no proper hook to wait, therefore we
# sleep
await asyncio.sleep(0.2)
# Everything should finish properly after this
await block2.set()
await c.gather(fut2)
await c.gather(fut3)
@gen_cluster(client=True)
async def test_submit_dependency_of_erred_task(c, s, a, b):
x = c.submit(lambda: 1 / 0, key="x")
await wait(x)
y = c.submit(inc, x, key="y")
with pytest.raises(ZeroDivisionError):
await y
|