1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
from __future__ import annotations
import asyncio
import glob
import logging
import os
import signal
import threading
from collections import Counter, UserDict
from time import sleep
import sys
import psutil
import pytest
from tlz import merge
import dask.config
from dask.utils import format_bytes, parse_bytes
import distributed.system
from distributed import Client, Event, KilledWorker, Nanny, Scheduler, Worker, wait
from distributed.compatibility import MACOS, WINDOWS
from distributed.core import Status
from distributed.metrics import monotonic
from distributed.spill import has_zict_210
from distributed.utils_test import (
NO_AMM,
captured_logger,
gen_cluster,
inc,
wait_for_state,
)
from distributed.worker_memory import parse_memory_limit
from distributed.worker_state_machine import (
ComputeTaskEvent,
DigestMetric,
ExecuteSuccessEvent,
GatherDep,
GatherDepSuccessEvent,
TaskErredMsg,
)
requires_zict_210 = pytest.mark.skipif(
not has_zict_210,
reason="requires zict version >= 2.1.0",
)
def memory_monitor_running(dask_worker: Worker | Nanny) -> bool:
return "memory_monitor" in dask_worker.periodic_callbacks
def test_parse_memory_limit_zero():
logger = logging.getLogger(__name__)
assert parse_memory_limit(0, 1, logger=logger) is None
assert parse_memory_limit("0", 1, logger=logger) is None
assert parse_memory_limit(None, 1, logger=logger) is None
def test_resource_limit(monkeypatch):
logger = logging.getLogger(__name__)
assert parse_memory_limit("250MiB", 1, 1, logger=logger) == 1024 * 1024 * 250
new_limit = 1024 * 1024 * 200
monkeypatch.setattr(distributed.system, "MEMORY_LIMIT", new_limit)
assert parse_memory_limit("250MiB", 1, 1, logger=logger) == new_limit
@gen_cluster(nthreads=[("", 1)], worker_kwargs={"memory_limit": "2e3 MB"})
async def test_parse_memory_limit_worker(s, w):
assert w.memory_manager.memory_limit == 2e9
@gen_cluster(nthreads=[("", 1)], worker_kwargs={"memory_limit": "0.5"})
async def test_parse_memory_limit_worker_relative(s, w):
assert w.memory_manager.memory_limit > 0.5
assert w.memory_manager.memory_limit == pytest.approx(
distributed.system.MEMORY_LIMIT * 0.5
)
@gen_cluster(
client=True,
nthreads=[("", 1)],
Worker=Nanny,
worker_kwargs={"memory_limit": "2e3 MB"},
)
async def test_parse_memory_limit_nanny(c, s, n):
assert n.memory_manager.memory_limit == 2e9
out = await c.run(lambda dask_worker: dask_worker.memory_manager.memory_limit)
assert out[n.worker_address] == 2e9
@gen_cluster(
nthreads=[("127.0.0.1", 1)],
config={
"distributed.worker.memory.spill": False,
"distributed.worker.memory.target": False,
},
)
async def test_dict_data_if_no_spill_to_disk(s, w):
assert type(w.data) is dict
class WorkerData(dict):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
class WorkerDataLocalDirectory(dict):
def __init__(self, worker_local_directory, **kwargs):
super().__init__()
self.local_directory = worker_local_directory
self.kwargs = kwargs
@gen_cluster(
nthreads=[("", 1)], Worker=Worker, worker_kwargs={"data": WorkerDataLocalDirectory}
)
async def test_worker_data_callable_local_directory(s, w):
assert type(w.memory_manager.data) is WorkerDataLocalDirectory
assert w.memory_manager.data.local_directory == w.local_directory
@gen_cluster(
nthreads=[("", 1)],
Worker=Worker,
worker_kwargs={"data": (WorkerDataLocalDirectory, {"a": "b"})},
)
async def test_worker_data_callable_local_directory_kwargs(s, w):
assert type(w.memory_manager.data) is WorkerDataLocalDirectory
assert w.memory_manager.data.local_directory == w.local_directory
assert w.memory_manager.data.kwargs == {"a": "b"}
@gen_cluster(
nthreads=[("", 1)], Worker=Worker, worker_kwargs={"data": (WorkerData, {"a": "b"})}
)
async def test_worker_data_callable_kwargs(s, w):
assert type(w.memory_manager.data) is WorkerData
assert w.memory_manager.data.kwargs == {"a": "b"}
class CustomError(Exception):
pass
class FailToPickle:
def __init__(self, *, reported_size=0):
self.reported_size = int(reported_size)
def __getstate__(self):
raise CustomError()
def __sizeof__(self):
return self.reported_size
async def assert_basic_futures(c: Client) -> None:
futures = c.map(inc, range(10))
results = await c.gather(futures)
assert results == list(map(inc, range(10)))
@pytest.mark.skipif(
CONDITION=(sys.maxsize < 2 ** 32),
reason="fails on 32-bit, is it asking for large memory?")
@gen_cluster(client=True)
async def test_fail_to_pickle_execute_1(c, s, a, b):
"""Test failure to serialize triggered by computing a key which is individually
larger than target. The data is lost and the task is marked as failed; the worker
remains in usable condition.
See also
--------
test_workerstate_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_flight
test_fail_to_pickle_execute_2
test_fail_to_pickle_spill
"""
x = c.submit(FailToPickle, reported_size=100e9, key="x")
await wait(x)
assert x.status == "error"
with pytest.raises(TypeError, match="Could not serialize"):
await x
await assert_basic_futures(c)
class FailStoreDict(UserDict):
def __setitem__(self, key, value):
raise CustomError()
def test_workerstate_fail_to_pickle_execute_1(ws_with_running_task):
"""Same as test_fail_to_pickle_target_execute_1
See also
--------
test_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_flight
test_fail_to_pickle_execute_2
test_fail_to_pickle_spill
"""
ws = ws_with_running_task
assert not ws.data
ws.data = FailStoreDict()
instructions = ws.handle_stimulus(
ExecuteSuccessEvent.dummy("x", None, stimulus_id="s1")
)
assert instructions == [
DigestMetric(name="compute-duration", value=1.0, stimulus_id="s1"),
TaskErredMsg.match(key="x", stimulus_id="s1"),
]
assert ws.tasks["x"].state == "error"
@pytest.mark.xfail(reason="https://github.com/dask/distributed/issues/6705")
def test_workerstate_fail_to_pickle_flight(ws):
"""Same as test_workerstate_fail_to_pickle_execute_1, but the task was
computed on another host and for whatever reason it did not fail to pickle when it
was sent over the network.
See also
--------
test_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_execute_1
test_fail_to_pickle_execute_2
test_fail_to_pickle_spill
See also test_worker_state_machine.py::test_gather_dep_failure, where the task
instead fails to unpickle when leaving the network stack.
"""
assert not ws.data
ws.data = FailStoreDict()
ws.total_resources = {"R": 1}
ws.available_resources = {"R": 1}
ws2 = "127.0.0.1:2"
instructions = ws.handle_stimulus(
ComputeTaskEvent.dummy(
"y", who_has={"x": [ws2]}, resource_restrictions={"R": 1}, stimulus_id="s1"
),
GatherDepSuccessEvent(
worker=ws2, total_nbytes=1, data={"x": 123}, stimulus_id="s2"
),
)
assert instructions == [
GatherDep(worker=ws2, to_gather={"x"}, total_nbytes=1, stimulus_id="s1"),
TaskErredMsg.match(key="x", stimulus_id="s2"),
]
assert ws.tasks["x"].state == "error"
assert ws.tasks["y"].state == "waiting" # Not constrained
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": "1 kiB"},
config={
"distributed.worker.memory.target": 0.5,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": False,
},
)
async def test_fail_to_pickle_execute_2(c, s, a):
"""Test failure to spill triggered by computing a key which is individually smaller
than target, so it is not spilled immediately. The data is retained and the task is
NOT marked as failed; the worker remains in usable condition.
See also
--------
test_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_flight
test_fail_to_pickle_spill
"""
x = c.submit(FailToPickle, reported_size=256, key="x")
await wait(x)
assert x.status == "finished"
assert set(a.data.memory) == {"x"}
y = c.submit(lambda: "y" * 256, key="y")
await wait(y)
if has_zict_210:
assert set(a.data.memory) == {"x", "y"}
else:
assert set(a.data.memory) == {"y"}
assert not a.data.disk
await assert_basic_futures(c)
@requires_zict_210
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": "1 kB"},
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": 0.7,
"distributed.worker.memory.monitor-interval": "100ms",
},
)
async def test_fail_to_pickle_spill(c, s, a):
"""Test failure to evict a key, triggered by the spill threshold.
See also
--------
test_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_execute_1
test_workerstate_fail_to_pickle_flight
test_fail_to_pickle_execute_2
"""
a.monitor.get_process_memory = lambda: 701 if a.data.fast else 0
with captured_logger(logging.getLogger("distributed.spill")) as logs:
bad = c.submit(FailToPickle, key="bad")
await wait(bad)
# Must wait for memory monitor to kick in
while True:
logs_value = logs.getvalue()
if logs_value:
break
await asyncio.sleep(0.01)
assert "Failed to pickle" in logs_value
assert "Traceback" in logs_value
# key is in fast
assert bad.status == "finished"
assert bad.key in a.data.fast
await assert_basic_futures(c)
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": 1200 / 0.6},
config={
"distributed.worker.memory.target": 0.6,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": False,
},
)
async def test_spill_target_threshold(c, s, a):
"""Test distributed.worker.memory.target threshold. Note that in this test we
disabled spill and pause thresholds, which work on the process memory, and just left
the target threshold, which works on managed memory so it is unperturbed by the
several hundreds of MB of unmanaged memory that are typical of the test suite.
"""
assert not memory_monitor_running(a)
x = c.submit(lambda: "x" * 500, key="x")
await wait(x)
y = c.submit(lambda: "y" * 500, key="y")
await wait(y)
assert set(a.data) == {"x", "y"}
assert set(a.data.memory) == {"x", "y"}
z = c.submit(lambda: "z" * 500, key="z")
await wait(z)
assert set(a.data) == {"x", "y", "z"}
assert set(a.data.memory) == {"y", "z"}
assert set(a.data.disk) == {"x"}
await x
assert set(a.data.memory) == {"x", "z"}
assert set(a.data.disk) == {"y"}
@requires_zict_210
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": 1600},
config={
"distributed.worker.memory.target": 0.6,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": False,
"distributed.worker.memory.max-spill": 600,
},
)
async def test_spill_constrained(c, s, w):
"""Test distributed.worker.memory.max-spill parameter"""
# spills starts at 1600*0.6=960 bytes of managed memory
# size in memory ~200; size on disk ~400
x = c.submit(lambda: "x" * 200, key="x")
await wait(x)
# size in memory ~500; size on disk ~700
y = c.submit(lambda: "y" * 500, key="y")
await wait(y)
assert set(w.data) == {x.key, y.key}
assert set(w.data.memory) == {x.key, y.key}
z = c.submit(lambda: "z" * 500, key="z")
await wait(z)
assert set(w.data) == {x.key, y.key, z.key}
# max_spill has not been reached
assert set(w.data.memory) == {y.key, z.key}
assert set(w.data.disk) == {x.key}
# zb is individually larger than max_spill
zb = c.submit(lambda: "z" * 1700, key="zb")
await wait(zb)
assert set(w.data.memory) == {y.key, z.key, zb.key}
assert set(w.data.disk) == {x.key}
del zb
while "zb" in w.data:
await asyncio.sleep(0.01)
# zc is individually smaller than max_spill, but the evicted key together with
# x it exceeds max_spill
zc = c.submit(lambda: "z" * 500, key="zc")
await wait(zc)
assert set(w.data.memory) == {y.key, z.key, zc.key}
assert set(w.data.disk) == {x.key}
@gen_cluster(
nthreads=[("", 1)],
client=True,
worker_kwargs={"memory_limit": "1000 MB"},
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": 0.7,
"distributed.worker.memory.pause": False,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_spill_spill_threshold(c, s, a):
"""Test distributed.worker.memory.spill threshold.
Test that the spill threshold uses the process memory and not the managed memory
reported by sizeof(), which may be inaccurate.
"""
assert memory_monitor_running(a)
a.monitor.get_process_memory = lambda: 800_000_000 if a.data.fast else 0
x = c.submit(inc, 0, key="x")
while not a.data.disk:
await asyncio.sleep(0.01)
assert await x == 1
@pytest.mark.parametrize(
"target,managed,expect_spilled",
[
# no target -> no hysteresis
# Over-report managed memory to test that the automated LRU eviction based on
# target is never triggered
(False, int(10e9), 1),
# Under-report managed memory, so that we reach the spill threshold for process
# memory without first reaching the target threshold for managed memory
# target == spill -> no hysteresis
(0.7, 0, 1),
# target < spill -> hysteresis from spill to target
(0.4, 0, 7),
],
)
@gen_cluster(
nthreads=[],
client=True,
config={
"distributed.worker.memory.spill": 0.7,
"distributed.worker.memory.pause": False,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_spill_hysteresis(c, s, target, managed, expect_spilled):
"""
1. Test that you can enable the spill threshold while leaving the target threshold
to False
2. Test the hysteresis system where, once you reach the spill threshold, the worker
won't stop spilling until the target threshold is reached
"""
class C:
def __sizeof__(self):
return managed
with dask.config.set({"distributed.worker.memory.target": target}):
async with Worker(s.address, memory_limit="1000 MB") as a:
a.monitor.get_process_memory = lambda: 50_000_000 * len(a.data.fast)
# Add 500MB (reported) process memory. Spilling must not happen.
futures = [c.submit(C, pure=False) for _ in range(10)]
await wait(futures)
await asyncio.sleep(0.1)
assert not a.data.disk
# Add another 250MB unmanaged memory. This must trigger the spilling.
futures += [c.submit(C, pure=False) for _ in range(5)]
await wait(futures)
# Wait until spilling starts. Then, wait until it stops.
prev_n = 0
while not a.data.disk or len(a.data.disk) > prev_n:
prev_n = len(a.data.disk)
await asyncio.sleep(0)
assert len(a.data.disk) == expect_spilled
@gen_cluster(
nthreads=[("", 1)],
client=True,
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": False,
},
)
async def test_pause_executor_manual(c, s, a):
assert not memory_monitor_running(a)
# Task that is running when the worker pauses
ev_x = Event()
def f(ev):
ev.wait()
return 1
# Task that is running on the worker when the worker pauses
x = c.submit(f, ev_x, key="x")
while a.state.executing_count != 1:
await asyncio.sleep(0.01)
# Task that is queued on the worker when the worker pauses
y = c.submit(inc, 1, key="y")
while "y" not in a.state.tasks:
await asyncio.sleep(0.01)
a.status = Status.paused
# Wait for sync to scheduler
while s.workers[a.address].status != Status.paused:
await asyncio.sleep(0.01)
# Task that is queued on the scheduler when the worker pauses.
# It is not sent to the worker.
z = c.submit(inc, 2, key="z")
while "z" not in s.tasks or s.tasks["z"].state != "no-worker":
await asyncio.sleep(0.01)
assert s.unrunnable == {s.tasks["z"]}
# Test that a task that already started when the worker paused can complete
# and its output can be retrieved. Also test that the now free slot won't be
# used by other tasks.
await ev_x.set()
assert await x == 1
await asyncio.sleep(0.05)
assert a.state.executing_count == 0
assert len(a.state.ready) == 1
assert a.state.tasks["y"].state == "ready"
assert "z" not in a.state.tasks
# Unpause. Tasks that were queued on the worker are executed.
# Tasks that were stuck on the scheduler are sent to the worker and executed.
a.status = Status.running
assert await y == 2
assert await z == 3
@gen_cluster(
nthreads=[("", 1)],
client=True,
worker_kwargs={"memory_limit": "10 GB"},
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": 0.8,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_pause_executor_with_memory_monitor(c, s, a):
assert memory_monitor_running(a)
mocked_rss = 0
a.monitor.get_process_memory = lambda: mocked_rss
# Task that is running when the worker pauses
ev_x = Event()
def f(ev):
ev.wait()
return 1
# Task that is running on the worker when the worker pauses
x = c.submit(f, ev_x, key="x")
while a.state.executing_count != 1:
await asyncio.sleep(0.01)
with captured_logger(logging.getLogger("distributed.worker.memory")) as logger:
# Task that is queued on the worker when the worker pauses
y = c.submit(inc, 1, key="y")
while "y" not in a.state.tasks:
await asyncio.sleep(0.01)
# Hog the worker with 900GB unmanaged memory
mocked_rss = 900 * 1000**3
while s.workers[a.address].status != Status.paused:
await asyncio.sleep(0.01)
assert "Pausing worker" in logger.getvalue()
# Task that is queued on the scheduler when the worker pauses.
# It is not sent to the worker.
z = c.submit(inc, 2, key="z")
while "z" not in s.tasks or s.tasks["z"].state != "no-worker":
await asyncio.sleep(0.01)
assert s.unrunnable == {s.tasks["z"]}
# Test that a task that already started when the worker paused can complete
# and its output can be retrieved. Also test that the now free slot won't be
# used by other tasks.
await ev_x.set()
assert await x == 1
await asyncio.sleep(0.05)
assert a.state.executing_count == 0
assert len(a.state.ready) == 1
assert a.state.tasks["y"].state == "ready"
assert "z" not in a.state.tasks
# Release the memory. Tasks that were queued on the worker are executed.
# Tasks that were stuck on the scheduler are sent to the worker and executed.
mocked_rss = 0
assert await y == 2
assert await z == 3
assert a.status == Status.running
assert "Resuming worker" in logger.getvalue()
@gen_cluster(
client=True,
nthreads=[("", 1), ("", 1)],
config=merge(
NO_AMM,
{
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": False,
"distributed.worker.memory.pause": False,
},
),
)
async def test_pause_prevents_deps_fetch(c, s, a, b):
"""A worker is paused while there are dependencies ready to fetch, but all other
workers are in flight
"""
a_addr = a.address
class X:
def __sizeof__(self):
return 2**40 # Disable clustering in select_keys_for_gather
def __reduce__(self):
return X.pause_on_unpickle, ()
@staticmethod
def pause_on_unpickle():
# Note: outside of task execution, distributed.get_worker()
# returns a random worker running in the process
for w in Worker._instances:
if w.address == a_addr:
w.status = Status.paused
return X()
assert False
x = c.submit(X, key="x", workers=[b.address])
y = c.submit(inc, 1, key="y", workers=[b.address])
await wait([x, y])
w = c.submit(lambda _: None, x, key="w", priority=1, workers=[a.address])
z = c.submit(inc, y, key="z", priority=0, workers=[a.address])
# - w and z reach worker a within the same message
# - w and z respectively make x and y go into fetch state.
# w has a higher priority than z, therefore w's dependency x has a higher priority
# than z's dependency y.
# a.state.data_needed[b.address] = ["x", "y"]
# - ensure_communicating decides to fetch x but not to fetch y together with it, as
# it thinks x is 1TB in size
# - x fetch->flight; a is added to in_flight_workers
# - y is skipped by ensure_communicating since all workers that hold a replica are
# in flight
# - x reaches a and sends a into paused state
# - x flight->memory; a is removed from in_flight_workers
# - ensure_communicating is triggered again
# - ensure_communicating refuses to fetch y because the worker is paused
await wait_for_state("y", "fetch", a)
await asyncio.sleep(0.1)
assert a.state.tasks["y"].state == "fetch"
assert "y" not in a.data
assert [ts.key for ts in a.state.data_needed[b.address]] == ["y"]
# Unpausing kicks off ensure_communicating again
a.status = Status.running
assert await z == 3
assert a.state.tasks["y"].state == "memory"
assert "y" in a.data
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": 0},
config={"distributed.worker.memory.monitor-interval": "10ms"},
)
async def test_avoid_memory_monitor_if_zero_limit_worker(c, s, a):
assert type(a.data) is dict
assert not memory_monitor_running(a)
future = c.submit(inc, 1)
assert await future == 2
await asyncio.sleep(0.05)
assert await c.submit(inc, 2) == 3 # worker doesn't pause
@gen_cluster(
client=True,
nthreads=[("", 1)],
Worker=Nanny,
worker_kwargs={"memory_limit": 0},
config={"distributed.worker.memory.monitor-interval": "10ms"},
)
async def test_avoid_memory_monitor_if_zero_limit_nanny(c, s, nanny):
typ = await c.run(lambda dask_worker: type(dask_worker.data))
assert typ == {nanny.worker_address: dict}
assert not memory_monitor_running(nanny)
assert not (await c.run(memory_monitor_running))[nanny.worker_address]
future = c.submit(inc, 1)
assert await future == 2
await asyncio.sleep(0.02)
assert await c.submit(inc, 2) == 3 # worker doesn't pause
@gen_cluster(nthreads=[])
async def test_override_data_worker(s):
# Use a UserDict to sidestep potential special case handling for dict
async with Worker(s.address, data=UserDict) as w:
assert type(w.data) is UserDict
data = UserDict()
async with Worker(s.address, data=data) as w:
assert w.data is data
@gen_cluster(
client=True,
nthreads=[("", 1)],
Worker=Nanny,
worker_kwargs={"data": UserDict},
)
async def test_override_data_nanny(c, s, n):
r = await c.run(lambda dask_worker: type(dask_worker.data))
assert r[n.worker_address] is UserDict
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": "10 GB", "data": UserDict},
config={"distributed.worker.memory.monitor-interval": "10ms"},
)
async def test_override_data_vs_memory_monitor(c, s, a):
a.monitor.get_process_memory = lambda: 8_100_000_000 if a.data else 0
assert memory_monitor_running(a)
# Push a key that would normally trip both the target and the spill thresholds
class C:
def __sizeof__(self):
return 8_100_000_000
# Capture output of log_errors()
with captured_logger(logging.getLogger("distributed.utils")) as logger:
x = c.submit(C)
await wait(x)
# The pause subsystem of the memory monitor has been tripped.
# The spill subsystem hasn't.
while a.status != Status.paused:
await asyncio.sleep(0.01)
await asyncio.sleep(0.05)
# This would happen if memory_monitor() tried to blindly call SpillBuffer.evict()
assert "Traceback" not in logger.getvalue()
assert type(a.data) is UserDict
assert a.data.keys() == {x.key}
class ManualEvictDict(UserDict):
"""A MutableMapping which implements distributed.spill.ManualEvictProto"""
def __init__(self):
super().__init__()
self.evicted = set()
@property
def fast(self):
# Any Sized of bool will do
return self.keys() - self.evicted
def evict(self):
# Evict a random key
k = next(iter(self.fast))
self.evicted.add(k)
return 1
@gen_cluster(
client=True,
nthreads=[("", 1)],
worker_kwargs={"memory_limit": "1 GB", "data": ManualEvictDict},
config={
"distributed.worker.memory.pause": False,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_manual_evict_proto(c, s, a):
"""data is a third-party dict-like which respects the ManualEvictProto duck-type
API. spill threshold is respected.
"""
a.monitor.get_process_memory = lambda: 701_000_000 if a.data else 0
assert memory_monitor_running(a)
assert isinstance(a.data, ManualEvictDict)
futures = await c.scatter({"x": None, "y": None, "z": None})
while a.data.evicted != {"x", "y", "z"}:
await asyncio.sleep(0.01)
async def leak_until_restart(c: Client, s: Scheduler) -> None:
s.allowed_failures = 0
def leak():
L = []
while True:
L.append(b"0" * 5_000_000)
sleep(0.01)
(addr,) = s.workers
pid = (await c.run(os.getpid))[addr]
future = c.submit(leak, key="leak")
# Wait until the worker is restarted
while len(s.workers) != 1 or set(s.workers) == {addr}:
await asyncio.sleep(0.01)
# Test that the process has been properly waited for and not just left there
with pytest.raises(psutil.NoSuchProcess):
psutil.Process(pid)
with pytest.raises(KilledWorker):
await future
assert s.tasks["leak"].suspicious == 1
assert not any(
(await c.run(lambda dask_worker: "leak" in dask_worker.state.tasks)).values()
)
future.release()
while "leak" in s.tasks:
await asyncio.sleep(0.01)
@pytest.mark.slow
@gen_cluster(
nthreads=[("", 1)],
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "400 MiB"},
config={"distributed.worker.memory.monitor-interval": "10ms"},
)
async def test_nanny_terminate(c, s, a):
await leak_until_restart(c, s)
@pytest.mark.slow
@pytest.mark.parametrize(
"ignore_sigterm",
[
False,
pytest.param(True, marks=pytest.mark.skipif(WINDOWS, reason="Needs SIGKILL")),
],
)
@gen_cluster(
nthreads=[("", 1)],
client=True,
Worker=Nanny,
worker_kwargs={"memory_limit": "400 MiB"},
config={"distributed.worker.memory.monitor-interval": "10ms"},
)
async def test_disk_cleanup_on_terminate(c, s, a, ignore_sigterm):
"""Test that the spilled data on disk is cleaned up when the nanny kills the worker.
Unlike in a regular worker shutdown, where the worker deletes its own spill
directory, the cleanup in case of termination from the monitor is performed by the
nanny.
The worker may be slow to accept SIGTERM, for whatever reason.
At the next iteration of the memory manager, if the process is still alive, the
nanny sends SIGKILL.
"""
def do_ignore_sigterm():
# ignore the return value of signal.signal: it may not be serializable
signal.signal(signal.SIGTERM, signal.SIG_IGN)
if ignore_sigterm:
await c.run(do_ignore_sigterm)
fut = c.submit(inc, 1, key="myspill")
await wait(fut)
await c.run(lambda dask_worker: dask_worker.data.evict())
glob_out = await c.run(
lambda dask_worker: glob.glob(dask_worker.local_directory + "/**/myspill")
)
spill_fname = next(iter(glob_out.values()))[0]
assert os.path.exists(spill_fname)
await leak_until_restart(c, s)
assert not os.path.exists(spill_fname)
@gen_cluster(
nthreads=[("", 1)],
client=True,
worker_kwargs={"memory_limit": "2 GiB"},
# ^ must be smaller than system memory limit, otherwise that will take precedence
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": 0.5,
"distributed.worker.memory.pause": 0.8,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_pause_while_spilling(c, s, a):
N_PAUSE = 3
N_TOTAL = 5
if a.memory_manager.memory_limit < parse_bytes("2 GiB"):
pytest.fail(
f"Set 2 GiB memory limit, got {format_bytes(a.memory_manager.memory_limit)}."
)
def get_process_memory():
if len(a.data) < N_PAUSE:
# Don't trigger spilling until after all tasks have completed
return 0
elif a.data.fast and not a.data.slow:
# Trigger spilling
return parse_bytes("1.6 GiB")
else:
# Trigger pause, but only after we started spilling
return parse_bytes("1.9 GiB")
a.monitor.get_process_memory = get_process_memory
class SlowSpill:
def __init__(self, _):
# Can't pickle a Semaphore, so instead of a default value, we create it
# here. Don't worry about race conditions; the worker is single-threaded.
if not hasattr(type(self), "sem"):
type(self).sem = threading.Semaphore(N_PAUSE)
# Block if there are N_PAUSE tasks in a.data.fast
self.sem.acquire()
def __reduce__(self):
paused = distributed.get_worker().status == Status.paused
if not paused:
sleep(0.1)
self.sem.release()
return bool, (paused,)
futs = c.map(SlowSpill, range(N_TOTAL))
while len(a.data.slow) < (N_PAUSE + 1 if a.state.ready else N_PAUSE):
await asyncio.sleep(0.01)
assert a.status == Status.paused
# Worker should have become paused after the first `SlowSpill` was evicted, because
# the spill to disk took longer than the memory monitor interval.
assert len(a.data.fast) == 0
# With queuing enabled, after the 3rd `SlowSpill` has been created, there's a race
# between the scheduler sending the worker a new task, and the memory monitor
# running and pausing the worker. If the worker gets paused before the 4th task
# lands, only 3 will be in memory. If after, the 4th will block on the semaphore
# until one of the others is spilled.
assert len(a.data.slow) in (N_PAUSE, N_PAUSE + 1)
n_spilled_while_not_paused = sum(paused is False for paused in a.data.slow.values())
assert 0 <= n_spilled_while_not_paused <= 1
@pytest.mark.slow
@pytest.mark.skipif(
condition=MACOS, reason="https://github.com/dask/distributed/issues/6233"
)
@gen_cluster(
nthreads=[("", 1)],
client=True,
worker_kwargs={"memory_limit": "10 GiB"},
config={
"distributed.worker.memory.target": False,
"distributed.worker.memory.spill": 0.6,
"distributed.worker.memory.pause": False,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_release_evloop_while_spilling(c, s, a):
N = 100
def get_process_memory():
if len(a.data) < N:
# Don't trigger spilling until after all tasks have completed
return 0
return 10 * 2**30
a.monitor.get_process_memory = get_process_memory
class SlowSpill:
def __reduce__(self):
sleep(0.01)
return SlowSpill, ()
futs = [c.submit(SlowSpill, pure=False) for _ in range(N)]
while len(a.data) < N:
await asyncio.sleep(0)
ts = [monotonic()]
while a.data.fast:
await asyncio.sleep(0)
ts.append(monotonic())
# 100 tasks taking 0.01s to pickle each = 2s to spill everything
# (this is because everything is pickled twice:
# https://github.com/dask/distributed/issues/1371).
# We should regain control of the event loop every 0.5s.
c = Counter(round(t1 - t0, 1) for t0, t1 in zip(ts, ts[1:]))
# Depending on the implementation of WorkerMemoryMonitor._maybe_spill:
# if it calls sleep(0) every 0.5s:
# {0.0: 315, 0.5: 4}
# if it calls sleep(0) after spilling each key:
# {0.0: 233}
# if it never yields:
# {0.0: 359, 2.0: 1}
# Make sure we remain in the first use case.
assert 1 < sum(v for k, v in c.items() if 0.5 <= k <= 1.9), dict(c)
assert not any(v for k, v in c.items() if k >= 2.0), dict(c)
@gen_cluster(
client=True,
worker_kwargs={"memory_limit": "100 MiB"},
# ^ must be smaller than system memory limit, otherwise that will take precedence
config={
"distributed.worker.memory.target": 0.5,
"distributed.worker.memory.spill": 1.0,
"distributed.worker.memory.pause": False,
"distributed.worker.memory.monitor-interval": "10ms",
},
)
async def test_digests(c, s, a, b):
trigger_spill = False
def get_process_memory():
return 2**30 if trigger_spill else 0
a.monitor.get_process_memory = get_process_memory
x1 = c.submit(inc, 1, key="x1", workers=[a.address]) # store to fast
x2 = c.submit(inc, x1, key="x2", workers=[a.address]) # read from fast for execute
y1 = c.submit(inc, x2, key="y1", workers=[b.address]) # read from fast for get-data
# digest happens only if write/read takes more than 5ms
await wait([x2, y1])
assert "disk-load-duration" not in a.digests_total
assert "get-data-load-duration" not in a.digests_total
assert "disk-write-target-duration" not in a.digests_total
assert "disk-write-spill-duration" not in a.digests_total
# Pass target threshold (50 MiB)
# We need substantial data to be sure that spilling it will take more than 5ms.
x3 = c.submit(lambda: "x" * 40_000_000, key="x3", workers=[a.address])
x4 = c.submit(lambda: "x" * 40_000_000, key="x4", workers=[a.address])
await wait([x3, x4])
x5 = c.submit(lambda: "x" * 40_000_000, key="x5", workers=[a.address])
x6 = c.submit(lambda: "x" * 40_000_000, key="x6", workers=[a.address])
await wait([x5, x6])
assert "x3" in a.data.slow
assert "x4" in a.data.slow
assert a.digests_total["disk-write-target-duration"] > 0
assert "disk-write-spill-duration" not in a.digests_total
x7 = c.submit(lambda x: None, x3, key="x7", workers=[a.address])
await wait(x7)
assert a.digests_total["disk-load-duration"] > 0
y2 = c.submit(lambda x: None, x4, key="y2", workers=[b.address])
await wait(y2)
assert a.digests_total["get-data-load-duration"] > 0
trigger_spill = True
while a.data.fast:
await asyncio.sleep(0.01)
assert a.digests_total["disk-write-spill-duration"] > 0
@pytest.mark.parametrize(
"cls,name,value",
[
(Worker, "memory_limit", 123e9),
(Worker, "memory_target_fraction", 0.789),
(Worker, "memory_spill_fraction", 0.789),
(Worker, "memory_pause_fraction", 0.789),
(Nanny, "memory_limit", 123e9),
(Nanny, "memory_terminate_fraction", 0.789),
],
)
@gen_cluster(nthreads=[])
async def test_deprecated_attributes(s, cls, name, value):
async with cls(s.address) as a:
with pytest.warns(FutureWarning, match=name):
setattr(a, name, value)
with pytest.warns(FutureWarning, match=name):
assert getattr(a, name) == value
assert getattr(a.memory_manager, name) == value
@gen_cluster(nthreads=[("", 1)])
async def test_deprecated_memory_monitor_method_worker(s, a):
with pytest.warns(FutureWarning, match="memory_monitor"):
await a.memory_monitor()
@gen_cluster(nthreads=[("", 1)], Worker=Nanny)
async def test_deprecated_memory_monitor_method_nanny(s, a):
with pytest.warns(FutureWarning, match="memory_monitor"):
a.memory_monitor()
@pytest.mark.parametrize(
"name",
["memory_target_fraction", "memory_spill_fraction", "memory_pause_fraction"],
)
@gen_cluster(nthreads=[])
async def test_deprecated_params(s, name):
with pytest.warns(FutureWarning, match=name):
async with Worker(s.address, **{name: 0.789}) as a:
assert getattr(a.memory_manager, name) == 0.789
|