1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
"""Encapsulated manager for in-memory tasks on a worker.
This module covers:
- spill/unspill data depending on the 'distributed.worker.memory.target' threshold
- spill/unspill data depending on the 'distributed.worker.memory.spill' threshold
- pause/unpause the worker depending on the 'distributed.worker.memory.pause' threshold
- kill the worker depending on the 'distributed.worker.memory.terminate' threshold
This module does *not* cover:
- Changes in behaviour in Worker, Scheduler, task stealing, Active Memory Manager, etc.
caused by the Worker being in paused status
- Worker restart after it's been killed
- Scheduler-side heuristics regarding memory usage, e.g. the Active Memory Manager
See also:
- :mod:`distributed.spill`, which implements the spill-to-disk mechanism and is wrapped
by this module. Unlike this module, :mod:`distributed.spill` is agnostic to the
Worker.
- :mod:`distributed.active_memory_manager`, which runs on the scheduler side
"""
from __future__ import annotations
import asyncio
import logging
import os
import sys
import warnings
from collections.abc import Callable, MutableMapping
from contextlib import suppress
from functools import partial
from typing import TYPE_CHECKING, Any, Container, Literal, cast
import psutil
import dask.config
from dask.system import CPU_COUNT
from dask.utils import format_bytes, parse_bytes, parse_timedelta
from distributed import system
from distributed.compatibility import WINDOWS, PeriodicCallback
from distributed.core import Status
from distributed.metrics import monotonic
from distributed.spill import ManualEvictProto, SpillBuffer
from distributed.utils import has_arg, log_errors
from distributed.utils_perf import ThrottledGC
if TYPE_CHECKING:
# Circular imports
from distributed.nanny import Nanny
from distributed.worker import Worker
class WorkerMemoryManager:
"""Management of worker memory usage
Parameters
----------
worker
Worker to manage
For meaning of the remaining parameters, see the matching
parameter names in :class:`~.distributed.worker.Worker`.
Notes
-----
If data is a callable and has the argument ``worker_local_directory`` in its
signature, it will be filled with the worker's attr:``local_directory``.
"""
data: MutableMapping[str, object] # {task key: task payload}
memory_limit: int | None
memory_target_fraction: float | Literal[False]
memory_spill_fraction: float | Literal[False]
memory_pause_fraction: float | Literal[False]
max_spill: int | Literal[False]
memory_monitor_interval: float
_throttled_gc: ThrottledGC
def __init__(
self,
worker: Worker,
*,
nthreads: int,
memory_limit: str | float = "auto",
# This should be None most of the times, short of a power user replacing the
# SpillBuffer with their own custom dict-like
data: (
MutableMapping[str, Any] # pre-initialised
| Callable[[], MutableMapping[str, Any]] # constructor
# constructor, passed worker.local_directory
| Callable[[str], MutableMapping[str, Any]]
| tuple[
Callable[..., MutableMapping[str, Any]], dict[str, Any]
] # (constructor, kwargs to constructor)
| None # create internally
) = None,
# Deprecated parameters; use dask.config instead
memory_target_fraction: float | Literal[False] | None = None,
memory_spill_fraction: float | Literal[False] | None = None,
memory_pause_fraction: float | Literal[False] | None = None,
):
self.logger = logging.getLogger("distributed.worker.memory")
self.memory_limit = parse_memory_limit(
memory_limit, nthreads, logger=self.logger
)
self.memory_target_fraction = _parse_threshold(
"distributed.worker.memory.target",
"memory_target_fraction",
memory_target_fraction,
)
self.memory_spill_fraction = _parse_threshold(
"distributed.worker.memory.spill",
"memory_spill_fraction",
memory_spill_fraction,
)
self.memory_pause_fraction = _parse_threshold(
"distributed.worker.memory.pause",
"memory_pause_fraction",
memory_pause_fraction,
)
max_spill = dask.config.get("distributed.worker.memory.max-spill")
self.max_spill = False if max_spill is False else parse_bytes(max_spill)
if isinstance(data, MutableMapping):
self.data = data
elif callable(data):
if has_arg(data, "worker_local_directory"):
data = cast("Callable[[str], MutableMapping[str, Any]]", data)
self.data = data(worker.local_directory)
else:
data = cast("Callable[[], MutableMapping[str, Any]]", data)
self.data = data()
elif isinstance(data, tuple):
func, kwargs = data
if not callable(func):
raise ValueError("Expecting a callable")
if has_arg(func, "worker_local_directory"):
self.data = func(
worker_local_directory=worker.local_directory, **kwargs
)
else:
self.data = func(**kwargs)
elif self.memory_limit and (
self.memory_target_fraction or self.memory_spill_fraction
):
if self.memory_target_fraction:
target = int(
self.memory_limit
* (self.memory_target_fraction or self.memory_spill_fraction)
)
else:
target = sys.maxsize
self.data = SpillBuffer(
os.path.join(worker.local_directory, "storage"),
target=target,
max_spill=self.max_spill,
)
else:
self.data = {}
self.memory_monitor_interval = parse_timedelta(
dask.config.get("distributed.worker.memory.monitor-interval"),
default=False,
)
assert isinstance(self.memory_monitor_interval, (int, float))
if self.memory_limit and (
self.memory_spill_fraction is not False
or self.memory_pause_fraction is not False
):
assert self.memory_monitor_interval is not None
pc = PeriodicCallback(
# Don't store worker as self.worker to avoid creating a circular
# dependency. We could have alternatively used a weakref.
partial(self.memory_monitor, worker),
self.memory_monitor_interval * 1000,
)
worker.periodic_callbacks["memory_monitor"] = pc
self._throttled_gc = ThrottledGC(logger=self.logger)
@log_errors
async def memory_monitor(self, worker: Worker) -> None:
"""Track this process's memory usage and act accordingly.
If process memory rises above the spill threshold (70%), start dumping data to
disk until it goes below the target threshold (60%).
If process memory rises above the pause threshold (80%), stop execution of new
tasks.
"""
# Don't use psutil directly; instead read from the same API that is used
# to send info to the Scheduler (e.g. for the benefit of Active Memory
# Manager) and which can be easily mocked in unit tests.
memory = worker.monitor.get_process_memory()
self._maybe_pause_or_unpause(worker, memory)
await self._maybe_spill(worker, memory)
def _maybe_pause_or_unpause(self, worker: Worker, memory: int) -> None:
if self.memory_pause_fraction is False:
return
assert self.memory_limit
frac = memory / self.memory_limit
# Pause worker threads if above 80% memory use
if frac > self.memory_pause_fraction:
# Try to free some memory while in paused state
self._throttled_gc.collect()
if worker.status == Status.running:
self.logger.warning(
"Worker is at %d%% memory usage. Pausing worker. "
"Process memory: %s -- Worker memory limit: %s",
int(frac * 100),
format_bytes(memory),
format_bytes(self.memory_limit)
if self.memory_limit is not None
else "None",
)
worker.status = Status.paused
elif worker.status == Status.paused:
self.logger.warning(
"Worker is at %d%% memory usage. Resuming worker. "
"Process memory: %s -- Worker memory limit: %s",
int(frac * 100),
format_bytes(memory),
format_bytes(self.memory_limit)
if self.memory_limit is not None
else "None",
)
worker.status = Status.running
async def _maybe_spill(self, worker: Worker, memory: int) -> None:
if self.memory_spill_fraction is False:
return
# SpillBuffer or a duct-type compatible MutableMapping which offers the
# fast property and evict() methods. Dask-CUDA uses this.
if not hasattr(self.data, "fast") or not hasattr(self.data, "evict"):
return
data = cast(ManualEvictProto, self.data)
assert self.memory_limit
frac = memory / self.memory_limit
if frac <= self.memory_spill_fraction:
return
total_spilled = 0
self.logger.debug(
"Worker is at %.0f%% memory usage. Start spilling data to disk.",
frac * 100,
)
# Implement hysteresis cycle where spilling starts at the spill threshold and
# stops at the target threshold. Normally that here the target threshold defines
# process memory, whereas normally it defines reported managed memory (e.g.
# output of sizeof() ). If target=False, disable hysteresis.
target = self.memory_limit * (
self.memory_target_fraction or self.memory_spill_fraction
)
count = 0
need = memory - target
last_checked_for_pause = last_yielded = monotonic()
while memory > target:
if not data.fast:
self.logger.warning(
"Unmanaged memory use is high. This may indicate a memory leak "
"or the memory may not be released to the OS; see "
"https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os "
"for more information. "
"-- Unmanaged memory: %s -- Worker memory limit: %s",
format_bytes(memory),
format_bytes(self.memory_limit),
)
break
weight = data.evict()
if weight == -1:
# Failed to evict:
# disk full, spill size limit exceeded, or pickle error
break
total_spilled += weight
count += 1
memory = worker.monitor.get_process_memory()
if total_spilled > need and memory > target:
# Issue a GC to ensure that the evicted data is actually
# freed from memory and taken into account by the monitor
# before trying to evict even more data.
self._throttled_gc.collect()
memory = worker.monitor.get_process_memory()
now = monotonic()
# Spilling may potentially take multiple seconds; we may pass the pause
# threshold in the meantime.
if now - last_checked_for_pause > self.memory_monitor_interval:
self._maybe_pause_or_unpause(worker, memory)
last_checked_for_pause = now
# Increase spilling aggressiveness when the fast buffer is filled with a lot
# of small values. This artificially chokes the rest of the event loop -
# namely, the reception of new data from other workers. While this is
# somewhat of an ugly hack, DO NOT tweak this without a thorough cycle of
# stress testing. See: https://github.com/dask/distributed/issues/6110.
if now - last_yielded > 0.5:
# See metrics:
# - disk-load-duration
# - get-data-load-duration
# - disk-write-target-duration
# - disk-write-spill-duration
worker.digest_metric("disk-write-spill-duration", now - last_yielded)
await asyncio.sleep(0)
last_yielded = monotonic()
now = monotonic()
if now - last_yielded > 0.005:
worker.digest_metric("disk-write-spill-duration", now - last_yielded)
if count:
self.logger.debug(
"Moved %d tasks worth %s to disk",
count,
format_bytes(total_spilled),
)
def _to_dict(self, *, exclude: Container[str] = ()) -> dict:
info = {k: v for k, v in self.__dict__.items() if not k.startswith("_")}
del info["logger"]
info["data"] = dict.fromkeys(self.data)
return info
class NannyMemoryManager:
memory_limit: int | None
memory_terminate_fraction: float | Literal[False]
memory_monitor_interval: float | None
_last_terminated_pid: int
def __init__(
self,
nanny: Nanny,
*,
memory_limit: str | float = "auto",
):
self.logger = logging.getLogger("distributed.nanny.memory")
self.memory_limit = parse_memory_limit(
memory_limit, nanny.nthreads, logger=self.logger
)
self.memory_terminate_fraction = dask.config.get(
"distributed.worker.memory.terminate"
)
self.memory_monitor_interval = parse_timedelta(
dask.config.get("distributed.worker.memory.monitor-interval"),
default=False,
)
assert isinstance(self.memory_monitor_interval, (int, float))
self._last_terminated_pid = -1
if self.memory_limit and self.memory_terminate_fraction is not False:
pc = PeriodicCallback(
partial(self.memory_monitor, nanny),
self.memory_monitor_interval * 1000,
)
nanny.periodic_callbacks["memory_monitor"] = pc
def memory_monitor(self, nanny: Nanny) -> None:
"""Track worker's memory. Restart if it goes above terminate fraction."""
if (
nanny.status != Status.running
or nanny.process is None
or nanny.process.process is None
or nanny.process.process.pid is None
):
return # pragma: nocover
process = nanny.process.process
try:
memory = psutil.Process(process.pid).memory_info().rss
except (ProcessLookupError, psutil.NoSuchProcess, psutil.AccessDenied):
return # pragma: nocover
if memory / self.memory_limit <= self.memory_terminate_fraction:
return
if self._last_terminated_pid != process.pid:
self.logger.warning(
f"Worker {nanny.worker_address} (pid={process.pid}) exceeded "
f"{self.memory_terminate_fraction * 100:.0f}% memory budget. "
"Restarting...",
)
self._last_terminated_pid = process.pid
process.terminate()
else:
# We already sent SIGTERM to the worker, but the process is still alive
# since the previous iteration of the memory_monitor - for example, some
# user code may have tampered with signal handlers.
# Send SIGKILL for immediate termination.
#
# Note that this should not be a disk-related issue. Unlike in a regular
# worker shutdown, where the worker cleans up its own spill directory, in
# case of SIGTERM no atexit or weakref.finalize callback is triggered
# whatsoever; instead, the nanny cleans up the spill directory *after* the
# worker has been shut down and before starting a new one.
# This is important, as spill directory cleanup may potentially take tens of
# seconds and, if the worker did it, any task that was running and leaking
# would continue to do so for the whole duration of the cleanup, increasing
# the risk of going beyond 100%.
self.logger.warning(
f"Worker {nanny.worker_address} (pid={process.pid}) is slow to %s",
# On Windows, kill() is an alias to terminate()
"terminate; trying again"
if WINDOWS
else "accept SIGTERM; sending SIGKILL",
)
process.kill()
def parse_memory_limit(
memory_limit: str | float | None,
nthreads: int,
total_cores: int = CPU_COUNT,
*,
logger: logging.Logger,
) -> int | None:
if memory_limit is None:
return None
orig = memory_limit
if memory_limit == "auto":
memory_limit = int(system.MEMORY_LIMIT * min(1, nthreads / total_cores))
with suppress(ValueError, TypeError):
memory_limit = float(memory_limit)
if isinstance(memory_limit, float) and memory_limit <= 1:
memory_limit = int(memory_limit * system.MEMORY_LIMIT)
if isinstance(memory_limit, str):
memory_limit = parse_bytes(memory_limit)
else:
memory_limit = int(memory_limit)
assert isinstance(memory_limit, int)
if memory_limit == 0:
return None
if system.MEMORY_LIMIT < memory_limit:
logger.warning(
"Ignoring provided memory limit %s due to system memory limit of %s",
orig,
format_bytes(system.MEMORY_LIMIT),
)
return system.MEMORY_LIMIT
else:
return memory_limit
def _parse_threshold(
config_key: str,
deprecated_param_name: str,
deprecated_param_value: float | Literal[False] | None,
) -> float | Literal[False]:
if deprecated_param_value is not None:
warnings.warn(
f"Parameter {deprecated_param_name} has been deprecated and will be "
f"removed in a future version; please use dask config key {config_key} "
"instead",
FutureWarning,
)
return deprecated_param_value
return dask.config.get(config_key)
def _warn_deprecated(w: Nanny | Worker, name: str) -> None:
warnings.warn(
f"The `{type(w).__name__}.{name}` attribute has been moved to "
f"`{type(w).__name__}.memory_manager.{name}",
FutureWarning,
)
class DeprecatedMemoryManagerAttribute:
name: str
def __set_name__(self, owner: type, name: str) -> None:
self.name = name
def __get__(self, instance: Nanny | Worker | None, owner: type) -> Any:
if instance is None:
# This is triggered by Sphinx
return None # pragma: nocover
_warn_deprecated(instance, self.name)
return getattr(instance.memory_manager, self.name)
def __set__(self, instance: Nanny | Worker, value: Any) -> None:
_warn_deprecated(instance, self.name)
setattr(instance.memory_manager, self.name, value)
class DeprecatedMemoryMonitor:
def __get__(self, instance: Nanny | Worker | None, owner: type) -> Any:
if instance is None:
# This is triggered by Sphinx
return None # pragma: nocover
_warn_deprecated(instance, "memory_monitor")
return partial(instance.memory_manager.memory_monitor, instance)
|