File: presentations.rst

package info (click to toggle)
dask 1.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,856 kB
  • sloc: python: 51,266; sh: 178; makefile: 142
file content (59 lines) | stat: -rw-r--r-- 1,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Presentations On Dask
=====================

* SciPy 2018, July 2018

  * `Scalable Machine Learning with Dask (30 minutes)
    <https://www.youtube.com/watch?v=ccfsbuqsjgI>`__

* PyCon 2018, May 2018

  * `Democratizing Distributed Computing with Dask and JupyterHub (32 minutes)
    <https://www.youtube.com/watch?v=Iq72dt1gO9c>`__

* AMS & ESIP, January 2018

  * `Pangeo quick demo: Dask, XArray, Zarr on the cloud with JupyterHub (3 minutes)
    <https://www.youtube.com/watch?v=rSOJKbfNBNk>`__
  * `Pangeo talk: An open-source big data science platform with Dask, XArray, Zarr on the cloud with JupyterHub (43 minutes)
    <https://www.youtube.com/watch?v=mDrjGxaXQT4>`__

* PYCON.DE 2017, November 2017

  * `Dask: Parallelism in Python (1 hour, 2 minutes)
    <https://www.youtube.com/watch?v=rZlshXJydgQ>`__
    
* PYCON 2017, May 2017

  * `Dask: A Pythonic Distributed Data Science Framework (46 minutes)
    <https://www.youtube.com/watch?v=RA_2qdipVng>`__

* PLOTCON 2016, December 2016

  * `Visualizing Distributed Computations with Dask and Bokeh (33 minutes)
    <https://www.youtube.com/watch?v=FTJwDeXkggU>`__

* PyData DC, October 2016

  * `Using Dask for Parallel Computing in Python (44 minutes)
    <https://www.youtube.com/watch?v=s4ChP7tc3tA>`__

* SciPy 2016, July 2016

  * `Dask Parallel and Distributed Computing (28 minutes)
    <https://www.youtube.com/watch?v=PAGjm4BMKlk>`__

* PyData NYC, December 2015

  * `Dask Parallelizing NumPy and Pandas through Task Scheduling (33 minutes)
    <https://www.youtube.com/watch?v=mHd8AI8GQhQ>`__

* PyData Seattle, August 2015

  * `Dask: out of core arrays with task scheduling (1 hour, 50 minutes)
    <https://www.youtube.com/watch?v=ieW3G7ZzRZ0>`__

* SciPy 2015, July 2015

  * `Dask Out of core NumPy:Pandas through Task Scheduling (16 minutes)
    <https://www.youtube.com/watch?v=1kkFZ4P-XHg>`__