File: 10-minutes-to-dask.rst

package info (click to toggle)
dask 2024.12.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 20,024 kB
  • sloc: python: 105,182; javascript: 1,917; makefile: 159; sh: 88
file content (563 lines) | stat: -rw-r--r-- 17,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
10 Minutes to Dask
==================

.. meta::
    :description: This is a short overview of Dask geared towards new users. Additional Dask information can be found in the rest of the Dask documentation.

This is a short overview of Dask geared towards new users.
There is much more information contained in the rest of the documentation.

.. figure:: images/dask-overview.svg
   :alt: Dask overview. Dask is composed of three parts: collections, task graphs, and schedulers.
   :align: center

   High level collections are used to generate task graphs which can be executed by schedulers on a single machine or a cluster.

We normally import Dask as follows:

.. code-block:: python

   >>> import numpy as np
   >>> import pandas as pd

   >>> import dask.dataframe as dd
   >>> import dask.array as da
   >>> import dask.bag as db

Based on the type of data you are working with, you might not need all of these.

Creating a Dask Object
----------------------

You can create a Dask object from scratch by supplying existing data and optionally
including information about how the chunks should be structured.


.. tab-set::

   .. tab-item:: DataFrame
      :sync: dataframe

      See :doc:`dataframe`.

      .. code-block:: python

         >>> index = pd.date_range("2021-09-01", periods=2400, freq="1h")
         ... df = pd.DataFrame({"a": np.arange(2400), "b": list("abcaddbe" * 300)}, index=index)
         ... ddf = dd.from_pandas(df, npartitions=10)
         ... ddf
         Dask DataFrame Structure:
                                 a       b
         npartitions=10
         2021-09-01 00:00:00  int64  object
         2021-09-11 00:00:00    ...     ...
         ...                    ...     ...
         2021-11-30 00:00:00    ...     ...
         2021-12-09 23:00:00    ...     ...
         Dask Name: from_pandas, 10 tasks

      Now we have a Dask DataFrame with 2 columns and 2400 rows composed of 10 partitions where
      each partition has 240 rows. Each partition represents a piece of the data.

      Here are some key properties of a DataFrame:

      .. code-block:: python

         >>> # check the index values covered by each partition
         ... ddf.divisions
         (Timestamp('2021-09-01 00:00:00', freq='H'),
         Timestamp('2021-09-11 00:00:00', freq='H'),
         Timestamp('2021-09-21 00:00:00', freq='H'),
         Timestamp('2021-10-01 00:00:00', freq='H'),
         Timestamp('2021-10-11 00:00:00', freq='H'),
         Timestamp('2021-10-21 00:00:00', freq='H'),
         Timestamp('2021-10-31 00:00:00', freq='H'),
         Timestamp('2021-11-10 00:00:00', freq='H'),
         Timestamp('2021-11-20 00:00:00', freq='H'),
         Timestamp('2021-11-30 00:00:00', freq='H'),
         Timestamp('2021-12-09 23:00:00', freq='H'))

         >>> # access a particular partition
         ... ddf.partitions[1]
         Dask DataFrame Structure:
                           a       b
         npartitions=1
         2021-09-11     int64  object
         2021-09-21       ...     ...
         Dask Name: blocks, 11 tasks

   .. tab-item:: Array
      :sync: array

      See :doc:`array`.

      .. code-block:: python

         import numpy as np
         import dask.array as da

         data = np.arange(100_000).reshape(200, 500)
         a = da.from_array(data, chunks=(100, 100))
         a

      Now we have a 2D array with the shape (200, 500) composed of 10 chunks where
      each chunk has the shape (100, 100). Each chunk represents a piece of the data.

      Here are some key properties of a Dask Array:

      .. code-block:: python

         # inspect the chunks
         a.chunks

      .. code-block:: python
            
         # access a particular block of data
         a.blocks[1, 3]

   .. tab-item:: Bag
      :sync: bag

      See :doc:`bag`.

      .. code-block:: python

         >>> b = db.from_sequence([1, 2, 3, 4, 5, 6, 2, 1], npartitions=2)
         ... b
         dask.bag<from_sequence, npartitions=2>

      Now we have a sequence with 8 items composed of 2 partitions where each partition
      has 4 items in it. Each partition represents a piece of the data.


Indexing
--------

Indexing Dask collections feels just like slicing NumPy arrays or pandas DataFrame.

.. tab-set::

   .. tab-item:: DataFrame
      :sync: dataframe

      .. code-block:: python

         >>> ddf.b
         Dask Series Structure:
         npartitions=10
         2021-09-01 00:00:00    object
         2021-09-11 00:00:00       ...
                                 ...
         2021-11-30 00:00:00       ...
         2021-12-09 23:00:00       ...
         Name: b, dtype: object
         Dask Name: getitem, 20 tasks

         >>> ddf["2021-10-01": "2021-10-09 5:00"]
         Dask DataFrame Structure:
                                          a       b
         npartitions=1
         2021-10-01 00:00:00.000000000  int64  object
         2021-10-09 05:00:59.999999999    ...     ...
         Dask Name: loc, 11 tasks

   .. tab-item:: Array
      :sync: array

      .. code-block:: python

         a[:50, 200]

   .. tab-item:: Bag
      :sync: bag

      A Bag is an unordered collection allowing repeats. So it is like a list, but it doesn’t
      guarantee an ordering among elements. There is no way to index Bags since they are
      not ordered.


Computation
-----------

Dask is lazily evaluated. The result from a computation isn't computed until
you ask for it. Instead, a Dask task graph for the computation is produced.

Anytime you have a Dask object and you want to get the result, call ``compute``:

.. tab-set::

   .. tab-item:: DataFrame
      :sync: dataframe

      .. code-block:: python

         >>> ddf["2021-10-01": "2021-10-09 5:00"].compute()
                              a  b
         2021-10-01 00:00:00  720  a
         2021-10-01 01:00:00  721  b
         2021-10-01 02:00:00  722  c
         2021-10-01 03:00:00  723  a
         2021-10-01 04:00:00  724  d
         ...                  ... ..
         2021-10-09 01:00:00  913  b
         2021-10-09 02:00:00  914  c
         2021-10-09 03:00:00  915  a
         2021-10-09 04:00:00  916  d
         2021-10-09 05:00:00  917  d

         [198 rows x 2 columns]

   .. tab-item:: Array
      :sync: array

      .. code-block:: python

         >>> a[:50, 200].compute()
         array([  200,   700,  1200,  1700,  2200,  2700,  3200,  3700,  4200,
               4700,  5200,  5700,  6200,  6700,  7200,  7700,  8200,  8700,
               9200,  9700, 10200, 10700, 11200, 11700, 12200, 12700, 13200,
               13700, 14200, 14700, 15200, 15700, 16200, 16700, 17200, 17700,
               18200, 18700, 19200, 19700, 20200, 20700, 21200, 21700, 22200,
               22700, 23200, 23700, 24200, 24700])

   .. tab-item:: Bag
      :sync: bag

      .. code-block:: python

         >>> b.compute()
         [1, 2, 3, 4, 5, 6, 2, 1]


Methods
-------

Dask collections match existing numpy and pandas methods, so they should feel familiar.
Call the method to set up the task graph, and then call ``compute`` to get the result.

.. tab-set::

   .. tab-item:: DataFrame
      :sync: dataframe

      .. code-block:: python

         >>> ddf.a.mean()
         dd.Scalar<series-..., dtype=float64>

         >>> ddf.a.mean().compute()
         1199.5

         >>> ddf.b.unique()
         Dask Series Structure:
         npartitions=1
            object
               ...
         Name: b, dtype: object
         Dask Name: unique-agg, 33 tasks

         >>> ddf.b.unique().compute()
         0    a
         1    b
         2    c
         3    d
         4    e
         Name: b, dtype: object

      Methods can be chained together just like in pandas

      .. code-block:: python

         >>> result = ddf["2021-10-01": "2021-10-09 5:00"].a.cumsum() - 100
         ... result
         Dask Series Structure:
         npartitions=1
         2021-10-01 00:00:00.000000000    int64
         2021-10-09 05:00:59.999999999      ...
         Name: a, dtype: int64
         Dask Name: sub, 16 tasks

         >>> result.compute()
         2021-10-01 00:00:00       620
         2021-10-01 01:00:00      1341
         2021-10-01 02:00:00      2063
         2021-10-01 03:00:00      2786
         2021-10-01 04:00:00      3510
                                 ...
         2021-10-09 01:00:00    158301
         2021-10-09 02:00:00    159215
         2021-10-09 03:00:00    160130
         2021-10-09 04:00:00    161046
         2021-10-09 05:00:00    161963
         Freq: H, Name: a, Length: 198, dtype: int64

   .. tab-item:: Array
      :sync: array

      .. code-block:: python

         >>> a.mean()
         dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=(), chunktype=numpy.ndarray>

         >>> a.mean().compute()
         49999.5

         >>> np.sin(a)
         dask.array<sin, shape=(200, 500), dtype=float64, chunksize=(100, 100), chunktype=numpy.ndarray>

         >>> np.sin(a).compute()
         array([[ 0.        ,  0.84147098,  0.90929743, ...,  0.58781939,
                  0.99834363,  0.49099533],
               [-0.46777181, -0.9964717 , -0.60902011, ..., -0.89796748,
               -0.85547315, -0.02646075],
               [ 0.82687954,  0.9199906 ,  0.16726654, ...,  0.99951642,
                  0.51387502, -0.4442207 ],
               ...,
               [-0.99720859, -0.47596473,  0.48287891, ..., -0.76284376,
                  0.13191447,  0.90539115],
               [ 0.84645538,  0.00929244, -0.83641393, ...,  0.37178568,
               -0.5802765 , -0.99883514],
               [-0.49906936,  0.45953849,  0.99564877, ...,  0.10563876,
                  0.89383946,  0.86024828]])

         >>> a.T
         dask.array<transpose, shape=(500, 200), dtype=int64, chunksize=(100, 100), chunktype=numpy.ndarray>

         >>> a.T.compute()
         array([[    0,   500,  1000, ..., 98500, 99000, 99500],
               [    1,   501,  1001, ..., 98501, 99001, 99501],
               [    2,   502,  1002, ..., 98502, 99002, 99502],
               ...,
               [  497,   997,  1497, ..., 98997, 99497, 99997],
               [  498,   998,  1498, ..., 98998, 99498, 99998],
               [  499,   999,  1499, ..., 98999, 99499, 99999]])

      Methods can be chained together just like in NumPy

      .. code-block:: python

         >>> b = a.max(axis=1)[::-1] + 10
         ... b
         dask.array<add, shape=(200,), dtype=int64, chunksize=(100,), chunktype=numpy.ndarray>

         >>> b[:10].compute()
         array([100009,  99509,  99009,  98509,  98009,  97509,  97009,  96509,
               96009,  95509])

   .. tab-item:: Bag
      :sync: bag

      Dask Bag implements operations like ``map``, ``filter``, ``fold``, and
      ``groupby`` on collections of generic Python objects.

      .. code-block:: python

         >>> b.filter(lambda x: x % 2)
         dask.bag<filter-lambda, npartitions=2>

         >>> b.filter(lambda x: x % 2).compute()
         [1, 3, 5, 1]

         >>> b.distinct()
         dask.bag<distinct-aggregate, npartitions=1>

         >>> b.distinct().compute()
         [1, 2, 3, 4, 5, 6]

      Methods can be chained together.

      .. code-block:: python

         >>> c = db.zip(b, b.map(lambda x: x * 10))
         ... c
         dask.bag<zip, npartitions=2>

         >>> c.compute()
         [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60), (2, 20), (1, 10)]


Visualize the Task Graph
------------------------

So far we've been setting up computations and calling ``compute``. In addition to
triggering computation, we can inspect the task graph to figure out what's going on.

.. tab-set::

   .. tab-item:: DataFrame
      :sync: dataframe

      .. code-block:: python

         >>> result.dask
         HighLevelGraph with 7 layers.
         <dask.highlevelgraph.HighLevelGraph object at 0x7f129df7a9d0>
         1. from_pandas-0b850a81e4dfe2d272df4dc718065116
         2. loc-fb7ada1e5ba8f343678fdc54a36e9b3e
         3. getitem-55d10498f88fc709e600e2c6054a0625
         4. series-cumsum-map-131dc242aeba09a82fea94e5442f3da9
         5. series-cumsum-take-last-9ebf1cce482a441d819d8199eac0f721
         6. series-cumsum-d51d7003e20bd5d2f767cd554bdd5299
         7. sub-fed3e4af52ad0bd9c3cc3bf800544f57

         >>> result.visualize()

      .. image:: images/10_minutes_dataframe_graph.png
         :alt: Dask task graph for the Dask dataframe computation. The task graph shows a "loc" and "getitem" operations selecting a small section of the dataframe values, before applying a cumulative sum "cumsum" operation, then finally subtracting a value from the result.

   .. tab-item:: Array
      :sync: array

      .. code-block:: python

         >>> b.dask
         HighLevelGraph with 6 layers.
         <dask.highlevelgraph.HighLevelGraph object at 0x7fd33a4aa400>
         1. array-ef3148ecc2e8957c6abe629e08306680
         2. amax-b9b637c165d9bf139f7b93458cd68ec3
         3. amax-partial-aaf8028d4a4785f579b8d03ffc1ec615
         4. amax-aggregate-07b2f92aee59691afaf1680569ee4a63
         5. getitem-f9e225a2fd32b3d2f5681070d2c3d767
         6. add-f54f3a929c7efca76a23d6c42cdbbe84

         >>> b.visualize()

      .. image:: images/10_minutes_array_graph.png
         :alt: Dask task graph for the Dask array computation. The task graph shows many "amax" operations on each chunk of the Dask array, that are then aggregated to find "amax" along the first array axis, then reversing the order of the array values with a "getitem" slicing operation, before an "add" operation to get the final result.

   .. tab-item:: Bag
      :sync: bag

      .. code-block:: python

         >>> c.dask
         HighLevelGraph with 3 layers.
         <dask.highlevelgraph.HighLevelGraph object at 0x7f96d0814fd0>
         1. from_sequence-cca2a33ba6e12645a0c9bc0fd3fe6c88
         2. lambda-93a7a982c4231fea874e07f71b4bcd7d
         3. zip-474300792cc4f502f1c1f632d50e0272

         >>> c.visualize()

      .. image:: images/10_minutes_bag_graph.png
         :alt: Dask task graph for the Dask bag computation. The task graph shows a "lambda" operation, and then a "zip" operation is applied to the partitions of the Dask bag. There is no communication needed between the bag partitions, this is an embarrassingly parallel computation.

Low-Level Interfaces
--------------------
Often when parallelizing existing code bases or building custom algorithms, you
run into code that is parallelizable, but isn't just a big DataFrame or array.

.. tab-set::

   .. tab-item:: Delayed: Lazy

      :doc:`delayed` lets you to wrap individual function calls into a lazily constructed task graph:

      .. code-block:: python

         import dask

         @dask.delayed
         def inc(x):
            return x + 1

         @dask.delayed
         def add(x, y):
            return x + y

         a = inc(1)       # no work has happened yet
         b = inc(2)       # no work has happened yet
         c = add(a, b)    # no work has happened yet

         c = c.compute()  # This triggers all of the above computations

   .. tab-item:: Futures: Immediate

      Unlike the interfaces described so far, Futures are eager. Computation starts as soon
      as the function is submitted (see :doc:`futures`).

      .. code-block:: python

         from dask.distributed import Client

         client = Client()

         def inc(x):
            return x + 1

         def add(x, y):
            return x + y

         a = client.submit(inc, 1)     # work starts immediately
         b = client.submit(inc, 2)     # work starts immediately
         c = client.submit(add, a, b)  # work starts immediately

         c = c.result()                # block until work finishes, then gather result

      .. note::

         Futures can only be used with distributed cluster. See the section below for more
         information.


Scheduling
----------

After you have generated a task graph, it is the scheduler's job to execute it
(see :doc:`scheduling`).

By default, for the majority of Dask APIs, when you call ``compute`` on a Dask object, 
Dask uses the thread pool on your computer (a.k.a threaded scheduler) to run computations in parallel.
This is true for :doc:`Dask Array <array>`, :doc:`Dask DataFrame <dataframe>`, 
and :doc:`Dask Delayed <delayed>`. The exception being :doc:`Dask Bag <bag>`
which uses the multiprocessing scheduler by default.

If you want more control, use the distributed scheduler instead. Despite having
"distributed" in it's name, the distributed scheduler works well
on both single and multiple machines. Think of it as the "advanced scheduler".

.. tab-set::

   .. tab-item:: Local

      This is how you set up a cluster that uses only your own computer.

      .. code-block:: python

         >>> from dask.distributed import Client
         ...
         ... client = Client()
         ... client
         <Client: 'tcp://127.0.0.1:41703' processes=4 threads=12, memory=31.08 GiB>

   .. tab-item:: Remote

      This is how you connect to a cluster that is already running.

      .. code-block:: python

         >>> from dask.distributed import Client
         ...
         ... client = Client("<url-of-scheduler>")
         ... client
         <Client: 'tcp://127.0.0.1:41703' processes=4 threads=12, memory=31.08 GiB>

      There are a variety of ways to set up a remote cluster. Refer to
      :doc:`how to deploy dask clusters <deploying>` for more
      information.

Once you create a client, any computation will run on the cluster that it points to.


Diagnostics
-----------

When using a distributed cluster, Dask provides a diagnostics dashboard where you can
see your tasks as they are processed.

.. code-block:: python

   >>> client.dashboard_link
   'http://127.0.0.1:8787/status'

To learn more about those graphs take a look at :doc:`dashboard`.