1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
10 Minutes to Dask
==================
.. meta::
:description: This is a short overview of Dask geared towards new users. Additional Dask information can be found in the rest of the Dask documentation.
This is a short overview of Dask geared towards new users.
There is much more information contained in the rest of the documentation.
.. figure:: images/dask-overview.svg
:alt: Dask overview. Dask is composed of three parts: collections, task graphs, and schedulers.
:align: center
High level collections are used to generate task graphs which can be executed by schedulers on a single machine or a cluster.
We normally import Dask as follows:
.. code-block:: python
>>> import numpy as np
>>> import pandas as pd
>>> import dask.dataframe as dd
>>> import dask.array as da
>>> import dask.bag as db
Based on the type of data you are working with, you might not need all of these.
Creating a Dask Object
----------------------
You can create a Dask object from scratch by supplying existing data and optionally
including information about how the chunks should be structured.
.. tab-set::
.. tab-item:: DataFrame
:sync: dataframe
See :doc:`dataframe`.
.. code-block:: python
>>> index = pd.date_range("2021-09-01", periods=2400, freq="1h")
... df = pd.DataFrame({"a": np.arange(2400), "b": list("abcaddbe" * 300)}, index=index)
... ddf = dd.from_pandas(df, npartitions=10)
... ddf
Dask DataFrame Structure:
a b
npartitions=10
2021-09-01 00:00:00 int64 object
2021-09-11 00:00:00 ... ...
... ... ...
2021-11-30 00:00:00 ... ...
2021-12-09 23:00:00 ... ...
Dask Name: from_pandas, 10 tasks
Now we have a Dask DataFrame with 2 columns and 2400 rows composed of 10 partitions where
each partition has 240 rows. Each partition represents a piece of the data.
Here are some key properties of a DataFrame:
.. code-block:: python
>>> # check the index values covered by each partition
... ddf.divisions
(Timestamp('2021-09-01 00:00:00', freq='H'),
Timestamp('2021-09-11 00:00:00', freq='H'),
Timestamp('2021-09-21 00:00:00', freq='H'),
Timestamp('2021-10-01 00:00:00', freq='H'),
Timestamp('2021-10-11 00:00:00', freq='H'),
Timestamp('2021-10-21 00:00:00', freq='H'),
Timestamp('2021-10-31 00:00:00', freq='H'),
Timestamp('2021-11-10 00:00:00', freq='H'),
Timestamp('2021-11-20 00:00:00', freq='H'),
Timestamp('2021-11-30 00:00:00', freq='H'),
Timestamp('2021-12-09 23:00:00', freq='H'))
>>> # access a particular partition
... ddf.partitions[1]
Dask DataFrame Structure:
a b
npartitions=1
2021-09-11 int64 object
2021-09-21 ... ...
Dask Name: blocks, 11 tasks
.. tab-item:: Array
:sync: array
See :doc:`array`.
.. code-block:: python
import numpy as np
import dask.array as da
data = np.arange(100_000).reshape(200, 500)
a = da.from_array(data, chunks=(100, 100))
a
Now we have a 2D array with the shape (200, 500) composed of 10 chunks where
each chunk has the shape (100, 100). Each chunk represents a piece of the data.
Here are some key properties of a Dask Array:
.. code-block:: python
# inspect the chunks
a.chunks
.. code-block:: python
# access a particular block of data
a.blocks[1, 3]
.. tab-item:: Bag
:sync: bag
See :doc:`bag`.
.. code-block:: python
>>> b = db.from_sequence([1, 2, 3, 4, 5, 6, 2, 1], npartitions=2)
... b
dask.bag<from_sequence, npartitions=2>
Now we have a sequence with 8 items composed of 2 partitions where each partition
has 4 items in it. Each partition represents a piece of the data.
Indexing
--------
Indexing Dask collections feels just like slicing NumPy arrays or pandas DataFrame.
.. tab-set::
.. tab-item:: DataFrame
:sync: dataframe
.. code-block:: python
>>> ddf.b
Dask Series Structure:
npartitions=10
2021-09-01 00:00:00 object
2021-09-11 00:00:00 ...
...
2021-11-30 00:00:00 ...
2021-12-09 23:00:00 ...
Name: b, dtype: object
Dask Name: getitem, 20 tasks
>>> ddf["2021-10-01": "2021-10-09 5:00"]
Dask DataFrame Structure:
a b
npartitions=1
2021-10-01 00:00:00.000000000 int64 object
2021-10-09 05:00:59.999999999 ... ...
Dask Name: loc, 11 tasks
.. tab-item:: Array
:sync: array
.. code-block:: python
a[:50, 200]
.. tab-item:: Bag
:sync: bag
A Bag is an unordered collection allowing repeats. So it is like a list, but it doesn’t
guarantee an ordering among elements. There is no way to index Bags since they are
not ordered.
Computation
-----------
Dask is lazily evaluated. The result from a computation isn't computed until
you ask for it. Instead, a Dask task graph for the computation is produced.
Anytime you have a Dask object and you want to get the result, call ``compute``:
.. tab-set::
.. tab-item:: DataFrame
:sync: dataframe
.. code-block:: python
>>> ddf["2021-10-01": "2021-10-09 5:00"].compute()
a b
2021-10-01 00:00:00 720 a
2021-10-01 01:00:00 721 b
2021-10-01 02:00:00 722 c
2021-10-01 03:00:00 723 a
2021-10-01 04:00:00 724 d
... ... ..
2021-10-09 01:00:00 913 b
2021-10-09 02:00:00 914 c
2021-10-09 03:00:00 915 a
2021-10-09 04:00:00 916 d
2021-10-09 05:00:00 917 d
[198 rows x 2 columns]
.. tab-item:: Array
:sync: array
.. code-block:: python
>>> a[:50, 200].compute()
array([ 200, 700, 1200, 1700, 2200, 2700, 3200, 3700, 4200,
4700, 5200, 5700, 6200, 6700, 7200, 7700, 8200, 8700,
9200, 9700, 10200, 10700, 11200, 11700, 12200, 12700, 13200,
13700, 14200, 14700, 15200, 15700, 16200, 16700, 17200, 17700,
18200, 18700, 19200, 19700, 20200, 20700, 21200, 21700, 22200,
22700, 23200, 23700, 24200, 24700])
.. tab-item:: Bag
:sync: bag
.. code-block:: python
>>> b.compute()
[1, 2, 3, 4, 5, 6, 2, 1]
Methods
-------
Dask collections match existing numpy and pandas methods, so they should feel familiar.
Call the method to set up the task graph, and then call ``compute`` to get the result.
.. tab-set::
.. tab-item:: DataFrame
:sync: dataframe
.. code-block:: python
>>> ddf.a.mean()
dd.Scalar<series-..., dtype=float64>
>>> ddf.a.mean().compute()
1199.5
>>> ddf.b.unique()
Dask Series Structure:
npartitions=1
object
...
Name: b, dtype: object
Dask Name: unique-agg, 33 tasks
>>> ddf.b.unique().compute()
0 a
1 b
2 c
3 d
4 e
Name: b, dtype: object
Methods can be chained together just like in pandas
.. code-block:: python
>>> result = ddf["2021-10-01": "2021-10-09 5:00"].a.cumsum() - 100
... result
Dask Series Structure:
npartitions=1
2021-10-01 00:00:00.000000000 int64
2021-10-09 05:00:59.999999999 ...
Name: a, dtype: int64
Dask Name: sub, 16 tasks
>>> result.compute()
2021-10-01 00:00:00 620
2021-10-01 01:00:00 1341
2021-10-01 02:00:00 2063
2021-10-01 03:00:00 2786
2021-10-01 04:00:00 3510
...
2021-10-09 01:00:00 158301
2021-10-09 02:00:00 159215
2021-10-09 03:00:00 160130
2021-10-09 04:00:00 161046
2021-10-09 05:00:00 161963
Freq: H, Name: a, Length: 198, dtype: int64
.. tab-item:: Array
:sync: array
.. code-block:: python
>>> a.mean()
dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=(), chunktype=numpy.ndarray>
>>> a.mean().compute()
49999.5
>>> np.sin(a)
dask.array<sin, shape=(200, 500), dtype=float64, chunksize=(100, 100), chunktype=numpy.ndarray>
>>> np.sin(a).compute()
array([[ 0. , 0.84147098, 0.90929743, ..., 0.58781939,
0.99834363, 0.49099533],
[-0.46777181, -0.9964717 , -0.60902011, ..., -0.89796748,
-0.85547315, -0.02646075],
[ 0.82687954, 0.9199906 , 0.16726654, ..., 0.99951642,
0.51387502, -0.4442207 ],
...,
[-0.99720859, -0.47596473, 0.48287891, ..., -0.76284376,
0.13191447, 0.90539115],
[ 0.84645538, 0.00929244, -0.83641393, ..., 0.37178568,
-0.5802765 , -0.99883514],
[-0.49906936, 0.45953849, 0.99564877, ..., 0.10563876,
0.89383946, 0.86024828]])
>>> a.T
dask.array<transpose, shape=(500, 200), dtype=int64, chunksize=(100, 100), chunktype=numpy.ndarray>
>>> a.T.compute()
array([[ 0, 500, 1000, ..., 98500, 99000, 99500],
[ 1, 501, 1001, ..., 98501, 99001, 99501],
[ 2, 502, 1002, ..., 98502, 99002, 99502],
...,
[ 497, 997, 1497, ..., 98997, 99497, 99997],
[ 498, 998, 1498, ..., 98998, 99498, 99998],
[ 499, 999, 1499, ..., 98999, 99499, 99999]])
Methods can be chained together just like in NumPy
.. code-block:: python
>>> b = a.max(axis=1)[::-1] + 10
... b
dask.array<add, shape=(200,), dtype=int64, chunksize=(100,), chunktype=numpy.ndarray>
>>> b[:10].compute()
array([100009, 99509, 99009, 98509, 98009, 97509, 97009, 96509,
96009, 95509])
.. tab-item:: Bag
:sync: bag
Dask Bag implements operations like ``map``, ``filter``, ``fold``, and
``groupby`` on collections of generic Python objects.
.. code-block:: python
>>> b.filter(lambda x: x % 2)
dask.bag<filter-lambda, npartitions=2>
>>> b.filter(lambda x: x % 2).compute()
[1, 3, 5, 1]
>>> b.distinct()
dask.bag<distinct-aggregate, npartitions=1>
>>> b.distinct().compute()
[1, 2, 3, 4, 5, 6]
Methods can be chained together.
.. code-block:: python
>>> c = db.zip(b, b.map(lambda x: x * 10))
... c
dask.bag<zip, npartitions=2>
>>> c.compute()
[(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60), (2, 20), (1, 10)]
Visualize the Task Graph
------------------------
So far we've been setting up computations and calling ``compute``. In addition to
triggering computation, we can inspect the task graph to figure out what's going on.
.. tab-set::
.. tab-item:: DataFrame
:sync: dataframe
.. code-block:: python
>>> result.dask
HighLevelGraph with 7 layers.
<dask.highlevelgraph.HighLevelGraph object at 0x7f129df7a9d0>
1. from_pandas-0b850a81e4dfe2d272df4dc718065116
2. loc-fb7ada1e5ba8f343678fdc54a36e9b3e
3. getitem-55d10498f88fc709e600e2c6054a0625
4. series-cumsum-map-131dc242aeba09a82fea94e5442f3da9
5. series-cumsum-take-last-9ebf1cce482a441d819d8199eac0f721
6. series-cumsum-d51d7003e20bd5d2f767cd554bdd5299
7. sub-fed3e4af52ad0bd9c3cc3bf800544f57
>>> result.visualize()
.. image:: images/10_minutes_dataframe_graph.png
:alt: Dask task graph for the Dask dataframe computation. The task graph shows a "loc" and "getitem" operations selecting a small section of the dataframe values, before applying a cumulative sum "cumsum" operation, then finally subtracting a value from the result.
.. tab-item:: Array
:sync: array
.. code-block:: python
>>> b.dask
HighLevelGraph with 6 layers.
<dask.highlevelgraph.HighLevelGraph object at 0x7fd33a4aa400>
1. array-ef3148ecc2e8957c6abe629e08306680
2. amax-b9b637c165d9bf139f7b93458cd68ec3
3. amax-partial-aaf8028d4a4785f579b8d03ffc1ec615
4. amax-aggregate-07b2f92aee59691afaf1680569ee4a63
5. getitem-f9e225a2fd32b3d2f5681070d2c3d767
6. add-f54f3a929c7efca76a23d6c42cdbbe84
>>> b.visualize()
.. image:: images/10_minutes_array_graph.png
:alt: Dask task graph for the Dask array computation. The task graph shows many "amax" operations on each chunk of the Dask array, that are then aggregated to find "amax" along the first array axis, then reversing the order of the array values with a "getitem" slicing operation, before an "add" operation to get the final result.
.. tab-item:: Bag
:sync: bag
.. code-block:: python
>>> c.dask
HighLevelGraph with 3 layers.
<dask.highlevelgraph.HighLevelGraph object at 0x7f96d0814fd0>
1. from_sequence-cca2a33ba6e12645a0c9bc0fd3fe6c88
2. lambda-93a7a982c4231fea874e07f71b4bcd7d
3. zip-474300792cc4f502f1c1f632d50e0272
>>> c.visualize()
.. image:: images/10_minutes_bag_graph.png
:alt: Dask task graph for the Dask bag computation. The task graph shows a "lambda" operation, and then a "zip" operation is applied to the partitions of the Dask bag. There is no communication needed between the bag partitions, this is an embarrassingly parallel computation.
Low-Level Interfaces
--------------------
Often when parallelizing existing code bases or building custom algorithms, you
run into code that is parallelizable, but isn't just a big DataFrame or array.
.. tab-set::
.. tab-item:: Delayed: Lazy
:doc:`delayed` lets you to wrap individual function calls into a lazily constructed task graph:
.. code-block:: python
import dask
@dask.delayed
def inc(x):
return x + 1
@dask.delayed
def add(x, y):
return x + y
a = inc(1) # no work has happened yet
b = inc(2) # no work has happened yet
c = add(a, b) # no work has happened yet
c = c.compute() # This triggers all of the above computations
.. tab-item:: Futures: Immediate
Unlike the interfaces described so far, Futures are eager. Computation starts as soon
as the function is submitted (see :doc:`futures`).
.. code-block:: python
from dask.distributed import Client
client = Client()
def inc(x):
return x + 1
def add(x, y):
return x + y
a = client.submit(inc, 1) # work starts immediately
b = client.submit(inc, 2) # work starts immediately
c = client.submit(add, a, b) # work starts immediately
c = c.result() # block until work finishes, then gather result
.. note::
Futures can only be used with distributed cluster. See the section below for more
information.
Scheduling
----------
After you have generated a task graph, it is the scheduler's job to execute it
(see :doc:`scheduling`).
By default, for the majority of Dask APIs, when you call ``compute`` on a Dask object,
Dask uses the thread pool on your computer (a.k.a threaded scheduler) to run computations in parallel.
This is true for :doc:`Dask Array <array>`, :doc:`Dask DataFrame <dataframe>`,
and :doc:`Dask Delayed <delayed>`. The exception being :doc:`Dask Bag <bag>`
which uses the multiprocessing scheduler by default.
If you want more control, use the distributed scheduler instead. Despite having
"distributed" in it's name, the distributed scheduler works well
on both single and multiple machines. Think of it as the "advanced scheduler".
.. tab-set::
.. tab-item:: Local
This is how you set up a cluster that uses only your own computer.
.. code-block:: python
>>> from dask.distributed import Client
...
... client = Client()
... client
<Client: 'tcp://127.0.0.1:41703' processes=4 threads=12, memory=31.08 GiB>
.. tab-item:: Remote
This is how you connect to a cluster that is already running.
.. code-block:: python
>>> from dask.distributed import Client
...
... client = Client("<url-of-scheduler>")
... client
<Client: 'tcp://127.0.0.1:41703' processes=4 threads=12, memory=31.08 GiB>
There are a variety of ways to set up a remote cluster. Refer to
:doc:`how to deploy dask clusters <deploying>` for more
information.
Once you create a client, any computation will run on the cluster that it points to.
Diagnostics
-----------
When using a distributed cluster, Dask provides a diagnostics dashboard where you can
see your tasks as they are processed.
.. code-block:: python
>>> client.dashboard_link
'http://127.0.0.1:8787/status'
To learn more about those graphs take a look at :doc:`dashboard`.
|