1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
.. currentmodule:: dataclass_wizard
Serialization Options
=====================
.. note::
**Future Behavior Change**: Starting in ``v1.0.0``, keys will no longer be automatically converted to `camelCase`.
Instead, the default behavior will match the field names defined in the dataclass.
To preserve the current `camelCase` conversion, you can explicitly enable it using :class:`JSONPyWizard`.
For a deeper dive into upcoming changes and new features introduced in **V1 Opt-in**, refer to the
`Field Guide to V1 Opt‐in`_.
.. _Field Guide to V1 Opt‐in: https://github.com/rnag/dataclass-wizard/wiki/Field-Guide-to-V1-Opt%E2%80%90in
The following parameters can be used to fine-tune and control how the serialization of a
dataclass instance to a Python ``dict`` object or JSON string is handled.
Skip Defaults
~~~~~~~~~~~~~
A common use case is skipping fields with default values - based on the ``default``
or ``default_factory`` argument to :func:`dataclasses.field` - in the serialization
process.
The attribute ``skip_defaults`` in the inner :class:`Meta` class can be enabled, to exclude
such field values from serialization.The :meth:`to_dict` method (or the :func:`asdict` helper
function) can also be passed an ``exclude`` argument, containing a list of one or more
dataclass field names to exclude from the serialization process. An example of both these
approaches is shown below.
.. code:: python3
from collections import defaultdict
from dataclasses import field, dataclass
from dataclass_wizard import JSONWizard
@dataclass
class MyClass(JSONWizard):
class _(JSONWizard.Meta):
skip_defaults = True
my_str: str
other_str: str = 'any value'
optional_str: str = None
my_list: list[str] = field(default_factory=list)
my_dict: defaultdict[str, list[float]] = field(
default_factory=lambda: defaultdict(list))
print('-- Load (Deserialize)')
c = MyClass('abc')
print(f'Instance: {c!r}')
print('-- Dump (Serialize)')
string = c.to_json()
print(string)
assert string == '{"myStr": "abc"}'
print('-- Dump (with `skip_defaults=False`)')
print(c.to_dict(skip_defaults=False))
Exclude Fields
~~~~~~~~~~~~~~
You can also exclude specific dataclass fields (and their values) from the serialization
process. There are two approaches that can be used for this purpose:
* The argument ``dump=False`` can be passed in to the :func:`json_key` and :func:`json_field`
helper functions. Note that this is a more permanent option, as opposed to the one
below.
* The :meth:`to_dict` method (or the :func:`asdict` helper function ) can be passed
an ``exclude`` argument, containing a list of one or more dataclass field names
to exclude from the serialization process.
Additionally, here is an example to demonstrate usage of both these approaches:
.. code:: python3
from dataclasses import dataclass
from typing import Annotated
from dataclass_wizard import JSONWizard, json_key, json_field
@dataclass
class MyClass(JSONWizard):
my_str: str
my_int: int
other_str: Annotated[str, json_key('AnotherStr', dump=False)]
my_bool: bool = json_field('TestBool', dump=False)
data = {'MyStr': 'my string',
'myInt': 1,
'AnotherStr': 'testing 123',
'TestBool': True}
print('-- From Dict')
c = MyClass.from_dict(data)
print(f'Instance: {c!r}')
# dynamically exclude the `my_int` field from serialization
additional_exclude = ('my_int',)
print('-- To Dict')
out_dict = c.to_dict(exclude=additional_exclude)
print(out_dict)
assert out_dict == {'myStr': 'my string'}
"Skip If" Functionality
~~~~~~~~~~~~~~~~~~~~~~~
The **Dataclass Wizard** offers powerful, configurable options to **skip serializing fields** under specific conditions. This functionality is available both **globally** (via the `Meta` class) and **per-field** (using type annotations or `dataclasses.Field` wrappers).
Overview
--------
You can:
- **Globally skip** fields that match a condition using ``Meta.skip_if`` or ``Meta.skip_defaults_if``.
- **Conditionally skip fields individually** using type annotations with ``SkipIf``, or the ``skip_if_field`` wrapper for ``dataclasses.Field``.
**Built-in Helpers**: For added flexibility, use helpers like ``IS_TRUTHY``, ``IS_FALSY``, and others for common conditions.
**Note**: ``SkipIfNone`` is an alias for ``SkipIf(IS(None))``.
1. Global Field Skipping
------------------------
1.1 Skip Any Field Matching a Condition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use the ``skip_if`` option in your dataclass's ``Meta`` configuration to skip fields that meet a specific condition during serialization.
.. code-block:: python3
from dataclasses import dataclass
from dataclass_wizard import JSONWizard, IS_NOT
@dataclass
class Example(JSONWizard):
class _(JSONWizard.Meta):
skip_if = IS_NOT(True) # Skip if the field is not `True`.
my_str: 'str | None'
my_bool: bool
other_bool: bool = False
ex = Example(my_str=None, my_bool=True)
assert ex.to_dict() == {'my_bool': True} # Only `my_bool` is serialized.
1.2 Skip Fields with Default Values Matching a Condition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use the ``skip_defaults_if`` option to skip serializing **fields with default values** that match a condition.
.. code-block:: python3
from dataclasses import dataclass
from dataclass_wizard import JSONWizard, IS
@dataclass
class Example(JSONWizard):
class _(JSONWizard.Meta):
skip_defaults_if = IS(None) # Skip fields with default value `None`.
my_str: str | None
my_bool: bool = False
ex = Example(my_str=None)
assert ex.to_dict() == {'my_str': None} # Explicitly set `None` values are not skipped.
1.3 Skip Fields Based on Truthy/Falsy Values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use the ``IS_TRUTHY`` and ``IS_FALSY`` helpers for conditions based on truthiness or falsiness.
.. code-block:: python3
from dataclasses import dataclass
from dataclass_wizard import JSONWizard, IS_TRUTHY
@dataclass
class Example(JSONWizard):
class _(JSONWizard.Meta):
skip_if = IS_TRUTHY() # Skip fields that evaluate to True.
my_bool: bool
my_none: None = None
ex = Example(my_bool=True, my_none=None)
assert ex.to_dict() == {'my_none': None} # Only `my_none` is serialized.
2. Per-Field Skipping
---------------------
For finer control, fields can be skipped **individually** using type annotations with ``SkipIf`` or by wrapping ``dataclasses.Field`` with ``skip_if_field``.
2.1 Using Type Annotations
^^^^^^^^^^^^^^^^^^^^^^^^^^
You can use ``SkipIf`` in conjunction with ``Annotated`` to conditionally skip individual fields during serialization.
.. code-block:: python3
from dataclasses import dataclass
from typing import Annotated
from dataclass_wizard import JSONWizard, SkipIf, IS
@dataclass
class Example(JSONWizard):
my_str: Annotated['str | None', SkipIf(IS(None))] # Skip if `my_str is None`.
2.2 Using ``skip_if_field`` Wrapper
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``skip_if_field`` to add conditions directly to ``dataclasses.Field``:
.. code-block:: python3
from dataclasses import dataclass
from dataclass_wizard import JSONWizard, skip_if_field, EQ
@dataclass
class Example(JSONWizard):
third_str: 'str | None' = skip_if_field(EQ(''), default=None) # Skip if empty string.
2.3 Combined Example
^^^^^^^^^^^^^^^^^^^^
Both approaches can be used together to achieve granular control:
.. code-block:: python3
from dataclasses import dataclass
from typing import Annotated
from dataclass_wizard import JSONWizard, SkipIf, skip_if_field, IS, EQ
@dataclass
class Example(JSONWizard):
my_str: Annotated['str | None', SkipIf(IS(None))] # Skip if `my_str is None`.
third_str: 'str | None' = skip_if_field(EQ(''), default=None) # Skip if `third_str` is ''.
ex = Example(my_str='test', third_str='')
assert ex.to_dict() == {'my_str': 'test'}
Key Classes and Utilities
-------------------------
- ``SkipIf``: Adds skipping logic to a field via type annotations.
- ``skip_if_field``: Wraps ``dataclasses.Field`` for inline skipping logic.
- **Condition Helpers**:
- ``IS``, ``IS_NOT``: Skip based on identity.
- ``EQ``, ``NE``, ``LT``, ``LE``, ``GT``, ``GE``: Skip based on comparison.
- ``IS_TRUTHY``, ``IS_FALSY``: Skip fields based on truthiness or falsiness.
- **Alias**: ``SkipIfNone`` is equivalent to ``SkipIf(IS(None))``.
Performance and Clarity
-----------------------
This design ensures both **performance** and **self-documenting code**, while enabling complex serialization rules effortlessly.
|