1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
`Env` Magic
===========
The *Environment Wizard* (or ``EnvWizard``) is a powerful Mixin class for effortlessly mapping environment variables and ``.env`` files to strongly-typed Python dataclass fields.
It provides built-in type validation, automatic string-to-type conversion, and the ability to handle secret files, where the file name serves as the key and its content as the value.
Additionally, :class:`EnvWizard` supports type hinting and automatically applies the ``@dataclass`` decorator to your subclasses.
.. hint::
These docs are inspired by and adapted from Pydantic's `Settings Management`_ documentation.
Key Features
------------
- **Auto Mapping**: Seamlessly maps environment variables to dataclass fields, using field names or aliases.
- **Dotenv Support**: Load environment variables from ``.env`` files or custom dotenv paths.
- **Secret Files**: Handle secret files where filenames act as keys and file contents as values.
- **Custom Configuration**: Configure variable prefixing, logging, and error handling.
- **Type Parsing**: Supports basic types (int, float, bool) and collections (list, dict, etc.).
Installation
------------
Install via ``pip``:
.. code-block:: console
$ pip install dataclass-wizard
For ``.env`` file support, install the ``python-dotenv`` dependency with the ``dotenv`` extra:
.. code-block:: console
$ pip install dataclass-wizard[dotenv]
.. _Settings Management: https://docs.pydantic.dev/latest/concepts/pydantic_settings
.. _python-dotenv: https://saurabh-kumar.com/python-dotenv/
Quick Start
-----------
Define your environment variables and map them using EnvWizard:
.. code-block:: python
import os
from dataclass_wizard import EnvWizard
# Set environment variables
# or:
# export APP_NAME='...'
os.environ.update({
'APP_NAME': 'Env Wizard',
'MAX_CONNECTIONS': '10',
'DEBUG_MODE': 'true'
})
# Define the dataclass
class AppConfig(EnvWizard):
app_name: str
max_connections: int
debug_mode: bool
# Instantiate and use
config = AppConfig()
print(config.app_name) #> Env Wizard
print(config.debug_mode) #> True
assert config.max_connections == 10
# Override with keyword arguments
config = AppConfig(app_name='Dataclass Wizard Rocks!', debug_mode='false')
print(config.app_name) #> Dataclass Wizard Rocks!
assert config.debug_mode is False
Advanced Usage
--------------
**Handling Missing Variables**
If required variables are not set, `EnvWizard` raises a `MissingVars` exception. Provide defaults for optional fields:
.. code-block:: python
class AppConfig(EnvWizard):
app_name: str
max_connections: int = 5
debug_mode: bool = False
**Dotenv Support**
Load environment variables from a ``.env`` file by enabling ``Meta.env_file``:
.. code-block:: python
class AppConfig(EnvWizard):
class _(EnvWizard.Meta):
env_file = True
app_name: str
max_connections: int
debug_mode: bool
**Custom Field Mappings**
Map environment variables to differently named fields using ``json_field`` or ``Meta.field_to_env_var``:
.. code-block:: python
class AppConfig(EnvWizard):
class _(EnvWizard.Meta):
field_to_env_var = {'max_conn': 'MAX_CONNECTIONS'}
app_name: str
max_conn: int
**Prefixes**
Use a static or dynamic prefix for environment variable keys:
.. code-block:: python
class AppConfig(EnvWizard):
class _(EnvWizard.Meta):
env_prefix = 'APP_'
name: str = json_field('NAME')
debug: bool
# Prefix is applied dynamically
config = AppConfig(_env_prefix='CUSTOM_')
Configuration Options
---------------------
The :class:`Meta` class provides additional configuration:
- :attr:`env_file`: Path to a dotenv file. Defaults to `True` for `.env` in the current directory.
- :attr:`env_prefix`: A string prefix to prepend to all variable names.
- :attr:`field_to_env_var`: Map fields to custom variable names.
- :attr:`debug_enabled`: Enable debug logging.
- :attr:`extra`: Handle unexpected fields. Options: ``ALLOW``, ``DENY``, ``IGNORE``.
Error Handling
--------------
- **MissingVars**: Raised when required fields are missing.
- **ParseError**: Raised for invalid values (e.g., converting `abc` to `int`).
- **ExtraData**: Raised when extra fields are passed (default behavior).
Examples
--------
**Basic Example**
.. code-block:: python
import os
from dataclass_wizard import EnvWizard
os.environ['API_KEY'] = '12345'
class Config(EnvWizard):
api_key: str
config = Config()
print(config.api_key) # Output: 12345
**Dotenv with Paths**
.. code-block:: python
from pathlib import Path
from dataclass_wizard import EnvWizard
class Config(EnvWizard):
class _(EnvWizard.Meta):
env_file = Path('/path/to/.env')
db_host: str
db_port: int
**Complete Example**
Here is a more complete example of using :class:`EnvWizard` to
load environment variables into a dataclass schema:
.. code:: python3
from os import environ
from datetime import datetime, time
from typing import NamedTuple
try:
from typing import TypedDict
except ImportError:
from typing_extensions import TypedDict
from dataclass_wizard import EnvWizard
# ideally these variables will be set in the environment, like so:
# $ export MY_FLOAT=1.23
environ.update(
myStr='Hello',
my_float='432.1',
# lists/dicts can also be specified in JSON format
MyTuple='[1, "2"]',
Keys='{ "k1": "false", "k2": "true" }',
# or in shorthand format...
MY_PENCIL='sharpened=Y, uses_left = 3',
My_Emails=' first_user@abc.com , second-user@xyz.org',
SOME_DT_VAL='1651077045', # 2022-04-27T12:30:45
)
class Pair(NamedTuple):
first: str
second: int
class Pencil(TypedDict):
sharpened: bool
uses_left: int
class MyClass(EnvWizard):
class _(EnvWizard.Meta):
field_to_env_var = {
'my_dt': 'SOME_DT_VAL',
}
my_str: str
my_float: float
my_tuple: Pair
keys: dict[str, bool]
my_pencil: Pencil
my_emails: list[str]
my_dt: datetime
my_time: time = time.min
c = MyClass()
print('Class Fields:')
print(c.dict())
# {'my_str': 'Hello', 'my_float': 432.1, ...}
print()
print('JSON:')
print(c.to_json(indent=2))
# {
# "my_str": "Hello",
# "my_float": 432.1,
# ...
assert c.my_pencil['uses_left'] == 3
assert c.my_dt.isoformat() == '2022-04-27T16:30:45+00:00'
This code highlights the ability to:
- Load variables from the environment or ``.env`` files.
- Map fields to specific environment variable names using :attr:`field_to_env_var`.
- Support complex types such as :class:`NamedTuple`, :class:`TypedDict`, and more.
|