1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
import logging
from collections import defaultdict
from dataclasses import dataclass, field, asdict
from datetime import datetime
from timeit import timeit
from typing import Optional, TypeVar, Dict, Any, List, Union, NamedTuple, Tuple, Type
import dacite
import dataclass_factory
import marshmallow
import pytest
from dataclasses_json import DataClassJsonMixin, config
from jsons import JsonSerializable
from dacite import from_dict as dacite_from_dict
from pydantic import BaseModel
import attr
import mashumaro
from dataclass_wizard import JSONWizard, LoadMeta
from dataclass_wizard.class_helper import create_new_class
from dataclass_wizard.utils.string_conv import to_snake_case
from dataclass_wizard.utils.type_conv import as_datetime
log = logging.getLogger(__name__)
@dataclass
class MyClass:
my_ledger: Dict[str, Any]
the_answer_to_life: Optional[int]
people: List['Person']
is_enabled: bool = True
@dataclass
class MyClassDJ(DataClassJsonMixin):
my_ledger: Dict[str, Any]
the_answer_to_life: Optional[int]
people: List['PersonDJ']
is_enabled: bool = True
@dataclass
class MyClassDacite:
my_ledger: Dict[str, Any]
the_answer_to_life: Optional[int]
people: List['PersonDJ']
is_enabled: bool = True
# New Pydantic Models
class MyClassPydantic(BaseModel):
my_ledger: Dict[str, Any]
the_answer_to_life: Optional[int]
people: List['PersonPydantic']
is_enabled: bool = True
# New Pydantic Models
class PersonPydantic(BaseModel):
name: 'NamePydantic'
age: int
birthdate: datetime
gender: str
occupation: Union[str, List[str]]
hobbies: Dict[str, List[str]] = defaultdict(list)
class NamePydantic(BaseModel):
first: str
last: str
salutation: Optional[str] = 'Mr.'
@dataclass
class Person:
name: 'Name'
age: int
birthdate: datetime
gender: str
occupation: Union[str, List[str]]
hobbies: Dict[str, List[str]] = field(
default_factory=lambda: defaultdict(list))
class Name(NamedTuple):
first: str
last: str
salutation: Optional[str] = 'Mr.'
@dataclass
class NameDataclass:
first: str
last: str
salutation: Optional[str] = 'Mr.'
@dataclass
class PersonDJ:
name: NameDataclass
age: int
birthdate: datetime = field(metadata=config(
encoder=datetime.isoformat,
decoder=as_datetime,
mm_field=marshmallow.fields.DateTime(format='iso')
))
gender: str
occupation: Union[str, List[str]]
hobbies: Dict[str, List[str]] = field(
default_factory=lambda: defaultdict(list))
# Model for `dataclass-wizard`
WizType = TypeVar('WizType', MyClass, JSONWizard)
# Model for `jsons`
JsonsType = TypeVar('JsonsType', MyClass, JsonSerializable)
# Model for `dataclasses-json`
DJType = TypeVar('DJType', MyClass, DataClassJsonMixin)
# Model for `mashumaro`
MashumaroType = TypeVar('MashumaroType', MyClass, mashumaro.DataClassDictMixin)
# Factory for `dataclass-factory`
factory = dataclass_factory.Factory()
MyClassWizard: WizType = create_new_class(
MyClass, (MyClass, JSONWizard), 'Wizard',
attr_dict=vars(MyClass).copy())
# MyClassDJ: DJType = create_new_class(
# MyClass, (MyClass, DataClassJsonMixin), 'DJ',
# attr_dict=vars(MyClass).copy())
MyClassJsons: JsonsType = create_new_class(
MyClass, (MyClass, JsonSerializable), 'Jsons',
attr_dict=vars(MyClass).copy())
MyClassMashumaro: MashumaroType = create_new_class(
MyClass, (MyClass, mashumaro.DataClassDictMixin), 'Mashumaro',
attr_dict=vars(MyClass).copy())
# Enable experimental `v1` mode for optimized de/serialization
LoadMeta(v1=True).bind_to(MyClassWizard)
@pytest.fixture(scope='session')
def data():
return {
'my_ledger': {
'Day 1': 'some details',
'Day 17': ['a', 'sample', 'list']
},
'the_answer_to_life': '42',
'people': [
{
'name': ('Roberto', 'Fuirron'),
'age': 21,
'birthdate': '1950-02-28T17:35:20Z',
'gender': 'M',
'occupation': ['sailor', 'fisher'],
'hobbies': {'M-F': ('chess', '123', 'reading'), 'Sat-Sun': ['parasailing']}
},
{
'name': ('Janice', 'Darr', 'Dr.'),
'age': 45,
'birthdate': '1971-11-05T05:10:59Z',
'gender': 'F',
'occupation': 'Dentist'
}
]
}
@pytest.fixture(scope='session')
def data_2(data):
"""data for `dataclasses-factory`, which has issue with tuple -> NamedTuple"""
d = data.copy()
d['people'] = [p.copy() for p in data['people']]
# I want to make this into a Tuple - ('Roberto', 'Fuirron') -
# but `dataclass-factory` doesn't seem to like that.
d['people'][0]['name'] = {'first': 'Roberto', 'last': 'Fuirron'}
d['people'][1]['name'] = {'first': 'Janice', 'last': 'Darr', 'salutation': 'Dr.'}
return d
@pytest.fixture(scope='session')
def data_dacite(data_2):
"""data for `dacite`, which has a *TON* of issues."""
# It's official, I hate this library ;-(
d = data_2.copy()
d['the_answer_to_life'] = int(d['the_answer_to_life'])
d['people'][0]['hobbies'] = data_2['people'][0]['hobbies'].copy()
d['people'][0]['hobbies']['M-F'] = list(d['people'][0]['hobbies']['M-F'])
return d
def parse_iso_format(data):
return as_datetime(data)
iso_format_schema = dataclass_factory.Schema(
parser=parse_iso_format,
serializer=datetime.isoformat
)
factory.schemas = {
datetime: iso_format_schema
}
def parse_datetime(value: str) -> datetime:
return datetime.fromisoformat(value.rstrip('Z')) # Remove 'Z' if it's present
dacite_cfg = dacite.Config(
type_hooks={datetime: parse_datetime})
def test_load(request, data, data_2, data_dacite, n):
"""
[ RESULTS ON MAC OS X ]
benchmarks.complex.complex - [INFO] dataclass-wizard 0.317641
benchmarks.complex.complex - [INFO] dataclass-factory 0.751124
benchmarks.complex.complex - [INFO] dacite 6.350958
benchmarks.complex.complex - [INFO] mashumaro 0.343612
benchmarks.complex.complex - [INFO] pydantic 0.538801
benchmarks.complex.complex - [INFO] dataclasses-json 28.214992
benchmarks.complex.complex - [INFO] jsons 31.735730
benchmarks.complex.complex - [INFO] jsons (strict) 34.855084
"""
g = globals().copy()
g.update(locals())
log.info('dataclass-wizard %f',
timeit('MyClassWizard.from_dict(data)', globals=g, number=n))
log.info('dataclass-factory %f',
timeit('factory.load(data_2, MyClass)', globals=g, number=n))
log.info('dacite %f',
timeit('dacite_from_dict(MyClassDacite, data_dacite, config=dacite_cfg)',
globals=g, number=n))
log.info('mashumaro %f',
timeit('MyClassMashumaro.from_dict(data)', globals=g, number=n))
log.info('pydantic %f',
timeit('MyClassPydantic(**data_2)', globals=g, number=n))
# Assert the dataclass instances have the same values for all fields.
c1 = MyClassWizard.from_dict(data)
c2 = factory.load(data_2, MyClass)
c3 = MyClassDJ.from_dict(data_2)
c4 = MyClassJsons.load(data)
c5 = MyClassMashumaro.from_dict(data)
c6 = dacite_from_dict(MyClassDacite, data_dacite, config=dacite_cfg)
c7 = MyClassPydantic(**data_2)
# Since these models might differ slightly, we can skip exact equality checks
# assert c1.__dict__ == c2.__dict__ == c3.__dict__ == c4.__dict__ == c5.__dict__
if not request.config.getoption("--all"):
pytest.skip("Skipping benchmarks for the rest by default, unless --all is specified.")
log.info('dataclasses-json %f',
timeit('MyClassDJ.from_dict(data_2)', globals=g, number=n))
log.info('jsons %f',
timeit('MyClassJsons.load(data)', globals=g, number=n))
log.info('jsons (strict) %f',
timeit('MyClassJsons.load(data, strict=True)', globals=g, number=n))
def test_dump(request, data, data_2, data_dacite, n):
"""
[ RESULTS ON MAC OS X ]
benchmarks.complex.complex - [INFO] dataclass-wizard 0.405688
benchmarks.complex.complex - [INFO] asdict (dataclasses) 1.727631
benchmarks.complex.complex - [INFO] dataclass-factory 0.831178
benchmarks.complex.complex - [INFO] dataclasses-json 11.072727
benchmarks.complex.complex - [INFO] mashumaro 0.248298
benchmarks.complex.complex - [INFO] pydantic 0.316203
benchmarks.complex.complex - [INFO] jsons 37.361450
benchmarks.complex.complex - [INFO] jsons (strict) 31.578708
"""
c1 = MyClassWizard.from_dict(data)
c2 = factory.load(data_2, MyClass)
c3 = MyClassDJ.from_dict(data_2)
c4 = MyClassJsons.load(data)
c5 = MyClassMashumaro.from_dict(data)
c6 = MyClassPydantic(**data_2)
g = globals().copy()
g.update(locals())
log.info('dataclass-wizard %f',
timeit('c1.to_dict()', globals=g, number=n))
log.info('asdict (dataclasses) %f',
timeit('asdict(c1)', globals=g, number=n))
log.info('dataclass-factory %f',
timeit('factory.dump(c2, MyClass)', globals=g, number=n))
log.info('dataclasses-json %f',
timeit('c3.to_dict()', globals=g, number=n))
log.info('mashumaro %f',
timeit('c5.to_dict()', globals=g, number=n))
log.info('pydantic %f',
timeit('c6.model_dump()', globals=g, number=n))
if not request.config.getoption("--all"):
pytest.skip("Skipping benchmarks for the rest by default, unless --all is specified.")
log.info('jsons %f',
timeit('c4.dump()', globals=g, number=n))
log.info('jsons (strict) %f',
timeit('c4.dump(strict=True)', globals=g, number=n))
# Assert the dict objects which are the result of `to_dict` are all equal.
c1_dict = {to_snake_case(f): fval for f, fval in c1.to_dict().items()}
# assert c1_dict == factory.dump(c2, MyClass) == c3.to_dict() == c4.dump() == c5.to_dict()
|