1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
import logging
from dataclasses import dataclass, field, asdict
from datetime import date, datetime
from timeit import timeit
from typing import TypeVar, List, Union
import dataclass_factory
import marshmallow
import pytest
from dataclasses_json import DataClassJsonMixin, config
from jsons import JsonSerializable
from dacite import from_dict as dacite_from_dict
from pydantic import BaseModel
import mashumaro
from dataclass_wizard import JSONWizard, LoadMeta
from dataclass_wizard.class_helper import create_new_class
from dataclass_wizard.utils.string_conv import to_snake_case
from dataclass_wizard.utils.type_conv import as_datetime, as_date
log = logging.getLogger(__name__)
# Dataclass Definitions (Same as before, no changes needed)
@dataclass
class Data1:
instance: 'Instance'
result: 'Result'
@dataclass
class Instance:
name: str
data: 'Data2'
@dataclass
class Data2:
date: date
owner: str
@dataclass
class Result:
status: str
iteration_results: 'IterationResults'
@dataclass
class IterationResults:
iterations: List['Iteration']
@dataclass
class Iteration:
name: str
data: 'Data3'
@dataclass
class Data3:
question1: str
question2: str
# New Model Class Definitions for Libraries
class MyClassPydantic(BaseModel):
instance: 'InstancePydantic'
result: 'ResultPydantic'
class InstancePydantic(BaseModel):
name: str
data: 'Data2Pydantic'
class Data2Pydantic(BaseModel):
date: date
owner: str
class ResultPydantic(BaseModel):
status: str
iteration_results: 'IterationResultsPydantic'
@dataclass
class IterationResultsPydantic:
iterations: List['IterationPydantic']
class IterationPydantic(BaseModel):
name: str
data: 'Data3Pydantic'
class Data3Pydantic(BaseModel):
question1: str
question2: str
@dataclass
class MyClassMashumaro(mashumaro.DataClassDictMixin):
instance: 'InstanceMashumaro'
result: 'Result'
@dataclass
class InstanceMashumaro:
name: str
data: 'Data2Mashumaro'
@dataclass
class Data2Mashumaro:
date: date
owner: str
# Corrected Definition for `MyClassDJ`
@dataclass
class MyClassDJ(DataClassJsonMixin):
instance: 'InstanceDJ'
result: 'Result'
class InstanceDJ:
name: str
data: 'Data2DJ'
class Data2DJ:
date: date
owner: str
# Model for `dataclass-wizard`
WizType = TypeVar('WizType', Data1, JSONWizard)
# Model for `jsons`
JsonsType = TypeVar('JsonsType', Data1, JsonSerializable)
# Model for `dataclasses-json`
DJType = TypeVar('DJType', Data1, DataClassJsonMixin)
# Model for `mashumaro`
MashumaroType = TypeVar('MashumaroType', Data1, mashumaro.DataClassDictMixin)
# Factory for `dataclass-factory`
factory = dataclass_factory.Factory()
MyClassWizard: WizType = create_new_class(
Data1, (Data1, JSONWizard), 'Wizard',
attr_dict=vars(Data1).copy())
MyClassJsons: JsonsType = create_new_class(
Data1, (Data1, JsonSerializable), 'Jsons',
attr_dict=vars(Data1).copy())
MyClassMashumaroModel: MashumaroType = create_new_class(
Data1, (Data1, mashumaro.DataClassDictMixin), 'Mashumaro',
attr_dict=vars(Data1).copy())
# Pydantic Model for Benchmarking
MyClassPydanticModel = MyClassPydantic
# Mashumaro Model for Benchmarking
# MyClassMashumaroModel = MyClassMashumaro
# Enable experimental `v1` mode for optimized de/serialization
LoadMeta(v1=True).bind_to(MyClassWizard)
@pytest.fixture(scope='session')
def data():
return {
"instance": {
"name": "example1",
"data": {
"date": "2021-01-01",
"owner": "Maciek"
}
},
"result": {
"status": "complete",
"iteration_results": {
"iterations": [
{
"name": "first",
"data": {
"question1": "yes",
"question2": "no"
}
}
]
}
}
}
dt_iso_format_schema = dataclass_factory.Schema(
parser=as_datetime,
serializer=datetime.isoformat
)
date_iso_format_schema = dataclass_factory.Schema(
parser=as_date,
serializer=date.isoformat
)
factory.schemas = {
datetime: dt_iso_format_schema,
date: date_iso_format_schema
}
def test_load(request, data, n):
"""
[ RESULTS ON MAC OS X ]
benchmarks.nested.nested - [INFO] dataclass-wizard 0.130734
benchmarks.nested.nested - [INFO] dataclass-factory 0.404371
benchmarks.nested.nested - [INFO] dataclasses-json 11.315233
benchmarks.nested.nested - [INFO] mashumaro 0.158986
benchmarks.nested.nested - [INFO] pydantic 0.330295
benchmarks.nested.nested - [INFO] jsons 25.084872
benchmarks.nested.nested - [INFO] jsons (strict) 28.306646
"""
g = globals().copy()
g.update(locals())
MyClassWizard.from_dict(data)
log.info('dataclass-wizard %f',
timeit('MyClassWizard.from_dict(data)', globals=g, number=n))
log.info('dataclass-factory %f',
timeit('factory.load(data, Data1)', globals=g, number=n))
log.info('dataclasses-json %f',
timeit('MyClassDJ.from_dict(data)', globals=g, number=n))
# JUST SKKIPING IN INTERESTS OF TIME
# log.info('dacite %f',
# timeit('dacite_from_dict(MyClass, data)', globals=g, number=n))
log.info('mashumaro %f',
timeit('MyClassMashumaro.from_dict(data)', globals=g, number=n))
log.info('pydantic %f',
timeit('MyClassPydantic(**data)', globals=g, number=n))
if not request.config.getoption("--all"):
pytest.skip("Skipping benchmarks for the rest by default, unless --all is specified.")
log.info('jsons %f',
timeit('MyClassJsons.load(data)', globals=g, number=n))
log.info('jsons (strict) %f',
timeit('MyClassJsons.load(data, strict=True)', globals=g, number=n))
c1 = MyClassWizard.from_dict(data)
c2 = factory.load(data, Data1)
c3 = MyClassDJ.from_dict(data)
c4 = MyClassJsons.load(data)
c5 = MyClassMashumaro.from_dict(data)
# c6 = dacite_from_dict(MyClass, data)
c7 = MyClassPydantic(**data)
assert c1.__dict__ == c2.__dict__ == c3.__dict__ == c4.__dict__ == c5.__dict__ == c7.__dict__ # == c6.__dict__
def test_dump(request, data, n):
"""
[ RESULTS ON MAC OS X ]
INFO benchmarks.nested:nested.py:258 dataclass-wizard 0.460812
INFO benchmarks.nested:nested.py:261 asdict (dataclasses) 0.674034
INFO benchmarks.nested:nested.py:264 dataclass-factory 0.233023
INFO benchmarks.nested:nested.py:267 dataclasses-json 5.717344
INFO benchmarks.nested:nested.py:270 mashumaro 0.086356
INFO benchmarks.nested:nested.py:273 pydantic 0.209953
INFO benchmarks.nested:nested.py:279 jsons 49.321013
INFO benchmarks.nested:nested.py:282 jsons (strict) 44.051063
"""
c1 = MyClassWizard.from_dict(data)
c2 = factory.load(data, Data1)
c3 = MyClassDJ.from_dict(data)
c4 = MyClassJsons.load(data)
c5 = MyClassMashumaro.from_dict(data)
c6 = MyClassPydantic(**data)
g = globals().copy()
g.update(locals())
log.info('dataclass-wizard %f',
timeit('c1.to_dict()', globals=g, number=n))
log.info('asdict (dataclasses) %f',
timeit('asdict(c1)', globals=g, number=n))
log.info('dataclass-factory %f',
timeit('factory.dump(c2, Data1)', globals=g, number=n))
log.info('dataclasses-json %f',
timeit('c3.to_dict()', globals=g, number=n))
log.info('mashumaro %f',
timeit('c5.to_dict()', globals=g, number=n))
log.info('pydantic %f',
timeit('c6.model_dump()', globals=g, number=n))
if not request.config.getoption("--all"):
pytest.skip("Skipping benchmarks for the rest by default, unless --all is specified.")
log.info('jsons %f',
timeit('c4.dump()', globals=g, number=n))
log.info('jsons (strict) %f',
timeit('c4.dump(strict=True)', globals=g, number=n))
# Assert the dict objects which are the result of `to_dict` are all equal.
c1_dict = {to_snake_case(f): fval for f, fval in c1.to_dict().items()}
# assert c1_dict == factory.dump(c2, Data1) == c3.to_dict() == c4.dump() == c5.to_dict()
|