File: models.py

package info (click to toggle)
dataclass-wizard 0.37.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,924 kB
  • sloc: python: 17,189; makefile: 126; javascript: 23
file content (550 lines) | stat: -rw-r--r-- 17,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import json
from dataclasses import MISSING, Field
from datetime import date, datetime, time
from typing import Generic, Mapping, NewType, Any, TypedDict

from .constants import PY310_OR_ABOVE, PY314_OR_ABOVE
from .decorators import cached_property
from .type_def import T, DT, PyNotRequired
# noinspection PyProtectedMember
from .utils.dataclass_compat import _create_fn
from .utils.object_path import split_object_path
from .utils.type_conv import as_datetime, as_time, as_date


# Define a simple type (alias) for the `CatchAll` field
#
# The `type` statement is introduced in Python 3.12
# Ref: https://docs.python.org/3.12/reference/simple_stmts.html#type
#
# TODO: uncomment following usage of `type` statement
#   once we drop support for Python 3.9 - 3.11
# if PY312_OR_ABOVE:
#     type CatchAll = Mapping
CatchAll = NewType('CatchAll', Mapping)
# A date, time, datetime sub type, or None.
# DT_OR_NONE = Optional[DT]


class Extras(TypedDict):
    """
    "Extra" config that can be used in the load / dump process.
    """
    config: PyNotRequired['META']
    cls: type
    cls_name: str
    fn_gen: 'FunctionBuilder'
    locals: dict[str, Any]
    pattern: PyNotRequired['PatternedDT']


# noinspection PyShadowingBuiltins
def json_key(*keys: str, all=False, dump=True):
    return JSON(*keys, all=all, dump=dump)


# noinspection PyPep8Naming,PyShadowingBuiltins
def KeyPath(keys, all=True, dump=True):
    if isinstance(keys, str):
        keys = split_object_path(keys)

    return JSON(*keys, all=all, dump=dump, path=True)


# noinspection PyShadowingBuiltins
def json_field(keys, *,
               all=False, dump=True,
               default=MISSING,
               default_factory=MISSING,
               init=True, repr=True,
               hash=None, compare=True, metadata=None):

    if default is not MISSING and default_factory is not MISSING:
        raise ValueError('cannot specify both default and default_factory')

    return JSONField(keys, all, dump, default, default_factory, init, repr,
                     hash, compare, metadata)


env_field = json_field


class JSON:

    __slots__ = ('keys',
                 'all',
                 'dump',
                 'path')

    # noinspection PyShadowingBuiltins
    def __init__(self, *keys, all=False, dump=True, path=False):

        self.keys = (split_object_path(keys)
                     if path and isinstance(keys, str) else keys)
        self.all = all
        self.dump = dump
        self.path = path


class JSONField(Field):

    __slots__ = ('json', )

    # In Python 3.14, dataclasses adds a new parameter to the :class:`Field`
    # constructor: `doc`
    #
    # Ref: https://docs.python.org/3.14/library/dataclasses.html#dataclasses.field
    if PY314_OR_ABOVE:  # pragma: no cover
        # noinspection PyShadowingBuiltins
        def __init__(
            self,
            keys,
            all: bool,
            dump: bool,
            default,
            default_factory,
            init,
            repr,
            hash,
            compare,
            metadata,
            path: bool = False,
        ):

            super().__init__(
                default,
                default_factory,
                init,
                repr,
                hash,
                compare,
                metadata,
                False,
                None,
            )

            if isinstance(keys, str):
                keys = split_object_path(keys) if path else (keys,)
            elif keys is ...:
                keys = ()

            self.json = JSON(*keys, all=all, dump=dump, path=path)

    # In Python 3.10, dataclasses adds a new parameter to the :class:`Field`
    # constructor: `kw_only`
    #
    # Ref: https://docs.python.org/3.10/library/dataclasses.html#dataclasses.dataclass
    elif PY310_OR_ABOVE:  # pragma: no cover
        # noinspection PyShadowingBuiltins
        def __init__(self, keys, all: bool, dump: bool,
                     default, default_factory, init, repr, hash, compare,
                     metadata, path: bool = False):

            super().__init__(default, default_factory, init, repr, hash,
                             compare, metadata, False)

            if isinstance(keys, str):
                keys = split_object_path(keys) if path else (keys,)
            elif keys is ...:
                keys = ()

            self.json = JSON(*keys, all=all, dump=dump, path=path)

    else:  # pragma: no cover
        # noinspection PyArgumentList,PyShadowingBuiltins
        def __init__(self, keys, all: bool, dump: bool,
                     default, default_factory, init, repr, hash, compare,
                     metadata, path: bool = False):

            super().__init__(default, default_factory, init, repr, hash,
                             compare, metadata)

            if isinstance(keys, str):
                keys = split_object_path(keys) if path else (keys,)
            elif keys is ...:
                keys = ()

            self.json = JSON(*keys, all=all, dump=dump, path=path)


# noinspection PyPep8Naming
def Pattern(pattern):
    return PatternedDT(pattern)


class _PatternBase:
    __slots__ = ()

    def __class_getitem__(cls, pattern):
        return PatternedDT(pattern, cls.__base__)

    __getitem__ = __class_getitem__


class DatePattern(date, _PatternBase):
    __slots__ = ()


class TimePattern(time, _PatternBase):
    __slots__ = ()


class DateTimePattern(datetime, _PatternBase):
    __slots__ = ()


class PatternedDT(Generic[DT]):

    # `cls` is the date/time/datetime type or subclass.
    # `pattern` is the format string to pass in to `datetime.strptime`.
    __slots__ = ('cls',
                 'pattern')

    def __init__(self, pattern, cls = None):
        self.cls = cls
        self.pattern = pattern

    def get_transform_func(self):
        cls = self.cls

        # Parse with `fromisoformat` first, because its *much* faster than
        # `datetime.strptime` - see linked article above for more details.
        body_lines = [
            'dt = default_load_func(date_string, cls, raise_=False)',
            'if dt is not None:',
            '  return dt',
            'dt = datetime.strptime(date_string, pattern)',
        ]

        locals_ns = {'datetime': datetime,
                     'pattern': self.pattern,
                     'cls': cls}

        if cls is datetime:
            default_load_func = as_datetime
            body_lines.append('return dt')
        elif cls is date:
            default_load_func = as_date
            body_lines.append('return dt.date()')
        elif cls is time:
            default_load_func = as_time
            # temp fix for Python 3.11+, since `time.fromisoformat` is updated
            # to support more formats, such as "-" and "+" in strings.
            if '-' in self.pattern or '+' in self.pattern:
                body_lines = ['try:',
                              '  return datetime.strptime(date_string, pattern).time()',
                              'except (ValueError, TypeError):',
                              '  dt = default_load_func(date_string, cls, raise_=False)',
                              '  if dt is not None:',
                              '    return dt']
            else:
                body_lines.append('return dt.time()')
        elif issubclass(cls, datetime):
            default_load_func = as_datetime
            locals_ns['datetime'] = cls
            body_lines.append('return dt')
        elif issubclass(cls, date):
            default_load_func = as_date
            body_lines.append('return cls(dt.year, dt.month, dt.day)')
        elif issubclass(cls, time):
            default_load_func = as_time
            # temp fix for Python 3.11+, since `time.fromisoformat` is updated
            # to support more formats, such as "-" and "+" in strings.
            if '-' in self.pattern or '+' in self.pattern:
                body_lines = ['try:',
                              '  dt = datetime.strptime(date_string, pattern).time()',
                              'except (ValueError, TypeError):',
                              '  dt = default_load_func(date_string, cls, raise_=False)',
                              '  if dt is not None:',
                              '    return dt']

            body_lines.append('return cls(dt.hour, dt.minute, dt.second, '
                              'dt.microsecond, fold=dt.fold)')
        else:
            raise TypeError(f'Annotation for `Pattern` is of invalid type '
                            f'({cls}). Expected a type or subtype of: '
                            f'{DT.__constraints__}')

        locals_ns['default_load_func'] = default_load_func

        return _create_fn('pattern_to_dt',
                          ('date_string', ),
                          body_lines,
                          locals=locals_ns,
                          return_type=DT)

    def __repr__(self):
        repr_val = [f'{k}={getattr(self, k)!r}' for k in self.__slots__]
        return f'{self.__class__.__name__}({", ".join(repr_val)})'


class Container(list[T]):

    __slots__ = ('__dict__',
                 '__orig_class__')

    @cached_property
    def __model__(self):

        try:
            # noinspection PyUnresolvedReferences
            return self.__orig_class__.__args__[0]
        except AttributeError:
            cls_name = self.__class__.__qualname__
            msg = (f'A {cls_name} object needs to be instantiated with '
                   f'a generic type T.\n\n'
                   'Example:\n'
                   f'  my_list = {cls_name}[T](...)')

            raise TypeError(msg) from None

    def __str__(self):

        import pprint
        return pprint.pformat(self)

    def prettify(self, encoder = json.dumps,
                 ensure_ascii=False,
                 **encoder_kwargs):

        return self.to_json(
            indent=2,
            encoder=encoder,
            ensure_ascii=ensure_ascii,
            **encoder_kwargs
        )

    def to_json(self, encoder=json.dumps,
                **encoder_kwargs):

        from .loader_selection import asdict

        cls = self.__model__
        list_of_dict = [asdict(o, cls=cls) for o in self]

        return encoder(list_of_dict, **encoder_kwargs)

    def to_json_file(self, file, mode = 'w',
                     encoder=json.dump,
                     **encoder_kwargs):

        from .loader_selection import asdict

        cls = self.__model__
        list_of_dict = [asdict(o, cls=cls) for o in self]

        with open(file, mode) as out_file:
            encoder(list_of_dict, out_file, **encoder_kwargs)


# noinspection PyShadowingBuiltins
def path_field(keys, *,
               all=True, dump=True,
               default=MISSING,
               default_factory=MISSING,
               init=True, repr=True,
               hash=None, compare=True, metadata=None):

    if default is not MISSING and default_factory is not MISSING:
        raise ValueError('cannot specify both default and default_factory')

    return JSONField(keys, all, dump, default, default_factory, init, repr,
                    hash, compare, metadata, True)


if PY314_OR_ABOVE:

    def skip_if_field(
        condition,
        *,
        default=MISSING,
        default_factory=MISSING,
        init=True,
        repr=True,
        hash=None,
        compare=True,
        metadata=None,
        kw_only=MISSING,
        doc=None,
    ):

        if default is not MISSING and default_factory is not MISSING:
            raise ValueError("cannot specify both default and default_factory")

        if metadata is None:
            metadata = {}

        metadata["__skip_if__"] = condition

        return Field(
            default, default_factory, init, repr, hash, compare, metadata, kw_only, doc
        )


# In Python 3.10, dataclasses adds a new parameter to the :class:`Field`
# constructor: `kw_only`
#
# Ref: https://docs.python.org/3.10/library/dataclasses.html#dataclasses.dataclass
elif PY310_OR_ABOVE:  # pragma: no cover
    def skip_if_field(condition, *, default=MISSING, default_factory=MISSING, init=True, repr=True,
                      hash=None, compare=True, metadata=None, kw_only=MISSING):

        if default is not MISSING and default_factory is not MISSING:
            raise ValueError('cannot specify both default and default_factory')

        if metadata is None:
            metadata = {}

        metadata['__skip_if__'] = condition

        return Field(default, default_factory, init, repr, hash,
                     compare, metadata, kw_only)
else:  # pragma: no cover
    def skip_if_field(condition, *, default=MISSING, default_factory=MISSING, init=True, repr=True,
                      hash=None, compare=True, metadata=None):

        if default is not MISSING and default_factory is not MISSING:
            raise ValueError('cannot specify both default and default_factory')

        if metadata is None:
            metadata = {}

        metadata['__skip_if__'] = condition

        # noinspection PyArgumentList
        return Field(default, default_factory, init, repr, hash,
                     compare, metadata)


class Condition:

    __slots__ = (
        'op',
        'val',
        't_or_f',
        '_wrapped',
    )

    def __init__(self, operator, value):
        self.op = operator
        self.val = value
        self.t_or_f = operator in {'+', '!'}

    def __str__(self):
        return f"{self.op} {self.val!r}"

    def evaluate(self, other) -> bool:  # pragma: no cover
        # Optionally support runtime evaluation of the condition
        operators = {
            "==": lambda a, b: a == b,
            "!=": lambda a, b: a != b,
            "<": lambda a, b: a < b,
            "<=": lambda a, b: a <= b,
            ">": lambda a, b: a > b,
            ">=": lambda a, b: a >= b,
            "is": lambda a, b: a is b,
            "is not": lambda a, b: a is not b,
            "+": lambda a, _: True if a else False,
            "!": lambda a, _: not a,
        }
        return operators[self.op](other, self.val)


# Aliases for conditions

# noinspection PyPep8Naming
def EQ(value): return Condition("==", value)
# noinspection PyPep8Naming
def NE(value): return Condition("!=", value)
# noinspection PyPep8Naming
def LT(value): return Condition("<", value)
# noinspection PyPep8Naming
def LE(value): return Condition("<=", value)
# noinspection PyPep8Naming
def GT(value): return Condition(">", value)
# noinspection PyPep8Naming
def GE(value): return Condition(">=", value)
# noinspection PyPep8Naming
def IS(value): return Condition("is", value)
# noinspection PyPep8Naming
def IS_NOT(value): return Condition("is not", value)
# noinspection PyPep8Naming
def IS_TRUTHY(): return Condition("+", None)
# noinspection PyPep8Naming
def IS_FALSY(): return Condition("!", None)


# noinspection PyPep8Naming
def SkipIf(condition):
    """
    Mark a condition to be used as a skip directive during serialization.
    """
    condition._wrapped = True  # Set a marker attribute
    return condition


# Convenience alias, to skip serializing field if value is None
SkipIfNone = SkipIf(IS(None))


def finalize_skip_if(skip_if, operand_1, conditional):
    """
    Finalizes the skip condition by generating the appropriate string based on the condition.

    Args:
        skip_if (Condition): The condition to evaluate, containing truthiness and operation info.
        operand_1 (str): The primary operand for the condition (e.g., a variable or value).
        conditional (str): The conditional operator to use (e.g., '==', '!=').

    Returns:
        str: The resulting skip condition as a string.

    Example:
        >>> cond = Condition(t_or_f=True, op='+', val=None)
        >>> finalize_skip_if(cond, 'my_var', '==')
        'my_var'
    """
    if skip_if.t_or_f:
        return operand_1 if skip_if.op == '+' else f'not {operand_1}'

    return f'{operand_1} {conditional}'


def get_skip_if_condition(skip_if, _locals, operand_2=None, condition_i=None, condition_var='_skip_if_'):
    """
    Retrieves the skip condition based on the provided `Condition` object.

    Args:
        skip_if (Condition): The condition to evaluate.
        _locals (dict[str, Any]): A dictionary of local variables for condition evaluation.
        operand_2 (str): The secondary operand (e.g., a variable or value).
        condition_i (Condition): The condition var index.
        condition_var (str): The variable name to evaluate.

    Returns:
        Any: The result of the evaluated condition or a string representation for custom values.

    Example:
        >>> cond = Condition(t_or_f=False, op='==', val=10)
        >>> locals_dict = {}
        >>> get_skip_if_condition(cond, locals_dict, 'other_var')
        '== other_var'
    """
    # TODO: To avoid circular import
    from .class_helper import is_builtin

    if skip_if is None:
        return False

    if skip_if.t_or_f:  # Truthy or falsy condition, no operand
        return True

    if is_builtin(skip_if.val):
        return str(skip_if)

    # Update locals (as `val` is not a builtin)
    if operand_2 is None:
        operand_2 = f'{condition_var}{condition_i}'

    _locals[operand_2] = skip_if.val
    return f'{skip_if.op} {operand_2}'