File: string_conv.py

package info (click to toggle)
dataclass-wizard 0.37.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,924 kB
  • sloc: python: 17,189; makefile: 126; javascript: 23
file content (325 lines) | stat: -rw-r--r-- 9,834 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
__all__ = ['normalize',
           'possible_json_keys',
           'to_camel_case',
           'to_pascal_case',
           'to_lisp_case',
           'to_snake_case',
           'repl_or_with_union']

import re
from typing import Iterable, Dict, List

from ..type_def import JSONObject


def normalize(string: str) -> str:
    """
    Normalize a string - typically a dataclass field name - for comparison
    purposes.
    """
    return string.replace('-', '').replace('_', '').upper()


def possible_json_keys(field: str) -> list[str]:
    """
    Maps a dataclass field name to its possible keys in a JSON object.

    This function checks multiple naming conventions (e.g., camelCase,
    PascalCase, kebab-case, etc.) to find the matching key in the JSON
    object `o`. It also caches the mapping for future use.

    Args:
        field (str): The dataclass field name to map.

    Returns:
        list[str]: The possible JSON keys for the given field.
    """
    possible_keys = []

    # `camelCase`
    _key = to_camel_case(field)
    possible_keys.append(_key)

    # `PascalCase`: same as `camelCase` but first letter is capitalized
    _key = _key[0].upper() + _key[1:]
    possible_keys.append(_key)

    # `kebab-case`
    _key = to_lisp_case(field)
    possible_keys.append(_key)

    # `Upper-Kebab`: same as `kebab-case`, each word is title-cased
    _key = _key.title()
    possible_keys.append(_key)

    # `Upper_Snake`
    _key = _key.replace('-', '_')
    possible_keys.append(_key)

    # `snake_case`
    _key = _key.lower()
    possible_keys.append(_key)

    # remove 1:1 field mapping from possible keys,
    # as that's the first thing we check.
    if field in possible_keys:
        possible_keys.remove(field)

    return possible_keys


def to_camel_case(string: str) -> str:
    """
    Convert a string to Camel Case.

    Examples::

        >>> to_camel_case("device_type")
        'deviceType'

    """
    string = replace_multi_with_single(
        string.replace('-', '_').replace(' ', '_'))

    return string[0].lower() + re.sub(
        r"(?:_)(.)", lambda m: m.group(1).upper(), string[1:])


def to_pascal_case(string):
    """
    Converts a string to Pascal Case (also known as "Upper Camel Case")

    Examples::

        >>> to_pascal_case("device_type")
        'DeviceType'

    """
    string = replace_multi_with_single(
        string.replace('-', '_').replace(' ', '_'))

    return string[0].upper() + re.sub(
        r"(?:_)(.)", lambda m: m.group(1).upper(), string[1:])


def to_lisp_case(string: str) -> str:
    """
    Make a hyphenated, lowercase form from the expression in the string.

    Example::

        >>> to_lisp_case("DeviceType")
        'device-type'

    """
    string = string.replace('_', '-').replace(' ', '-')
    # Short path: the field is already lower-cased, so we don't need to handle
    # for camel or title case.
    if string.islower():
        return replace_multi_with_single(string, '-')

    result = re.sub(
        r'((?!^)(?<!-)[A-Z][a-z]+|(?<=[a-z0-9])[A-Z])', r'-\1', string)

    return replace_multi_with_single(result.lower(), '-')


def to_snake_case(string: str) -> str:
    """
    Make an underscored, lowercase form from the expression in the string.

    Example::

        >>> to_snake_case("DeviceType")
        'device_type'

    """
    string = string.replace('-', '_').replace(' ', '_')
    # Short path: the field is already lower-cased, so we don't need to handle
    # for camel or title case.
    if string.islower():
        return replace_multi_with_single(string)

    result = re.sub(
        r'((?!^)(?<!_)[A-Z][a-z]+|(?<=[a-z0-9])[A-Z])', r'_\1', string)

    return replace_multi_with_single(result.lower())


def replace_multi_with_single(string: str, char='_') -> str:
    """
    Replace multiple consecutive occurrences of `char` with a single one.
    """
    rep = char + char
    while rep in string:
        string = string.replace(rep, char)

    return string


# Note: this is the initial helper function I came up with. This doesn't use
# regex for the string transformation, so it's actually faster than the
# implementation above. However, I do prefer the implementation with regex,
# because its a lot cleaner and more simple than this implementation.
# def to_snake_case_old(string: str):
#     """
#     Make an underscored, lowercase form from the expression in the string.
#     """
#     if len(string) < 2:
#         return string or ''
#
#     string = string.replace('-', '_')
#
#     if string.islower():
#         return replace_multi_with_single(string)
#
#     start_idx = 0
#
#     parts = []
#     for i, c in enumerate(string):
#         c: str
#         if c.isupper():
#             try:
#                 next_lower = string[i + 1].islower()
#             except IndexError:
#                 if string[i - 1].islower():
#                     parts.append(string[start_idx:i])
#                     parts.append(c)
#                 else:
#                     parts.append(string[start_idx:])
#                 break
#             else:
#                 if i == 0:
#                     continue
#
#                 if string[i - 1].islower():
#                     parts.append(string[start_idx:i])
#                     start_idx = i
#
#                 elif next_lower:
#                     parts.append(string[start_idx:i])
#                     start_idx = i
#     else:
#         parts.append(string[start_idx:i + 1])
#
#     result = '_'.join(parts).lower()
#
#     return replace_multi_with_single(result)

# Constants
OPEN_BRACKET = '['
CLOSE_BRACKET = ']'
COMMA = ','
OR = '|'

# Replace any OR (|) characters in a forward-declared annotation (i.e. string)
# with a `typing.Union` declaration. See below article for more info.
#
# https://stackoverflow.com/q/69606986/10237506


def repl_or_with_union(s: str):
    """
    Replace all occurrences of PEP 604- style annotations (i.e. like `X | Y`)
    with the Union type from the `typing` module, i.e. like `Union[X, Y]`.

    This is a recursive function that splits a complex annotation in order to
    traverse and parse it, i.e. one that is declared as follows:

      dict[str | Optional[int], list[list[str] | tuple[int | bool] | None]]
    """
    return _repl_or_with_union_inner(s.replace(' ', ''))


def _repl_or_with_union_inner(s: str):

    # If there is no '|' character in the annotation part, we just return it.
    if OR not in s:
        return s

    # Checking for brackets like `List[int | str]`.
    if OPEN_BRACKET in s:

        # Get any indices of COMMA or OR outside a braced expression.
        indices = _outer_comma_and_pipe_indices(s)

        outer_commas = indices[COMMA]
        outer_pipes = indices[OR]

        # We need to check if there are any commas *outside* a bracketed
        # expression. For example, the following cases are what we're looking
        # for here:
        #     value[test], dict[str | int, tuple[bool, str]]
        #     dict[str | int, str], value[test]
        # But we want to ignore cases like these, where all commas are nested
        # within a bracketed expression:
        #     dict[str | int, Union[int, str]]
        if outer_commas:
            return COMMA.join(
                [_repl_or_with_union_inner(i)
                 for i in _sub_strings(s, outer_commas)])

        # We need to check if there are any pipes *outside* a bracketed
        # expression. For example:
        #     value | dict[str | int, list[int | str]]
        #     dict[str, tuple[int | str]] | value
        # But we want to ignore cases like these, where all pipes are
        # nested within the a bracketed expression:
        #     dict[str | int, list[int | str]]
        if outer_pipes:
            or_parts = [_repl_or_with_union_inner(i)
                        for i in _sub_strings(s, outer_pipes)]

            return f'Union{OPEN_BRACKET}{COMMA.join(or_parts)}{CLOSE_BRACKET}'

        # At this point, we know that the annotation does not have an outer
        # COMMA or PIPE expression. We also know that the following syntax
        # is invalid: `SomeType[str][bool]`. Therefore, knowing this, we can
        # assume there is only one outer start and end brace. For example,
        # like `SomeType[str | int, list[dict[str, int | bool]]]`.

        first_start_bracket = s.index(OPEN_BRACKET)
        last_end_bracket = s.rindex(CLOSE_BRACKET)

        # Replace the value enclosed in the outermost brackets
        bracketed_val = _repl_or_with_union_inner(
            s[first_start_bracket + 1:last_end_bracket])

        start_val = s[:first_start_bracket]
        end_val = s[last_end_bracket + 1:]

        return f'{start_val}{OPEN_BRACKET}{bracketed_val}{CLOSE_BRACKET}{end_val}'

    elif COMMA in s:
        # We are dealing with a string like `int | str, float | None`
        return COMMA.join([_repl_or_with_union_inner(i)
                           for i in s.split(COMMA)])

    # We are dealing with a string like `int | str`
    return f'Union{OPEN_BRACKET}{s.replace(OR, COMMA)}{CLOSE_BRACKET}'


def _sub_strings(s: str, split_indices: Iterable[int]):
    """Split a string on the specified indices, and return the split parts."""
    prev = -1

    for idx in split_indices:
        yield s[prev+1:idx]
        prev = idx

    yield s[prev+1:]


def _outer_comma_and_pipe_indices(s: str) -> Dict[str, List[int]]:
    """Return any indices of ',' and '|' that are outside of braces."""
    indices = {OR: [], COMMA: []}
    brace_dict = {OPEN_BRACKET: 1, CLOSE_BRACKET: -1}
    brace_count = 0

    for i, char in enumerate(s):
        if char in brace_dict:
            brace_count += brace_dict[char]
        elif not brace_count and char in indices:
            indices[char].append(i)

    return indices