1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
import logging
from abc import ABC
from base64 import b64decode
from collections import deque, defaultdict
from dataclasses import dataclass, field
from datetime import datetime, timedelta
from typing import (Set, FrozenSet, Optional, Union, List,
DefaultDict, Annotated, Literal)
from uuid import UUID
import pytest
from dataclass_wizard import *
from dataclass_wizard.class_helper import get_meta
from dataclass_wizard.constants import TAG
from dataclass_wizard.errors import ParseError
from ..conftest import *
log = logging.getLogger(__name__)
def test_asdict_and_fromdict():
"""
Confirm that Meta settings for both `fromdict` and `asdict` are merged
as expected.
"""
@dataclass
class MyClass:
my_bool: Optional[bool]
myStrOrInt: Union[str, int]
d = {'myBoolean': 'tRuE', 'my_str_or_int': 123}
LoadMeta(
key_transform='CAMEL',
raise_on_unknown_json_key=True,
json_key_to_field={'myBoolean': 'my_bool', '__all__': True}
).bind_to(MyClass)
DumpMeta(key_transform='SNAKE').bind_to(MyClass)
# Assert that meta is properly merged as expected
meta = get_meta(MyClass)
assert 'CAMEL' == meta.key_transform_with_load
assert 'SNAKE' == meta.key_transform_with_dump
assert True is meta.raise_on_unknown_json_key
assert {'myBoolean': 'my_bool'} == meta.json_key_to_field
c = fromdict(MyClass, d)
assert c.my_bool is True
assert isinstance(c.myStrOrInt, int)
assert c.myStrOrInt == 123
new_dict = asdict(c)
assert new_dict == {'myBoolean': True, 'my_str_or_int': 123}
def test_asdict_with_nested_dataclass():
"""Confirm that `asdict` works for nested dataclasses as well."""
@dataclass
class Container:
id: int
submittedDt: datetime
myElements: List['MyElement']
@dataclass
class MyElement:
order_index: Optional[int]
status_code: Union[int, str]
submitted_dt = datetime(2021, 1, 1, 5)
elements = [MyElement(111, '200'), MyElement(222, 404)]
c = Container(123, submitted_dt, myElements=elements)
DumpMeta(key_transform='SNAKE',
marshal_date_time_as='TIMESTAMP').bind_to(Container)
d = asdict(c)
expected = {
'id': 123,
'submitted_dt': round(submitted_dt.timestamp()),
'my_elements': [
# Key transform now applies recursively to all nested dataclasses
# by default! :-)
{'order_index': 111, 'status_code': '200'},
{'order_index': 222, 'status_code': 404}
]
}
assert d == expected
def test_tag_field_is_used_in_dump_process():
"""
Confirm that the `_TAG` field appears in the serialized JSON or dict
object (even for nested dataclasses) when a value is set in the
`Meta` config for a JSONWizard sub-class.
"""
@dataclass
class Data(ABC):
""" base class for a Member """
number: float
class DataA(Data):
""" A type of Data"""
pass
class DataB(Data, JSONWizard):
""" Another type of Data """
class _(JSONWizard.Meta):
"""
This defines a custom tag that shows up in de-serialized
dictionary object.
"""
tag = 'B'
@dataclass
class Container(JSONWizard):
""" container holds a subclass of Data """
class _(JSONWizard.Meta):
tag = 'CONTAINER'
data: Union[DataA, DataB]
data_a = DataA(number=1.0)
data_b = DataB(number=1.0)
# initialize container with DataA
container = Container(data=data_a)
# export container to string and load new container from string
d1 = container.to_dict()
expected = {
TAG: 'CONTAINER',
'data': {'number': 1.0}
}
assert d1 == expected
# initialize container with DataB
container = Container(data=data_b)
# export container to string and load new container from string
d2 = container.to_dict()
expected = {
TAG: 'CONTAINER',
'data': {
TAG: 'B',
'number': 1.0
}
}
assert d2 == expected
def test_to_dict_key_transform_with_json_field():
"""
Specifying a custom mapping of JSON key to dataclass field, via the
`json_field` helper function.
"""
@dataclass
class MyClass(JSONSerializable):
my_str: str = json_field('myCustomStr', all=True)
my_bool: bool = json_field(('my_json_bool', 'myTestBool'), all=True)
value = 'Testing'
expected = {'myCustomStr': value, 'my_json_bool': True}
c = MyClass(my_str=value, my_bool=True)
result = c.to_dict()
log.debug('Parsed object: %r', result)
assert result == expected
def test_to_dict_key_transform_with_json_key():
"""
Specifying a custom mapping of JSON key to dataclass field, via the
`json_key` helper function.
"""
@dataclass
class MyClass(JSONSerializable):
my_str: Annotated[str, json_key('myCustomStr', all=True)]
my_bool: Annotated[bool, json_key(
'my_json_bool', 'myTestBool', all=True)]
value = 'Testing'
expected = {'myCustomStr': value, 'my_json_bool': True}
c = MyClass(my_str=value, my_bool=True)
result = c.to_dict()
log.debug('Parsed object: %r', result)
result = c.to_dict()
log.debug('Parsed object: %r', result)
assert result == expected
def test_to_dict_with_skip_defaults():
"""
When `skip_defaults` is enabled in the class Meta, fields with default
values should be excluded from the serialization process.
"""
@dataclass
class MyClass(JSONWizard):
class _(JSONWizard.Meta):
skip_defaults = True
my_str: str
other_str: str = 'any value'
optional_str: str = None
my_list: List[str] = field(default_factory=list)
my_dict: DefaultDict[str, List[float]] = field(
default_factory=lambda: defaultdict(list))
c = MyClass('abc')
log.debug('Instance: %r', c)
out_dict = c.to_dict()
assert out_dict == {'myStr': 'abc'}
def test_to_dict_with_excluded_fields():
"""
Excluding dataclass fields from the serialization process works
as expected.
"""
@dataclass
class MyClass(JSONWizard):
my_str: str
other_str: Annotated[str, json_key('AnotherStr', dump=False)]
my_bool: bool = json_field('TestBool', dump=False)
my_int: int = 3
data = {'MyStr': 'my string',
'AnotherStr': 'testing 123',
'TestBool': True}
c = MyClass.from_dict(data)
log.debug('Instance: %r', c)
# dynamically exclude the `my_int` field from serialization
additional_exclude = ('my_int', )
out_dict = c.to_dict(exclude=additional_exclude)
assert out_dict == {'myStr': 'my string'}
@pytest.mark.parametrize(
'input,expected,expectation',
[
({1, 2, 3}, [1, 2, 3], does_not_raise()),
((3.22, 2.11, 1.22), [3.22, 2.11, 1.22], does_not_raise()),
]
)
def test_set(input, expected, expectation):
@dataclass
class MyClass(JSONSerializable):
num_set: Set[int]
any_set: set
# Sort expected so the assertions succeed
expected = sorted(expected)
input_set = set(input)
c = MyClass(num_set=input_set, any_set=input_set)
with expectation:
result = c.to_dict()
log.debug('Parsed object: %r', result)
assert all(key in result for key in ('numSet', 'anySet'))
# Set should be converted to list or tuple, as only those are JSON
# serializable.
assert isinstance(result['numSet'], (list, tuple))
assert isinstance(result['anySet'], (list, tuple))
assert sorted(result['numSet']) == expected
assert sorted(result['anySet']) == expected
@pytest.mark.parametrize(
'input,expected,expectation',
[
({1, 2, 3}, [1, 2, 3], does_not_raise()),
((3.22, 2.11, 1.22), [3.22, 2.11, 1.22], does_not_raise()),
]
)
def test_frozenset(input, expected, expectation):
@dataclass
class MyClass(JSONSerializable):
num_set: FrozenSet[int]
any_set: frozenset
# Sort expected so the assertions succeed
expected = sorted(expected)
input_set = frozenset(input)
c = MyClass(num_set=input_set, any_set=input_set)
with expectation:
result = c.to_dict()
log.debug('Parsed object: %r', result)
assert all(key in result for key in ('numSet', 'anySet'))
# Set should be converted to list or tuple, as only those are JSON
# serializable.
assert isinstance(result['numSet'], (list, tuple))
assert isinstance(result['anySet'], (list, tuple))
assert sorted(result['numSet']) == expected
assert sorted(result['anySet']) == expected
@pytest.mark.parametrize(
'input,expected,expectation',
[
({1, 2, 3}, [1, 2, 3], does_not_raise()),
((3.22, 2.11, 1.22), [3.22, 2.11, 1.22], does_not_raise()),
]
)
def test_deque(input, expected, expectation):
@dataclass
class MyQClass(JSONSerializable):
num_deque: deque[int]
any_deque: deque
input_deque = deque(input)
c = MyQClass(num_deque=input_deque, any_deque=input_deque)
with expectation:
result = c.to_dict()
log.debug('Parsed object: %r', result)
assert all(key in result for key in ('numDeque', 'anyDeque'))
# Set should be converted to list or tuple, as only those are JSON
# serializable.
assert isinstance(result['numDeque'], list)
assert isinstance(result['anyDeque'], list)
assert result['numDeque'] == expected
assert result['anyDeque'] == expected
@pytest.mark.parametrize(
'input,expectation',
[
('testing', pytest.raises(ParseError)),
('e1', does_not_raise()),
(False, pytest.raises(ParseError)),
(0, does_not_raise()),
]
)
@pytest.mark.xfail(reason='still need to add the dump hook for this type')
def test_literal(input, expectation):
@dataclass
class MyClass(JSONSerializable):
class Meta(JSONSerializable.Meta):
key_transform_with_dump = 'PASCAL'
my_lit: Literal['e1', 'e2', 0]
c = MyClass(my_lit=input)
expected = {'MyLit': input}
with expectation:
actual = c.to_dict()
assert actual == expected
log.debug('Parsed object: %r', actual)
@pytest.mark.parametrize(
'input,expectation',
[
(UUID('12345678-1234-1234-1234-1234567abcde'), does_not_raise()),
(UUID('{12345678-1234-5678-1234-567812345678}'), does_not_raise()),
(UUID('12345678123456781234567812345678'), does_not_raise()),
(UUID('urn:uuid:12345678-1234-5678-1234-567812345678'), does_not_raise()),
]
)
def test_uuid(input, expectation):
@dataclass
class MyClass(JSONSerializable):
class Meta(JSONSerializable.Meta):
key_transform_with_dump = 'Snake'
my_id: UUID
c = MyClass(my_id=input)
expected = {'my_id': input.hex}
with expectation:
actual = c.to_dict()
assert actual == expected
log.debug('Parsed object: %r', actual)
@pytest.mark.parametrize(
'input,expectation',
[
(timedelta(seconds=12345), does_not_raise()),
(timedelta(hours=1, minutes=32), does_not_raise()),
(timedelta(days=1, minutes=51, seconds=7), does_not_raise()),
]
)
def test_timedelta(input, expectation):
@dataclass
class MyClass(JSONSerializable):
class Meta(JSONSerializable.Meta):
key_transform_with_dump = 'Snake'
my_td: timedelta
c = MyClass(my_td=input)
expected = {'my_td': str(input)}
with expectation:
actual = c.to_dict()
assert actual == expected
log.debug('Parsed object: %r', actual)
@pytest.mark.parametrize(
'input,expectation',
[
(
{}, pytest.raises(ParseError)),
(
{'key': 'value'}, pytest.raises(ParseError)),
(
{'my_str': 'test', 'my_int': 2,
'my_bool': True, 'other_key': 'testing'}, does_not_raise()),
(
{'my_str': 3}, pytest.raises(ParseError)),
(
{'my_str': 'test', 'my_int': 'test', 'my_bool': True},
pytest.raises(ValueError)),
(
{'my_str': 'test', 'my_int': 2, 'my_bool': True},
does_not_raise(),
)
]
)
@pytest.mark.xfail(reason='still need to add the dump hook for this type')
def test_typed_dict(input, expectation):
class MyDict(TypedDict):
my_str: str
my_bool: bool
my_int: int
@dataclass
class MyClass(JSONSerializable):
my_typed_dict: MyDict
c = MyClass(my_typed_dict=input)
with expectation:
result = c.to_dict()
log.debug('Parsed object: %r', result)
def test_using_dataclass_in_dict():
"""
Using dataclass in a dictionary (i.e., dict[str, Test])
works as expected.
See https://github.com/rnag/dataclass-wizard/issues/159
"""
@dataclass
class Test:
field: str
@dataclass
class Config:
tests: dict[str, Test]
config = {"tests": {"test_a": {"field": "a"}, "test_b": {"field": "b"}}}
assert fromdict(Config, config) == Config(
tests={'test_a': Test(field='a'),
'test_b': Test(field='b')})
def test_bytes_and_bytes_array_are_supported():
"""Confirm dump with `bytes` and `bytesarray` is supported."""
@dataclass
class Foo(JSONWizard):
b: bytes = None
barray: bytearray = None
s: str = None
data = {'b': 'AAAA', 'barray': 'SGVsbG8sIFdvcmxkIQ==', 's': 'foobar'}
# noinspection PyTypeChecker
foo = Foo(b=b64decode('AAAA'),
barray=bytearray(b'Hello, World!'),
s='foobar')
# noinspection PyTypeChecker
assert foo.to_dict() == data
|