File: menu_processing.rst

package info (click to toggle)
datalab 1.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 36,260 kB
  • sloc: python: 29,592; makefile: 3
file content (531 lines) | stat: -rw-r--r-- 19,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
.. _ima-menu-processing:

Processing Images
=================

This section describes the image processing features available in DataLab.

.. seealso::

    :ref:`ima-menu-operations` for more information on operations that can be performed
    on images, or :ref:`ima-menu-analysis` for information on analysis features on
    images.

.. figure:: /images/shots/i_processing.png

    Screenshot of the "Processing" menu.

When the "Image Panel" is selected, the menus and toolbars are updated to
provide image-related actions.

The "Processing" menu allows you to perform various processing on the current
image or group of images: it allows you to apply filters, to perform exposure
correction, to perform denoising, to perform morphological operations, and so on.

Geometry
^^^^^^^^

Flip and rotation
~~~~~~~~~~~~~~~~~

Create a new image by flipping or rotating the data of the selected image.
The image may be flipped horizontally, vertically, or diagonally (transposition).
It may be rotated by 90°, 270° or any user-defined value.

.. list-table::
    :header-rows: 1
    :widths: 40, 60

    * - Operation
      - Description
    * - Flip horizontally
      - Mirror image along the vertical axis
    * - Flip diagonally
      - Transpose the image (swap X/Y axes)
    * - Flip vertically
      - Mirror image along the horizontal axis
    * - Rotate 90° right
      - Rotate image 90° clockwise
    * - Rotate 90° left
      - Rotate image 90° counter-clockwise
    * - Rotate by...
      - Rotate image by any angle (user-defined)

Distribute images along a grid
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. list-table::
    :header-rows: 1
    :widths: 40, 60

    * - Feature
      - Description
    * - |distribute_on_grid| Distribute on a grid
      - Distribute selected images on a regular grid
    * - |reset_positions| Reset image positions
      - Reset the positions of the selected images to first image (x0, y0) coordinates

.. |distribute_on_grid| image:: ../../../datalab/data/icons/processing/distribute_on_grid.svg
    :width: 24px
    :height: 24px
    :class: dark-light no-scaled-link

.. |reset_positions| image:: ../../../datalab/data/icons/processing/reset_positions.svg
    :width: 24px
    :height: 24px
    :class: dark-light no-scaled-link

Axis transformation
^^^^^^^^^^^^^^^^^^^

Set uniform coordinates
~~~~~~~~~~~~~~~~~~~~~~~

Create a new image with uniform coordinates (i.e., with a constant pixel size in both X and Y directions).

Polynomial calibration
~~~~~~~~~~~~~~~~~~~~~~

Create a new image which is a polynomial calibration
of each selected image with respect to Z axis.

.. note::

    Linear calibration was removed from the UI as it is a special case of polynomial calibration with degree 1.

Level adjustment
^^^^^^^^^^^^^^^^

Normalize
~~~~~~~~~

Create a new image which is the normalized version of each selected image
by maximum, amplitude, sum, energy or RMS:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Normalization
      - Equation
    * - Maximum
      - :math:`z_{1} = \dfrac{z_{0}}{z_{\max}}`
    * - Amplitude
      - :math:`z_{1} = \dfrac{z_{0}}{z_{\max}-z_{\min}}`
    * - Area
      - :math:`z_{1} = \dfrac{z_{0}}{\sum_{i=0}^{N-1}{z_{i}}}`
    * - Energy
      - :math:`z_{1}= \dfrac{z_{0}}{\sqrt{\sum_{n=0}^{N}\left|z_{0}[n]\right|^2}}`
    * - RMS
      - :math:`z_{1}= \dfrac{z_{0}}{\sqrt{\dfrac{1}{N}\sum_{n=0}^{N}\left|z_{0}[n]\right|^2}}`

Clipping
~~~~~~~~

Apply the clipping to each selected image.

Offset correction
~~~~~~~~~~~~~~~~~

Create a new image which is the result of offset correction on each selected image.
This operation is performed by subtracting the image background value which is estimated
by the mean value of a user-defined rectangular area.

Noise addition
^^^^^^^^^^^^^^

Generate new images by adding the same noise to each selected image.
The available noise types are:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Noise
      - Description
    * - Gaussian
      - Normal distribution
    * - Uniform
      - Uniform distribution
    * - Poisson
      - Poisson distribution

Noise reduction
^^^^^^^^^^^^^^^

Create a new image which is the result of noise reduction on each selected image.

The following filters are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Filter
      - Formula/implementation
    * - Gaussian filter
      - `scipy.ndimage.gaussian_filter <https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html>`_
    * - Moving average
      - `scipy.ndimage.uniform_filter <https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html>`_
    * - Moving median
      - `scipy.ndimage.median_filter <https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html>`_
    * - Wiener filter
      - `scipy.signal.wiener <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html>`_

Fourier analysis
^^^^^^^^^^^^^^^^

Zero padding
~~~~~~~~~~~~

Create a new image which is the result of zero padding on each selected image.

The following parameters are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Parameter
      - Description
    * - Strategy
      - Zero padding strategy (see below)
    * - Rows
      - Number of rows to add (if `strategy` is 'custom')
    * - Columns
      - Number of columns to add (if `strategy` is 'custom')
    * - Position
      - Position of the added zeros: 'bottom-right', 'centered'

Zero padding strategy refers to the method used to add zeros to the image, and it can be one of the following:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Strategy
      - Description
    * - next_pow2
      - Next power of 2 (e.g. 512, 1024, ...)
    * - multiple_of_64
      - Next multiple of 64 (e.g. 512, 576, ...)
    * - custom
      - Custom size (user-defined)

FFT related functions
~~~~~~~~~~~~~~~~~~~~~

Create a new image which is the result of a Fourier analysis on each selected image.

The following functions are available:

.. list-table::
    :header-rows: 1
    :widths: 20, 30, 50

    * - Function
      - Description
      - Formula/implementation
    * - FFT
      - Fast Fourier Transform
      - `numpy.fft.fft2 <https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html>`_
    * - Inverse FFT
      - Inverse Fast Fourier Transform
      - `numpy.fft.ifft2 <https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html>`_
    * - Magnitude spectrum
      - Optional: output in decibels (dB)
      - | :math:`z_{1} = \left|\FFT\left(z_{0}\right)\right|` or
        | :math:`z_{1} = 20 \log_{10} \left(\left|\FFT\left(z_{0}\right)\right|\right)` (dB)
    * - Phase spectrum
      - Phase of the FFT expressed in degrees, using `numpy.angle <https://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html>`_
      - :math:`z_{1} = \angle\left(\FFT\left(z_{0}\right)\right)`
    * - Power spectral density
      - Optional: output in decibels (dB)
      - | :math:`z_{1} = \left|\FFT\left(z_{0}\right)\right|^2` or
        | :math:`z_{1} = 10 \log_{10} \left(\left|\FFT\left(z_{0}\right)\right|^2\right)` (dB)

.. note::

    FFT and inverse FFT are performed using frequency shifting if the option is enabled
    in DataLab settings (see :ref:`settings`).

Frequency-domain filters
^^^^^^^^^^^^^^^^^^^^^^^^

The following frequency-domain filters are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Method
      - Description
    * - Butterworth
      - Butterworth filter, based on `skimage.filters.butterworth <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.butterworth>`_
    * - Gaussian filter
      - Gaussian filter

Thresholding
^^^^^^^^^^^^

Create a new image which is the result of thresholding on each selected image,
eventually based on user-defined parameters ("Parametric thresholding").

The following parameters are available when selecting "Parametric thresholding":

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Parameter
      - Description
    * - Threshold method
      - The thresholding method to use (see table below)
    * - Bins
      - Number of bins for histogram calculation
    * - Value
      - Threshold value
    * - Operation
      - Operation to apply (> or <)

The following thresholding methods are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Method
      - Implementation
    * - Manual
      - Manual thresholding (user-defined parameters)
    * - ISODATA
      - `skimage.filters.threshold_isodata <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_isodata>`_
    * - Li
      - `skimage.filters.threshold_li <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_li>`_
    * - Mean
      - `skimage.filters.threshold_mean <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_mean>`_
    * - Minimum
      - `skimage.filters.threshold_minimum <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_minimum>`_
    * - Otsu
      - `skimage.filters.threshold_otsu <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_otsu>`_
    * - Triangle
      - `skimage.filters.threshold_triangle <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_triangle>`_
    * - Yen
      - `skimage.filters.threshold_yen <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_yen>`_

.. note::

    The "All thresholding methods" option allows to perform all thresholding methods
    on the same image. Combined with the "distribute on a grid" option, this allows
    to compare the different thresholding methods on the same image.

Exposure
^^^^^^^^

Create a new image which is the result of exposure correction on each selected image.

The following functions are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 25, 50

    * - Function
      - Implementation
      - Comments
    * - Gamma correction
      - `skimage.exposure.adjust_gamma <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.adjust_gamma>`_
      -
    * - Logarithmic correction
      - `skimage.exposure.adjust_log <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.adjust_log>`_
      -
    * - Sigmoid correction
      - `skimage.exposure.adjust_sigmoid <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.adjust_sigmoid>`_
      -
    * - Histogram equalization
      - `skimage.exposure.equalize_hist <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.equalize_hist>`_
      -
    * - Adaptive histogram equalization
      - `skimage.exposure.equalize_adapthist <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.equalize_adapthist>`_
      - Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm
    * - Intensity rescaling
      - `skimage.exposure.rescale_intensity <https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.rescale_intensity>`_
      - Stretch or shrink image intensity levels

Restoration
^^^^^^^^^^^

Create a new image which is the result of restoration on each selected image.

The following functions are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 25, 50

    * - Function
      - Implementation
      - Comments
    * - Total variation denoising
      - `skimage.restoration.denoise_tv_chambolle <https://scikit-image.org/docs/stable/api/skimage.restoration.html#denoise-tv-chambolle>`_
      -
    * - Bilateral filter denoising
      - `skimage.restoration.denoise_bilateral <https://scikit-image.org/docs/stable/api/skimage.restoration.html#denoise-bilateral>`_
      -
    * - Wavelet denoising
      - `skimage.restoration.denoise_wavelet <https://scikit-image.org/docs/stable/api/skimage.restoration.html#denoise-wavelet>`_
      -
    * - White Top-Hat denoising
      - `skimage.morphology.white_tophat <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.white_tophat>`_
      - Denoise image by subtracting its white top hat transform

.. note::

    The "All denoising methods" option allows to perform all denoising methods
    on the same image. Combined with the "distribute on a grid" option, this allows
    to compare the different denoising methods on the same image.

Morphology
^^^^^^^^^^

Create a new image which is the result of morphological operations on each selected image,
using a disk footprint.

The following functions are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Function
      - Implementation
    * - White Top-Hat (disk)
      - `skimage.morphology.white_tophat <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.white_tophat>`_
    * - Black Top-Hat (disk)
      - `skimage.morphology.black_tophat <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.black_tophat>`_
    * - Erosion (disk)
      - `skimage.morphology.erosion <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.erosion>`_
    * - Dilation (disk)
      - `skimage.morphology.dilation <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.dilation>`_
    * - Opening (disk)
      - `skimage.morphology.opening <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.opening>`_
    * - Closing (disk)
      - `skimage.morphology.closing <https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.closing>`_

.. note::

    The "All morphological operations" option allows to perform all morphological operations
    on the same image. Combined with the "distribute on a grid" option, this allows to compare
    the different morphological operations on the same image.

Edges
^^^^^

Create a new image which is the result of edge filtering on each selected image.

The following functions are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Function
      - Implementation
    * - Canny filter
      - `skimage.feature.canny <https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.canny>`_
    * - Farid filter
      - `skimage.filters.farid <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters>`_
    * - Farid filter (horizontal)
      - `skimage.filters.farid_h <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.farid_h>`_
    * - Farid filter (vertical)
      - `skimage.filters.farid_v <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.farid_v>`_
    * - Laplace filter
      - `skimage.filters.laplace <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.laplace>`_
    * - Prewitt filter
      - `skimage.filters.prewitt <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt>`_
    * - Prewitt filter (horizontal)
      - `skimage.filters.prewitt_h <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_h>`_
    * - Prewitt filter (vertical)
      - `skimage.filters.prewitt_v <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_v>`_
    * - Roberts filter
      - `skimage.filters.roberts <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.roberts>`_
    * - Scharr filter
      - `skimage.filters.scharr <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.scharr>`_
    * - Scharr filter (horizontal)
      - `skimage.filters.scharr_h <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.scharr_h>`_
    * - Scharr filter (vertical)
      - `skimage.filters.scharr_v <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.scharr_v>`_
    * - Sobel filter
      - `skimage.filters.sobel <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel>`_
    * - Sobel filter (horizontal)
      - `skimage.filters.sobel_h <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_h>`_
    * - Sobel filter (vertical)
      - `skimage.filters.sobel_v <https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v>`_

.. note::

    The "All edges filters" option allows to perform all edge filtering algorithms
    on the same image. Combined with the "distribute on a grid" option, this allows
    to compare the different edge filters on the same image.

Erase area
^^^^^^^^^^

Erase an area in the image as defined by a region of interest (ROI).

.. note::

    The region to erase is defined by the user through a dialog box. It can consist of
    a single ROI or multiple ROIs with various shapes (rectangular, circular, etc.).
    Note that the ROI defined here is not bound to any object; it is used solely to
    specify the area to erase in the image. In particular, it is independent of the
    image’s ROI, if any (the latter is shown in the dialog box as a masked area).

Resize
^^^^^^

Create a new image which is a resized version of each selected image.

Pixel binning
^^^^^^^^^^^^^

Combine clusters of adjacent pixels, throughout the image,
into single pixels. The result can be the sum, average, median, minimum,
or maximum value of the cluster.

Resampling
^^^^^^^^^^

Generate new images by resampling each selected image.
The following parameters are available:

.. list-table::
    :header-rows: 1
    :widths: 25, 75

    * - Parameter
      - Description
    * - math:`x_{min}`
      - Minimum x-coordinate of the output image
    * - :math:`x_{max}`
      - Maximum x-coordinate of the output image
    * - :math:`y_{min}`
      - Minimum y-coordinate of the output image
    * - :math:`y_{max}`
      - Maximum y-coordinate of the output image
    * - Mode
      - Image size definition mode: 'Pixel size' or 'Output shape'. The 'Pixel size' mode
        allows to define the pixel size of the new image, while the 'Output shape' mode
        allows to define the number of pixels of the new image.
    * - ΔX
      - Pixel size in x-direction (if 'Pixel size' mode is selected)
    * - ΔY
      - Pixel size in y-direction (if 'Pixel size' mode is selected)
    * - Width
      - Output image width in pixels (if 'Output shape' mode is selected)
    * - Height
      - Output image height in pixels (if 'Output shape' mode is selected)
    * - Interpolation method
      - Interpolation method to use: 'nearest', 'linear', 'cubic'
    * - Fill value
      - Value to use for points outside the input image domain (if None, function uses NaN for extrapolation)