File: datalab_example_imageproc.py

package info (click to toggle)
datalab 1.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 36,260 kB
  • sloc: python: 29,592; makefile: 3
file content (92 lines) | stat: -rw-r--r-- 3,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- coding: utf-8 -*-

"""
Extract blobs (plugin example)
==============================

This is a simple example of a DataLab image processing plugin.

It adds a new menu entry in "Plugins" menu, with a sub-menu "Extract blobs (example)".
This sub-menu contains two actions, "Preprocess image" and "Detect blobs".

.. note::

    This plugin is not installed by default. To install it, copy this file to
    your DataLab plugins directory (see `DataLab documentation
    <https://datalab-platform.com/en/features/advanced/plugins.html>`_).
"""

import numpy as np
import sigima.objects
import sigima.params
import skimage.draw

import datalab.plugins


class ExtractBlobs(datalab.plugins.PluginBase):
    """DataLab Example Plugin"""

    PLUGIN_INFO = datalab.plugins.PluginInfo(
        name="Extract blobs (example)",
        version="1.0.0",
        description="This is an example plugin",
    )

    def generate_test_image(self) -> None:
        """Generate test image"""
        newparam = self.edit_new_image_parameters(
            title="Test image", hide_dtype=True, shape=(2048, 2048)
        )
        if newparam is not None:
            # Create a NumPy array:
            shape = (newparam.height, newparam.width)
            arr = np.random.normal(10000, 1000, shape)
            for _ in range(10):
                row = np.random.randint(0, shape[0])
                col = np.random.randint(0, shape[1])
                rr, cc = skimage.draw.disk((row, col), min(shape) // 50, shape=shape)
                arr[rr, cc] -= np.random.randint(5000, 6000)
            center = (shape[0] // 2,) * 2
            rr, cc = skimage.draw.disk(center, min(shape) // 10, shape=shape)
            arr[rr, cc] -= np.random.randint(5000, 8000)
            data = np.clip(arr, 0, 65535).astype(np.uint16)

            # Create a new image object and add it to the image panel
            obj = sigima.objects.create_image(
                newparam.title, data, units=("mm", "mm", "lsb")
            )
            self.proxy.add_object(obj)

    def preprocess(self) -> None:
        """Preprocess image"""
        panel = self.imagepanel
        param = sigima.params.BinningParam.create(sx=2, sy=2)
        panel.processor.run_feature("binning", param)
        panel.processor.run_feature(
            "moving_median", sigima.params.MovingMedianParam.create(n=5)
        )

    def detect_blobs(self) -> None:
        """Detect circular blobs"""
        panel = self.imagepanel
        param = sigima.params.BlobOpenCVParam()
        param.filter_by_color = False
        param.min_area = 600.0
        param.max_area = 6000.0
        param.filter_by_circularity = True
        param.min_circularity = 0.8
        param.max_circularity = 1.0
        panel.processor.run_feature("blob_opencv", param)

    def create_actions(self) -> None:
        """Create actions"""
        acth = self.imagepanel.acthandler
        with acth.new_menu(self.PLUGIN_INFO.name):
            acth.new_action(
                "Generate test image",
                triggered=self.generate_test_image,
                select_condition="always",
            )
            acth.new_action("Preprocess image", triggered=self.preprocess)
            acth.new_action("Detect circular blobs", triggered=self.detect_blobs)