1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
"""
"""
from __future__ import annotations
__docformat__ = 'restructuredtext'
from dataclasses import (
asdict,
dataclass,
)
from datetime import datetime
from humanize import (
naturalsize,
naturaldate,
naturaltime,
)
from logging import getLogger
from pathlib import Path
from stat import filemode
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
)
from datalad_next.commands import (
EnsureCommandParameterization,
ValidatedInterface,
Parameter,
ParameterConstraintContext,
build_doc,
eval_results,
get_status_dict,
)
from datalad_next.constraints import (
EnsureChoice,
EnsurePath,
EnsureURL,
EnsureHashAlgorithm,
EnsureListOf,
)
from datalad_next.uis import (
ansi_colors as ac,
ui_switcher as ui,
)
from datalad_next.utils import ensure_list
from datalad_next.iter_collections import (
FileSystemItemType,
GitTreeItemType,
GitWorktreeFileSystemItem,
compute_multihash_from_fp,
iter_annexworktree,
iter_dir,
iter_gittree,
iter_gitworktree,
iter_tar,
iter_zip,
)
lgr = getLogger('datalad.local.ls_file_collection')
# hand-maintain a list of collection type names that should be
# advertised and supported. it makes little sense to auto-discover
# them, because each collection type likely needs some custom glue
# code, and some iterators may not even be about *file* collections
_supported_collection_types = (
'directory',
'tarfile',
'zipfile',
'gittree',
'gitworktree',
'annexworktree',
)
@dataclass # sadly PY3.10+ only (kw_only=True)
class CollectionSpec:
"""Internal type for passing a collection specification to
``ls_file_collection``. it is created by the command validator
transparently.
"""
orig_id: Any
iter: Iterator
item2res: Callable
class LsFileCollectionParamValidator(EnsureCommandParameterization):
"""Parameter validator for the ``ls_file_collection`` command"""
_collection_types = EnsureChoice(*_supported_collection_types)
def __init__(self):
super().__init__(
param_constraints=dict(
type=self._collection_types,
collection=EnsurePath(lexists=True) | EnsureURL(),
hash=EnsureHashAlgorithm() | EnsureListOf(EnsureHashAlgorithm()),
),
joint_constraints={
ParameterConstraintContext(('type', 'collection', 'hash'),
'collection iterator'):
self.get_collection_iter,
},
)
def get_collection_iter(self, **kwargs):
type = kwargs['type']
collection = kwargs['collection']
hash = kwargs['hash']
iter_fx = None
iter_kwargs = None
if type in ('directory', 'tarfile', 'zipfile', 'gitworktree', 'annexworktree'):
if not isinstance(collection, Path):
self.raise_for(
kwargs,
"{type} collection requires a Path-type identifier",
type=type,
)
iter_kwargs = dict(
path=collection,
fp=hash is not None,
)
item2res = fsitem_to_dict
if type == 'directory':
iter_fx = iter_dir
item2res = fsitem_to_dict
elif type == 'tarfile':
iter_fx = iter_tar
item2res = fsitem_to_dict
elif type == 'zipfile':
iter_fx = iter_zip
item2res = fsitem_to_dict
elif type == 'gittree':
if hash is not None:
self.raise_for(
kwargs,
"gittree collection does not support "
"content hash reporting",
)
iter_fx = iter_gittree
item2res = gittreeitem_to_dict
iter_kwargs = dict(
path=Path('.'),
treeish=collection,
)
elif type == 'gitworktree':
iter_fx = iter_gitworktree
item2res = gitworktreeitem_to_dict
elif type == 'annexworktree':
iter_fx = iter_annexworktree
item2res = annexworktreeitem_to_dict
else:
raise RuntimeError(
'unhandled collection-type: this is a defect, please report.')
assert iter_fx is not None
return dict(
collection=CollectionSpec(
orig_id=collection,
iter=iter_fx(**iter_kwargs),
item2res=item2res),
)
def fsitem_to_dict(item, hash) -> Dict:
keymap = {'name': 'item'}
# FileSystemItemType is too fine-grained to be used as result type
# directly, map some cases!
fsitem_type_to_res_type = {
'specialfile': 'file',
}
# file-objects need special handling (cannot be pickled for asdict())
fp = item.fp
item.fp = None
# TODO likely could be faster by moving the conditional out of the
# dict-comprehension and handling them separately upfront/after
d = {
keymap.get(k, k):
# explicit str value access, until we can use `StrEnum`
v if k != 'type' else fsitem_type_to_res_type.get(v.value, v.value)
for k, v in asdict(item).items()
# strip pointless symlink target reports for anything but symlinks
if item.type is FileSystemItemType.symlink or k != 'link_target'
}
if fp:
for hname, hdigest in compute_multihash_from_fp(fp, hash).items():
d[f'hash-{hname}'] = hdigest
# we also provide the file pointer to the consumer, although
# it may have been "exhausted" by the hashing above and would
# need a seek(0) for any further processing.
# however, we do not do this here, because it is generic code,
# and we do not know whether a particular file-like even supports
# seek() under all circumstances. we simply document the fact.
d['fp'] = fp
return d
def gittreeitem_to_dict(item, hash) -> Dict:
gittreeitem_type_to_res_type = {
# permission bits are not distinguished for types
GitTreeItemType.executablefile: 'file',
# 'dataset' is the commonly used label as the command API
# level
GitTreeItemType.submodule: 'dataset',
}
gittype = gittreeitem_type_to_res_type.get(
item.gittype, item.gittype.value) if item.gittype else None
d = dict(item=item.name)
if gittype is not None:
d['type'] = gittype
if item.gitsha:
d['gitsha'] = item.gitsha
if gittype is not None:
d['gittype'] = gittype
return d
def gitworktreeitem_to_dict(item, hash) -> Dict:
gitworktreeitem_type_to_res_type = {
# permission bits are not distinguished for types
GitTreeItemType.executablefile: 'file',
# 'dataset' is the commonly used label as the command API
# level
GitTreeItemType.submodule: 'dataset',
}
gittype = gitworktreeitem_type_to_res_type.get(
item.gittype, item.gittype.value) if item.gittype else None
if isinstance(item, GitWorktreeFileSystemItem):
d = fsitem_to_dict(item, hash)
else:
d = dict(item=item.name)
if gittype is not None:
d['type'] = gittype
if item.gitsha:
d['gitsha'] = item.gitsha
if gittype is not None:
d['gittype'] = gittype
return d
def annexworktreeitem_to_dict(item, hash) -> Dict:
d = gitworktreeitem_to_dict(item, hash)
if item.annexkey:
d['type'] = 'annexed file'
d['annexkey'] = item.annexkey
d['annexsize'] = item.annexsize
d['annexobjpath'] = item.annexobjpath
return d
@build_doc
class LsFileCollection(ValidatedInterface):
"""Report information on files in a collection
This is a utility that can be used to query information on files in
different file collections. The type of information reported varies across
collection types. However, each result at minimum contains some kind of
identifier for the collection ('collection' property), and an identifier
for the respective collection item ('item' property). Each result
also contains a ``type`` property that indicates particular type of file
that is being reported on. In most cases this will be ``file``, but
other categories like ``symlink`` or ``directory`` are recognized too.
If a collection type provides file-access, this command can compute one or
more hashes (checksums) for any file in a collection.
Supported file collection types are:
``directory``
Reports on the content of a given directory (non-recursively). The
collection identifier is the path of the directory. Item identifiers
are the names of items within that directory. Standard properties like
``size``, ``mtime``, or ``link_target`` are included in the report.
[PY: When hashes are computed, an ``fp`` property with a file-like
is provided. Reading file data from it requires a ``seek(0)`` in most
cases. This file handle is only open when items are yielded directly
by this command (``return_type='generator``) and only until the next
result is yielded. PY]
``gittree``
Reports on the content of a Git "tree-ish". The collection identifier
is that tree-ish. The command must be executed inside a Git repository.
If the working directory for the command is not the repository root
(in case of a non-bare repository), the report is constrained to
items underneath the working directory. Item identifiers
are the relative paths of items within that working directory.
Reported properties include ``gitsha`` and ``gittype``; note that the
``gitsha`` is not equivalent to a SHA1 hash of a file's content, but
is the SHA-type blob identifier as reported and used by Git.
Reporting of content hashes beyond the ``gitsha`` is presently not
supported.
``gitworktree``
Reports on all tracked and untracked content of a Git repository's
work tree. The collection identifier is a path of a directory in a Git
repository (which can, but needs not be, its root). Item identifiers
are the relative paths of items within that directory. Reported
properties include ``gitsha`` and ``gittype``; note that the
``gitsha`` is not equivalent to a SHA1 hash of a file's content, but
is the SHA-type blob identifier as reported and used by Git.
[PY: When hashes are computed, an ``fp`` property with a file-like is
provided. Reading file data from it requires a ``seek(0)`` in most
cases. This file handle is only open when items are yielded directly
by this command (``return_type='generator``) and only until the next
result is yielded. PY]
``annexworktree``
Like ``gitworktree``, but amends the reported items with git-annex
information, such as ``annexkey``, ``annexsize``, and ``annnexobjpath``.
``tarfile``
Reports on members of a TAR archive. The collection identifier is the
path of the TAR file. Item identifiers are the relative paths
of archive members within the archive. Reported properties are similar
to the ``directory`` collection type.
[PY: When hashes are computed, an ``fp`` property with a file-like
is provided. Reading file data from it requires a ``seek(0)`` in most
cases. This file handle is only open when items are yielded directly
by this command (``return_type='generator``) and only until the next
result is yielded. PY]
``zipfile``
Like ``tarfile`` for reporting on ZIP archives.
"""
_validator_ = LsFileCollectionParamValidator()
# this is largely here for documentation and CLI parser building
_params_ = dict(
type=Parameter(
args=("type",),
choices=_supported_collection_types,
doc="""Name of the type of file collection to report on"""),
collection=Parameter(
args=('collection',),
metavar='ID/LOCATION',
doc="""identifier or location of the file collection to report on.
Depending on the type of collection to process, the specific
nature of this parameter can be different. A common identifier
for a file collection is a path (to a directory, to an archive),
but might also be a URL. See the documentation for details on
supported collection types."""),
hash=Parameter(
args=("--hash",),
action='append',
metavar='ALGORITHM',
doc="""One or more names of algorithms to be used for reporting
file hashes. They must be supported by the Python 'hashlib' module,
e.g. 'md5' or 'sha256'. Reporting file hashes typically
implies retrieving/reading file content. This processing
may also enable reporting of additional properties that
may otherwise not be readily available.
[CMD: This option can be given more than once CMD]
"""),
)
_examples_: List = [
{'text': 'Report on the content of a directory',
'code_cmd': 'datalad -f json ls-file-collection directory /tmp',
'code_py': 'records = ls_file_collection("directory", "/tmp")'},
{'text': 'Report on the content of a TAR archive with '
'MD5 and SHA1 file hashes',
'code_cmd': 'datalad -f json ls-file-collection'
' --hash md5 --hash sha1 tarfile myarchive.tar.gz',
'code_py': 'records = ls_file_collection("tarfile",'
' "myarchive.tar.gz", hash=["md5", "sha1"])'},
{'text': "Register URLs for files in a directory that is"
" also reachable via HTTP. This uses ``ls-file-collection``"
" for listing files and computing MD5 hashes,"
" then using ``jq`` to filter and transform the output"
" (just file records, and in a JSON array),"
" and passes them to ``addurls``, which generates"
" annex keys/files and assigns URLs."
" When the command finishes, the dataset contains no"
" data, but can retrieve the files after confirming"
" their availability (i.e., via `git annex fsck`)",
'code_cmd':
'datalad -f json ls-file-collection directory wwwdir --hash md5 \\\n'
' | jq \'. | select(.type == "file")\' \\\n'
' | jq --slurp . \\\n'
" | datalad addurls --key 'et:MD5-s{size}--{hash-md5}' - 'https://example.com/{item}'"},
{'text': 'List annex keys of all files in the working tree of a dataset',
'code_py': "[r['annexkey'] \\\n"
"for r in ls_file_collection('annexworktree', '.') \\\n"
"if 'annexkey' in r]",
'code_cmd': "datalad -f json ls-file-collection annexworktree . \\\n"
"| jq '. | select(.annexkey) | .annexkey'",
},
]
@staticmethod
@eval_results
def __call__(
type: str,
collection: CollectionSpec,
*,
hash: str | List[str] | None = None,
):
for item in collection.iter:
res = collection.item2res(
item,
hash=ensure_list(hash),
)
res.update(get_status_dict(
action='ls_file_collection',
status='ok',
collection=collection.orig_id,
))
yield res
@staticmethod
def custom_result_renderer(res, **kwargs):
# given the to-be-expected diversity, this renderer only
# outputs identifiers and type info. In almost any real use case
# either no rendering or JSON rendering will be needed
type = res.get('type', None)
# if there is no mode, produces '?---------'
# .. or 0 is needed, because some iterators report an explicit
# `None` mode
mode = filemode(res.get('mode', 0) or 0)
size = None
if type in ('file', 'hardlink'):
size = res.get('size', None)
size = '-' if size is None else naturalsize(size, gnu=True)
mtime = res.get('mtime', '')
if mtime:
dt = datetime.fromtimestamp(mtime)
hts = naturaldate(dt)
if hts == 'today':
hts = naturaltime(dt)
hts = hts.replace(
'minutes ago', 'min ago').replace(
'seconds ago', 'sec ago')
# stick with numerical IDs (although less accessible), we cannot
# know in general whether this particular system can map numerical
# IDs to valid target names (think stored name in tarballs)
owner_info = f'{res["uid"]}:{res["gid"]}' if res.get('uid') else ''
ui.message('{mode} {size: >6} {owner: >9} {hts: >11} {item} ({type})'.format(
mode=mode,
size=size,
owner=owner_info,
hts=hts if mtime else '',
item=ac.color_word(
res.get('item', '<no-item-identifier>'),
ac.BOLD),
type=ac.color_word(
res.get('type', '<no-type-information>'),
ac.MAGENTA),
))
|