1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
/*******************************************************************************************
*
* Synthetic DNA shotgun dataset simulator
* From a supplied reference genome in the form of a Dazzler .dam, sample reads of
* mean length -m from a log-normal length distribution with standard deviation -s,
* but ignore reads of length less than -x. Collect enough reads to cover the genome
* -c times. Introduce -e fraction errors into each read where the ratio of insertions,
* deletions, and substitutions are set by defined constants INS_RATE and DEL_RATE
* within generate.c. The fraction -f controls the rate at which reads are picked from
* the forward and reverse strands which defaults to 50%. If -C is set then assume the
* scaffolds are circular.
*
* The -r parameter seeds the random number generator for the generation of the genome
* so that one can reproducbile produce the same underlying genome to sample from. If
* missing, then the job id of the invocation seeds the generator. The output is sent
* to the standard output (i.e. it is a pipe). The output is in fasta format (i.e. it is
* a UNIX pipe). The output is in Pacbio .fasta format suitable as input to fasta2DB.
*
* The genome is considered a sequence of *scaffolds* (these are reconstituted from the
* Dazzler's internal encoding of a .dam), where the gaps are filled with a random
* sequence that follows the base distribution of the contigs of the genome. The program
* then samples these filled in scaffolds for reads. If the -C optioin is set then the
* program assumes each scaffold is a circular sequence.
*
* The -M option requests that the scaffold and coordinates from which each read has
* been sampled are written to the indicated file, one line per read, ASCII encoded.
* This "map" file essentially tells one where every read belongs in an assembly and
* is very useful for debugging and testing purposes. If a read pair is say b,e then
* if b < e the read was sampled from [b,e] in the forward direction, and from [e,b]
* in the reverse direction otherwise.
*
* Author: Gene Myers
* Date : July 2013
* Mod : April 2016 (generates reads w.r.t. a reference genome)
*
********************************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include "DB.h"
static char *Usage[] = { "<genome:dam> [-CU] [-m<int(10000)>] [-s<int(2000)>] [-e<double(.15)>]",
" [-c<double(50.)>] [-f<double(.5)>] [-x<int(4000)>]",
" [-w<int(80)>] [-r<int>] [-M<file>]",
};
static int CIRCULAR; // -C option
static int UPPER; // -U option
static int RMEAN; // -m option
static int RSDEV; // -s option
static double ERROR; // -e option
static double COVERAGE; // -c option
static double FLIP_RATE; // -f option
static int RSHORT; // -x option
static int WIDTH; // -w option
static int HASR; // -r option is set?
static int SEED; // -r option
static FILE *MAP; // -M option
#define INS_RATE .73333 // insert rate
#define DEL_RATE .20000 // deletion rate
#define IDL_RATE .93333 // insert + delete rate
// Complement (in the DNA sense) string *s*.
static void complement(int elen, char *s)
{ char *t;
int c;
t = s + (elen-1);
while (s <= t)
{ c = *s;
*s = (char) (3-*t);
*t = (char) (3-c);
s += 1;
t -= 1;
}
}
// A unit normal distribution random number generator
#define UNORM_LEN 60000
#define UNORM_MAX 6.0
static double unorm_table[UNORM_LEN+1]; // Upper half of cdf of N(0,1)
static double unorm_scale;
static void init_unorm()
{ double del, sum, x;
int i;
unorm_scale = del = UNORM_MAX / UNORM_LEN;
sum = 0; // Integrate pdf, x >= 0 half only.
for (i = 0; i < UNORM_LEN; i++)
{ x = i * del;
unorm_table[i] = sum;
sum += exp(-.5*x*x) * del;
}
unorm_table[UNORM_LEN] = sum;
/* Normalize cdf */
sum *= 2.;
for (i = 0; i < UNORM_LEN; i++)
unorm_table[i] /= sum;
unorm_table[UNORM_LEN] = 1.;
#ifdef DEBUG
printf("Truncated tail is < %g\n",
exp(-.5*UNORM_MAX*UNORM_MAX)/(sum*(1.-exp(-UNORM_MAX))) );
printf("Diff between last two entries is %g\n",.5-unorm_table[UNORM_LEN-1]);
printf("\n CDF:\n");
for (i = 0; i <= UNORM_LEN; i += 100)
printf("%6.2f: %10.9f\n",i*del,unorm_table[i]);
#endif
}
static int bin_search(int len, double *tab, double y)
{ int l, m, r;
// Searches tab[0..len] for min { r : y < tab[r] }.
// Assumes y < 1, tab[0] = 0 and tab[len] = 1.
// So returned index is in [1,len].
l = 0;
r = len;
while (l < r)
{ m = (l+r) >> 1;
if (y < tab[m])
r = m;
else
l = m+1;
}
return (r);
}
static double sample_unorm(double x)
{ double y;
int f;
if (x >= .5) // Map [0,1) random var to upper-half of cdf */
y = x-.5;
else
y = .5-x;
f = bin_search(UNORM_LEN,unorm_table,y); // Bin. search upper-half cdf
#ifdef DEBUG
printf("Normal search %g -> %g -> %d",x,y,f);
#endif
// Linear interpolate between table points
y = (f - (unorm_table[f]-y) / (unorm_table[f] - unorm_table[f-1]) ) * unorm_scale;
if (x < .5) y = -y; // Map upper-half var back to full range
#ifdef DEBUG
printf(" -> %g\n",y);
#endif
return (y);
}
// Open and trim the reference genome *name*. Determine the number of scaffolds and sizes
// of each scaffold (in nscaffs and the .coff field of the read records) in the dam. Then
// create a sequence for each scaffold (index in the .boff field of the read records), that
// consists of its contigs with a random sequence filling the gaps (generated according to
// the bp frequency in db.freq[4]).
HITS_DB *load_and_fill(char *name, int *pscaffs)
{ static HITS_DB db;
HITS_READ *reads;
FILE *bases;
char *seq;
int nreads, nscaffs;
int i, c;
int64 ctot;
int64 o, u;
double PRA, PRC, PRG;
if (Open_DB(name,&db) != 1)
{ fprintf(stderr,"%s: %s is not a Dazzler .dam\n",Prog_Name,name);
exit (1);
}
Trim_DB(&db);
PRA = db.freq[0];
PRC = PRA + db.freq[1];
PRG = PRC + db.freq[2];
nreads = db.nreads;
reads = db.reads;
nscaffs = 0;
for (i = 0; i < nreads; i++)
if (reads[i].origin == 0)
nscaffs += 1;
for (i = 0; i < nscaffs; i++)
reads[i].coff = 0;
c = -1;
for (i = 0; i < nreads; i++)
{ if (reads[i].origin == 0)
c += 1;
reads[c].coff = reads[i].fpulse+reads[i].rlen;
}
ctot = 0;
for (i = 0; i < nscaffs; i++)
ctot += reads[i].coff+1;
bases = Fopen(Catenate(db.path,"","",".bps"),"r");
if (bases == NULL)
exit (1);
seq = (char *) Malloc(ctot+4,"Allocating space for genome");
if (seq == NULL)
exit (1);
*seq++ = 4;
c = -1;
o = u = 0;
for (i = 0; i < nreads; i++)
{ int len, clen;
int64 off;
if (reads[i].origin == 0)
{ if (c >= 0)
o += reads[c].coff + 1;
c += 1;
u = o;
}
else
{ int64 p;
double x;
p = u + reads[i-1].rlen;
u = o + reads[i].fpulse;
while (p < u)
{ x = drand48();
if (x < PRC)
if (x < PRA)
seq[p++] = 0;
else
seq[p++] = 1;
else
if (x < PRG)
seq[p++] = 2;
else
seq[p++] = 3;
}
}
len = reads[i].rlen;
off = reads[i].boff;
if (ftello(bases) != off)
fseeko(bases,off,SEEK_SET);
clen = COMPRESSED_LEN(len);
if (clen > 0)
{ if (fread(seq+u,clen,1,bases) != 1)
{ EPRINTF(EPLACE,"%s: Read of .bps file failed\n",Prog_Name);
exit (1);
}
}
Uncompress_Read(len,seq+u);
if (reads[i].origin == 0)
reads[c].boff = o;
}
reads[nscaffs].boff = ctot;
db.bases = (void *) seq;
db.loaded = 1;
*pscaffs = nscaffs;
return (&db);
}
// Generate reads (a) whose lengths are exponentially distributed with mean *mean* and
// standard deviation *stdev*, and (b) that are never shorter than *shortest*. Each
// read is a randomly sampled interval of one of the filled scaffolds of *source*
// (each interval is equally likely) that has insertion, deletion, and/or substitution
// errors introduced into it and which is oriented in either the forward or reverse
// strand direction with probability FLIP_RATE. The number of errors introduced is the
// length of the string times *erate*, and the probability of an insertion, delection,
// or substitution is controlled by the defined constants INS_RATE and DEL_RATE.
// If the -C option is set then each scaffold is assumed to be circular and reads can
// be sampled that span the origin. Reads are generated until the sum of the lengths of
// the reads is greater thant coverage times the sum of the lengths of the scaffolds in
// the reference (i.e. including filled scaffold gaps in the genome size). The reads are
// output as fasta entries with the PacBio-specific header format that contains the
// sampling interval, read length, and a read id.
static void shotgun(HITS_DB *source, int nscaffs)
{ HITS_READ *reads;
int gleng;
int maxlen, nreads, qv;
int64 totlen, totbp;
char *rbuffer, *bases;
double nmean, nsdev;
double *weights;
int scf;
nsdev = (1.*RSDEV)/RMEAN;
nsdev = log(1.+nsdev*nsdev);
nmean = log(1.*RMEAN) - .5*nsdev;
nsdev = sqrt(nsdev);
bases = source->bases;
reads = source->reads;
gleng = reads[nscaffs].boff - nscaffs;
if (gleng <= RSHORT)
{ fprintf(stderr,"Genome length is less than shortest read length !\n");
exit (1);
}
init_unorm();
weights = (double *) Malloc(sizeof(double)*(nscaffs+1),"Allocating contig weights");
if (weights == NULL)
exit (1);
{ double r;
r = 0.;
for (scf = 0; scf < nscaffs; scf++)
{ weights[scf] = r/gleng;
r += reads[scf].coff;
}
weights[nscaffs] = 1.;
}
qv = (int) (1000 * (1.-ERROR));
rbuffer = NULL;
maxlen = 0;
totlen = 0;
totbp = COVERAGE*gleng;
nreads = 0;
while (totlen < totbp)
{ int len, sdl, ins, del, elen, slen, rbeg, rend;
int j;
double uni;
char *s, *t;
scf = bin_search(nscaffs,weights,drand48()) - 1; // Pick a scaffold with probabilitye
// proportional to its length
uni = drand48();
len = (int) exp(nmean + nsdev*sample_unorm(uni)); // Pick a read length
if (len <= RSHORT)
continue;
// New sampler:
slen = reads[scf].coff;
rbeg = (int) (drand48()*slen); // Pick a spot for read start
if (CIRCULAR)
rend = (rbeg + len) % slen; // Wrap if circular
else
{ if (drand48() < .5) // Pick direction and trim if necessary
{ rend = rbeg + len; // if not circular
if (rend > slen)
{ rend = slen;
len = rend - rbeg;
}
}
else
{ rend = rbeg;
rbeg = rbeg - len;
if (rbeg < 0)
{ rbeg = 0;
len = rend;
}
}
if (len <= RSHORT)
continue;
}
// Old sampler:
//
// rbeg = (int) (drand48()*((reads[scf].coff-len)+.9999999));
// rend = rbeg + len;
sdl = (int) (len*ERROR); // Determine number of inserts *ins*, deletions *del,
ins = del = 0; // and substitions+deletions *sdl*.
for (j = 0; j < sdl; j++)
{ double x = drand48();
if (x < INS_RATE)
ins += 1;
else if (x < IDL_RATE)
del += 1;
}
sdl -= ins;
elen = len + (ins-del);
if (elen > maxlen)
{ maxlen = ((int) (1.2*elen)) + 1000;
rbuffer = (char *) Realloc(rbuffer,maxlen+3,"Allocating read buffer");
if (rbuffer == NULL)
exit (1);
}
t = rbuffer;
s = bases + (reads[scf].boff + rbeg);
// Generate the string with errors. NB that inserts occur randomly between source
// characters, while deletions and substitutions occur on source characters.
while ((len+1) * drand48() < ins)
{ *t++ = (char) (4.*drand48());
ins -= 1;
}
for ( ; len > 0; len--)
{ if (len * drand48() >= sdl)
*t++ = *s;
else if (sdl * drand48() >= del)
{ double x = 3.*drand48();
if (x >= *s)
x += 1.;
*t++ = (char) x;
sdl -= 1;
}
else
{ del -= 1;
sdl -= 1;
}
s += 1;
if (*s == 4)
s = bases + reads[scf].boff;
while (len * drand48() < ins)
{ *t++ = (char) (4.*drand48());
ins -= 1;
}
}
*t = 4;
if (drand48() >= FLIP_RATE) // Complement the string with probability FLIP_RATE.
{ complement(elen,rbuffer);
j = rend;
rend = rbeg;
rbeg = j;
}
printf(">Sim/%d/%d_%d RQ=0.%d\n",nreads+1,0,elen,qv);
if (UPPER)
Upper_Read(rbuffer);
else
Lower_Read(rbuffer);
for (j = 0; j+WIDTH < elen; j += WIDTH)
printf("%.*s\n",WIDTH,rbuffer+j);
if (j < elen)
printf("%s\n",rbuffer+j);
if (MAP != NULL)
fprintf(MAP," %6d %9d %9d\n",scf,rbeg,rend);
totlen += elen;
nreads += 1;
}
}
int main(int argc, char *argv[])
{ HITS_DB *source;
int nscaffs;
// Process command line
{ int i, j, k;
int flags[128];
char *eptr;
ARG_INIT("simulator");
RMEAN = 10000;
RSDEV = 2000;
ERROR = .15;
COVERAGE = 50.;
FLIP_RATE = .5;
RSHORT = 4000;
HASR = 0;
MAP = NULL;
WIDTH = 80;
j = 1;
for (i = 1; i < argc; i++)
if (argv[i][0] == '-')
switch (argv[i][1])
{ default:
ARG_FLAGS("CU");
break;
case 'c':
ARG_REAL(COVERAGE)
if (COVERAGE < 0.)
{ fprintf(stderr,"%s: Coverage must be non-negative (%g)\n",Prog_Name,COVERAGE);
exit (1);
}
break;
case 'e':
ARG_REAL(ERROR)
if (ERROR < 0. || ERROR > .5)
{ fprintf(stderr,"%s: Error rate must be in [0,.5] (%g)\n",Prog_Name,ERROR);
exit (1);
}
break;
case 'f':
ARG_REAL(FLIP_RATE)
if (FLIP_RATE < 0. || FLIP_RATE > 1.)
{ fprintf(stderr,"%s: Error rate must be in [0,1] (%g)\n",Prog_Name,FLIP_RATE);
exit (1);
}
break;
case 'm':
ARG_POSITIVE(RMEAN,"Mean read length")
break;
case 'r':
SEED = strtol(argv[i]+2,&eptr,10);
HASR = 1;
if (*eptr != '\0' || argv[i][2] == '\0')
{ fprintf(stderr,"%s: -r argument is not an integer\n",Prog_Name);
exit (1);
}
break;
case 's':
ARG_NON_NEGATIVE(RSDEV,"Read length standard deviation")
break;
case 'x':
ARG_NON_NEGATIVE(RSHORT,"Read length minimum")
break;
case 'w':
ARG_NON_NEGATIVE(WIDTH,"Line width")
break;
case 'M':
MAP = Fopen(argv[i]+2,"w");
if (MAP == NULL)
exit (1);
break;
}
else
argv[j++] = argv[i];
argc = j;
CIRCULAR = flags['C'];
UPPER = flags['U'];
if (argc != 2)
{ fprintf(stderr,"Usage: %s %s\n",Prog_Name,Usage[0]);
fprintf(stderr," %*s %s\n",(int) strlen(Prog_Name),"",Usage[1]);
fprintf(stderr," %*s %s\n",(int) strlen(Prog_Name),"",Usage[2]);
exit (1);
}
}
if (HASR)
srand48(SEED);
else
srand48(getpid());
// Read and generate
source = load_and_fill(argv[1],&nscaffs);
shotgun(source,nscaffs);
if (MAP != NULL)
fclose(MAP);
exit (0);
}
|