1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// File TxnGuide.cpp
#include <iostream>
#include <db_cxx.h>
#ifdef _WIN32
#include <windows.h>
extern "C" {
extern int getopt(int, char * const *, const char *);
extern char *optarg;
}
#define PATHD '\\'
typedef HANDLE thread_t;
#define thread_create(thrp, attr, func, arg) \
(((*(thrp) = CreateThread(NULL, 0, \
(LPTHREAD_START_ROUTINE)(func), (arg), 0, NULL)) == NULL) ? -1 : 0)
#define thread_join(thr, statusp) \
((WaitForSingleObject((thr), INFINITE) == WAIT_OBJECT_0) && \
GetExitCodeThread((thr), (LPDWORD)(statusp)) ? 0 : -1)
typedef HANDLE mutex_t;
#define mutex_init(m, attr) \
(((*(m) = CreateMutex(NULL, FALSE, NULL)) != NULL) ? 0 : -1)
#define mutex_lock(m) \
((WaitForSingleObject(*(m), INFINITE) == WAIT_OBJECT_0) ? 0 : -1)
#define mutex_unlock(m) (ReleaseMutex(*(m)) ? 0 : -1)
#else
#include <pthread.h>
#include <unistd.h>
#define PATHD '/'
typedef pthread_t thread_t;
#define thread_create(thrp, attr, func, arg) \
pthread_create((thrp), (attr), (func), (arg))
#define thread_join(thr, statusp) pthread_join((thr), (statusp))
typedef pthread_mutex_t mutex_t;
#define mutex_init(m, attr) pthread_mutex_init((m), (attr))
#define mutex_lock(m) pthread_mutex_lock(m)
#define mutex_unlock(m) pthread_mutex_unlock(m)
#endif
// Run 5 writers threads at a time.
#define NUMWRITERS 5
// Printing of thread_t is implementation-specific, so we
// create our own thread IDs for reporting purposes.
int global_thread_num;
mutex_t thread_num_lock;
// Forward declarations
int countRecords(Db *, DbTxn *);
int openDb(Db **, const char *, const char *, DbEnv *, u_int32_t);
int usage(void);
void *writerThread(void *);
// Usage function
int
usage()
{
std::cerr << " [-h <database_home_directory>]" << std::endl;
return (EXIT_FAILURE);
}
int
main(int argc, char *argv[])
{
// Initialize our handles
Db *dbp = NULL;
DbEnv *envp = NULL;
thread_t writerThreads[NUMWRITERS];
int ch, i;
u_int32_t envFlags;
char *dbHomeDir;
extern char *optarg;
// Application name
const char *progName = "TxnGuide";
// Database file name
const char *fileName = "mydb.db";
// Parse the command line arguments
#ifdef _WIN32
dbHomeDir = ".\\";
#else
dbHomeDir = "./";
#endif
while ((ch = getopt(argc, argv, "h:")) != EOF)
switch (ch) {
case 'h':
dbHomeDir = optarg;
break;
case '?':
default:
return (usage());
}
// Env open flags
envFlags =
DB_CREATE | // Create the environment if it does not exist
DB_RECOVER | // Run normal recovery.
DB_INIT_LOCK | // Initialize the locking subsystem
DB_INIT_LOG | // Initialize the logging subsystem
DB_INIT_TXN | // Initialize the transactional subsystem. This
// also turns on logging.
DB_INIT_MPOOL | // Initialize the memory pool (in-memory cache)
DB_THREAD; // Cause the environment to be free-threaded
try {
// Create and open the environment
envp = new DbEnv(0);
// Indicate that we want db to internally perform deadlock
// detection. Also indicate that the transaction with
// the fewest number of write locks will receive the
// deadlock notification in the event of a deadlock.
envp->set_lk_detect(DB_LOCK_MINWRITE);
envp->open(dbHomeDir, envFlags, 0);
// If we had utility threads (for running checkpoints or
// deadlock detection, for example) we would spawn those
// here. However, for a simple example such as this,
// that is not required.
// Open the database
openDb(&dbp, progName, fileName,
envp, DB_DUPSORT);
// Initialize a mutex. Used to help provide thread ids.
(void)mutex_init(&thread_num_lock, NULL);
// Start the writer threads.
for (i = 0; i < NUMWRITERS; i++)
(void)thread_create(
&writerThreads[i], NULL,
writerThread, (void *)dbp);
// Join the writers
for (i = 0; i < NUMWRITERS; i++)
(void)thread_join(writerThreads[i], NULL);
} catch(DbException &e) {
std::cerr << "Error opening database environment: "
<< dbHomeDir << std::endl;
std::cerr << e.what() << std::endl;
return (EXIT_FAILURE);
}
try {
// Close our database handle if it was opened.
if (dbp != NULL)
dbp->close(0);
// Close our environment if it was opened.
if (envp != NULL)
envp->close(0);
} catch(DbException &e) {
std::cerr << "Error closing database and environment."
<< std::endl;
std::cerr << e.what() << std::endl;
return (EXIT_FAILURE);
}
// Final status message and return.
std::cout << "I'm all done." << std::endl;
return (EXIT_SUCCESS);
}
// A function that performs a series of writes to a
// Berkeley DB database. The information written
// to the database is largely nonsensical, but the
// mechanism of transactional commit/abort and
// deadlock detection is illustrated here.
void *
writerThread(void *args)
{
int j, thread_num;
int max_retries = 20; // Max retry on a deadlock
char *key_strings[] = {"key 1", "key 2", "key 3", "key 4",
"key 5", "key 6", "key 7", "key 8",
"key 9", "key 10"};
Db *dbp = (Db *)args;
DbEnv *envp = dbp->get_env();
// Get the thread number
(void)mutex_lock(&thread_num_lock);
global_thread_num++;
thread_num = global_thread_num;
(void)mutex_unlock(&thread_num_lock);
// Initialize the random number generator
srand(thread_num);
// Perform 50 transactions
for (int i=0; i<50; i++) {
DbTxn *txn;
bool retry = true;
int retry_count = 0;
// while loop is used for deadlock retries
while (retry) {
// try block used for deadlock detection and
// general db exception handling
try {
// Begin our transaction. We group multiple writes in
// this thread under a single transaction so as to
// (1) show that you can atomically perform multiple
// writes at a time, and (2) to increase the chances
// of a deadlock occurring so that we can observe our
// deadlock detection at work.
// Normally we would want to avoid the potential for
// deadlocks, so for this workload the correct thing
// would be to perform our puts with autocommit. But
// that would excessively simplify our example, so we
// do the "wrong" thing here instead.
txn = NULL;
envp->txn_begin(NULL, &txn, 0);
// Perform the database write for this transaction.
for (j = 0; j < 10; j++) {
Dbt key, value;
key.set_data(key_strings[j]);
key.set_size((u_int32_t)strlen(key_strings[j]) + 1);
int payload = rand() + i;
value.set_data(&payload);
value.set_size(sizeof(int));
// Perform the database put
dbp->put(txn, &key, &value, 0);
}
// countRecords runs a cursor over the entire database.
// We do this to illustrate issues of deadlocking
std::cout << thread_num << " : Found "
<< countRecords(dbp, NULL)
<< " records in the database." << std::endl;
std::cout << thread_num << " : committing txn : " << i
<< std::endl;
// commit
try {
txn->commit(0);
retry = false;
txn = NULL;
} catch (DbException &e) {
std::cout << "Error on txn commit: "
<< e.what() << std::endl;
}
} catch (DbDeadlockException &) {
// First thing that we MUST do is abort the transaction.
if (txn != NULL)
(void)txn->abort();
// Now we decide if we want to retry the operation.
// If we have retried less than max_retries,
// increment the retry count and goto retry.
if (retry_count < max_retries) {
std::cout << "############### Writer " << thread_num
<< ": Got DB_LOCK_DEADLOCK.\n"
<< "Retrying write operation."
<< std::endl;
retry_count++;
retry = true;
} else {
// Otherwise, just give up.
std::cerr << "Writer " << thread_num
<< ": Got DeadLockException and out of "
<< "retries. Giving up." << std::endl;
retry = false;
}
} catch (DbException &e) {
std::cerr << "db put failed" << std::endl;
std::cerr << e.what() << std::endl;
if (txn != NULL)
txn->abort();
retry = false;
} catch (std::exception &ee) {
std::cerr << "Unknown exception: " << ee.what() << std::endl;
return (0);
}
}
}
return (0);
}
// This simply counts the number of records contained in the
// database and returns the result. You can use this method
// in three ways:
//
// First call it with an active txn handle.
// Secondly, configure the cursor for uncommitted reads
//
// Third, call countRecords AFTER the writer has committed
// its transaction.
//
// If you do none of these things, the writer thread will
// self-deadlock.
//
// Note that this method exists only for illustrative purposes.
// A more straight-forward way to count the number of records in
// a database is to use the Database.getStats() method.
int
countRecords(Db *dbp, DbTxn *txn)
{
Dbc *cursorp = NULL;
int count = 0;
try {
// Get the cursor
dbp->cursor(txn, &cursorp, DB_READ_UNCOMMITTED);
Dbt key, value;
while (cursorp->get(&key, &value, DB_NEXT) == 0) {
count++;
}
} catch (DbDeadlockException &de) {
std::cerr << "countRecords: got deadlock" << std::endl;
cursorp->close();
throw de;
} catch (DbException &e) {
std::cerr << "countRecords error:" << std::endl;
std::cerr << e.what() << std::endl;
}
if (cursorp != NULL) {
try {
cursorp->close();
} catch (DbException &e) {
std::cerr << "countRecords: cursor close failed:" << std::endl;
std::cerr << e.what() << std::endl;
}
}
return (count);
}
// Open a Berkeley DB database
int
openDb(Db **dbpp, const char *progname, const char *fileName,
DbEnv *envp, u_int32_t extraFlags)
{
int ret;
u_int32_t openFlags;
try {
Db *dbp = new Db(envp, 0);
// Point to the new'd Db
*dbpp = dbp;
if (extraFlags != 0)
ret = dbp->set_flags(extraFlags);
// Now open the database */
openFlags = DB_CREATE | // Allow database creation
DB_READ_UNCOMMITTED | // Allow uncommitted reads
DB_AUTO_COMMIT; // Allow autocommit
dbp->open(NULL, // Txn pointer
fileName, // File name
NULL, // Logical db name
DB_BTREE, // Database type (using btree)
openFlags, // Open flags
0); // File mode. Using defaults
} catch (DbException &e) {
std::cerr << progname << ": openDb: db open failed:" << std::endl;
std::cerr << e.what() << std::endl;
return (EXIT_FAILURE);
}
return (EXIT_SUCCESS);
}
|