1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Btree access method specific configuration</title>
<link rel="stylesheet" href="gettingStarted.css" type="text/css" />
<meta name="generator" content="DocBook XSL Stylesheets V1.73.2" />
<link rel="start" href="index.html" title="Berkeley DB Programmer's Reference Guide" />
<link rel="up" href="am_conf.html" title="Chapter 2. Access Method Configuration" />
<link rel="prev" href="general_am_conf.html" title="General access method configuration" />
<link rel="next" href="hash_conf.html" title="Hash access method specific configuration" />
</head>
<body>
<div xmlns="" class="navheader">
<div class="libver">
<p>Library Version 11.2.5.3</p>
</div>
<table width="100%" summary="Navigation header">
<tr>
<th colspan="3" align="center">Btree access method specific configuration</th>
</tr>
<tr>
<td width="20%" align="left"><a accesskey="p" href="general_am_conf.html">Prev</a> </td>
<th width="60%" align="center">Chapter 2.
Access Method Configuration
</th>
<td width="20%" align="right"> <a accesskey="n" href="hash_conf.html">Next</a></td>
</tr>
</table>
<hr />
</div>
<div class="sect1" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h2 class="title" style="clear: both"><a id="bt_conf"></a>Btree access method specific configuration</h2>
</div>
</div>
</div>
<div class="toc">
<dl>
<dt>
<span class="sect2">
<a href="bt_conf.html#am_conf_bt_compare">Btree comparison</a>
</span>
</dt>
<dt>
<span class="sect2">
<a href="bt_conf.html#am_conf_bt_prefix">Btree prefix comparison</a>
</span>
</dt>
<dt>
<span class="sect2">
<a href="bt_conf.html#am_conf_bt_minkey">Minimum keys per page</a>
</span>
</dt>
<dt>
<span class="sect2">
<a href="bt_conf.html#am_conf_bt_recnum">Retrieving Btree records by logical record number</a>
</span>
</dt>
<dt>
<span class="sect2">
<a href="bt_conf.html#am_conf_bt_compress">Compression</a>
</span>
</dt>
</dl>
</div>
<p>
There are a series of configuration tasks which you can perform when
using the Btree access method. They are described in the following sections.
</p>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="am_conf_bt_compare"></a>Btree comparison</h3>
</div>
</div>
</div>
<p>The Btree data structure is a sorted, balanced tree structure storing
associated key/data pairs. By default, the sort order is lexicographical,
with shorter keys collating before longer keys. The user can specify the
sort order for the Btree by using the <a href="../api_reference/C/dbset_bt_compare.html" class="olink">DB->set_bt_compare()</a> method.</p>
<p>Sort routines are passed pointers to keys as arguments. The keys are
represented as <a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures. The routine must return an integer
less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second argument. The only fields that the routines may examine in the
<a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures are <span class="bold"><strong>data</strong></span> and <span class="bold"><strong>size</strong></span> fields.</p>
<p>An example routine that might be used to sort integer keys in the database
is as follows:</p>
<a id="prog_am2"></a>
<pre class="programlisting">
int
compare_int(DB *dbp, const DBT *a, const DBT *b)
{
int ai, bi;
/*
* Returns:
* < 0 if a < b
* = 0 if a = b
* > 0 if a > b
*/
memcpy(&ai, a->data, sizeof(int));
memcpy(&bi, b->data, sizeof(int));
return (ai - bi);
}
</pre>
<p>Note that the data must first be copied into memory that is appropriately
aligned, as Berkeley DB does not guarantee any kind of alignment of the
underlying data, including for comparison routines. When writing
comparison routines, remember that databases created on machines of
different architectures may have different integer byte orders, for which
your code may need to compensate.</p>
<p>An example routine that might be used to sort keys based on the first
five bytes of the key (ignoring any subsequent bytes) is as follows:</p>
<a id="prog_am3"></a>
<pre class="programlisting">
int
compare_dbt(DB *dbp, const DBT *a, const DBT *b)
{
int len;
u_char *p1, *p2;
/*
* Returns:
* < 0 if a < b
* = 0 if a = b
* > 0 if a > b
*/
for (p1 = a->data, p2 = b->data, len = 5; len--; ++p1, ++p2)
if (*p1 != *p2)
return ((long)*p1 - (long)*p2);
return (0);
}
</pre>
<p>All comparison functions must cause the keys in the database to be
well-ordered. The most important implication of being well-ordered is
that the key relations must be transitive, that is, if key A is less
than key B, and key B is less than key C, then the comparison routine
must also return that key A is less than key C.</p>
<p>It is reasonable for a comparison function to not examine an entire key
in some applications, which implies partial keys may be specified to the
Berkeley DB interfaces. When partial keys are specified to Berkeley DB, interfaces
which retrieve data items based on a user-specified key (for example,
<a href="../api_reference/C/dbget.html" class="olink">DB->get()</a> and <a href="../api_reference/C/dbcget.html" class="olink">DBC->get()</a> with the <a href="../api_reference/C/dbcget.html#dbcget_DB_SET" class="olink">DB_SET</a> flag), will
modify the user-specified key by returning the actual key stored in the
database.</p>
</div>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="am_conf_bt_prefix"></a>Btree prefix comparison</h3>
</div>
</div>
</div>
<p>The Berkeley DB Btree implementation maximizes the number of keys that can be
stored on an internal page by storing only as many bytes of each key as
are necessary to distinguish it from adjacent keys. The prefix
comparison routine is what determines this minimum number of bytes (that
is, the length of the unique prefix), that must be stored. A prefix
comparison function for the Btree can be specified by calling
<a href="../api_reference/C/dbset_bt_prefix.html" class="olink">DB->set_bt_prefix()</a>.</p>
<p>The prefix comparison routine must be compatible with the overall
comparison function of the Btree, since what distinguishes any two keys
depends entirely on the function used to compare them. This means that
if a prefix comparison routine is specified by the application, a
compatible overall comparison routine must also have been specified.</p>
<p>Prefix comparison routines are passed pointers to keys as arguments.
The keys are represented as <a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures. The only fields
the routines may examine in the <a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures are <span class="bold"><strong>data</strong></span>
and <span class="bold"><strong>size</strong></span> fields.</p>
<p>The prefix comparison function must return the number of bytes necessary
to distinguish the two keys. If the keys are identical (equal and equal
in length), the length should be returned. If the keys are equal up to
the smaller of the two lengths, then the length of the smaller key plus
1 should be returned.</p>
<p>An example prefix comparison routine follows:</p>
<a id="prog_am4"></a>
<pre class="programlisting">
size_t
compare_prefix(DB *dbp, const DBT *a, const DBT *b)
{
size_t cnt, len;
u_int8_t *p1, *p2;
cnt = 1;
len = a->size > b->size ? b->size : a->size;
for (p1 =
a->data, p2 = b->data; len--; ++p1, ++p2, ++cnt)
if (*p1 != *p2)
return (cnt);
/*
* They match up to the smaller of the two sizes.
* Collate the longer after the shorter.
*/
if (a->size < b->size)
return (a->size + 1);
if (b->size < a->size)
return (b->size + 1);
return (b->size);
}
</pre>
<p>The usefulness of this functionality is data-dependent, but in some data
sets can produce significantly reduced tree sizes and faster search times.</p>
</div>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="am_conf_bt_minkey"></a>Minimum keys per page</h3>
</div>
</div>
</div>
<p>The number of keys stored on each page affects the size of a Btree and
how it is maintained. Therefore, it also affects the retrieval and search
performance of the tree. For each Btree, Berkeley DB computes a maximum key
and data size. This size is a function of the page size and the fact that
at least two key/data pairs must fit on any Btree page. Whenever key or
data items exceed the calculated size, they are stored on overflow pages
instead of in the standard Btree leaf pages.</p>
<p>Applications may use the <a href="../api_reference/C/dbset_bt_minkey.html" class="olink">DB->set_bt_minkey()</a> method to change the minimum
number of keys that must fit on a Btree page from two to another value.
Altering this value in turn alters the on-page maximum size, and can be
used to force key and data items which would normally be stored in the
Btree leaf pages onto overflow pages.</p>
<p>Some data sets can benefit from this tuning. For example, consider an
application using large page sizes, with a data set almost entirely
consisting of small key and data items, but with a few large items. By
setting the minimum number of keys that must fit on a page, the
application can force the outsized items to be stored on overflow pages.
That in turn can potentially keep the tree more compact, that is, with
fewer internal levels to traverse during searches.</p>
<p>The following calculation is similar to the one performed by the Btree
implementation. (The <span class="bold"><strong>minimum_keys</strong></span> value is multiplied by 2
because each key/data pair requires 2 slots on a Btree page.)</p>
<pre class="programlisting">maximum_size = page_size / (minimum_keys * 2)</pre>
<p>Using this calculation, if the page size is 8KB and the default
<span class="bold"><strong>minimum_keys</strong></span> value of 2 is used, then any key or data items
larger than 2KB will be forced to an overflow page. If an application
were to specify a <span class="bold"><strong>minimum_key</strong></span> value of 100, then any key or data
items larger than roughly 40 bytes would be forced to overflow pages.</p>
<p>It is important to remember that accesses to overflow pages do not perform
as well as accesses to the standard Btree leaf pages, and so setting the
value incorrectly can result in overusing overflow pages and decreasing
the application's overall performance.</p>
</div>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="am_conf_bt_recnum"></a>Retrieving Btree records by logical record number</h3>
</div>
</div>
</div>
<p>The Btree access method optionally supports retrieval by logical record
numbers. To configure a Btree to support record numbers, call the
<a href="../api_reference/C/dbset_flags.html" class="olink">DB->set_flags()</a> method with the <a href="../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM" class="olink">DB_RECNUM</a> flag.</p>
<p>Configuring a Btree for record numbers should not be done lightly.
While often useful, it may significantly slow down the speed at which
items can be stored into the database, and can severely impact
application throughput. Generally it should be avoided in trees with
a need for high write concurrency.</p>
<p>To retrieve by record number, use the <a href="../api_reference/C/dbget.html#dbget_DB_SET_RECNO" class="olink">DB_SET_RECNO</a> flag to the
<a href="../api_reference/C/dbget.html" class="olink">DB->get()</a> and <a href="../api_reference/C/dbcget.html" class="olink">DBC->get()</a> methods. The following is an example of
a routine that displays the data item for a Btree database created with
the <a href="../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM" class="olink">DB_RECNUM</a> option.</p>
<a id="prog_am5"></a>
<pre class="programlisting">
int
rec_display(DB *dbp, db_recno_t recno)
{
DBT key, data;
int ret;
memset(&key, 0, sizeof(key));
key.data = &recno;
key.size = sizeof(recno);
memset(&data, 0, sizeof(data));
if ((ret = dbp->get(dbp, NULL, &key, &data, DB_SET_RECNO)) != 0)
return (ret);
printf("data for %lu: %.*s\n",
(u_long)recno, (int)data.size, (char *)data.data);
return (0);
}
</pre>
<p>To determine a key's record number, use the <a href="../api_reference/C/dbcget.html#dbcget_DB_GET_RECNO" class="olink">DB_GET_RECNO</a> flag
to the <a href="../api_reference/C/dbcget.html" class="olink">DBC->get()</a> method. The following is an example of a routine that
displays the record number associated with a specific key.</p>
<a id="prog_am6"></a>
<pre class="programlisting">
int
recno_display(DB *dbp, char *keyvalue)
{
DBC *dbcp;
DBT key, data;
db_recno_t recno;
int ret, t_ret;
/* Acquire a cursor for the database. */
if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) != 0) {
dbp->err(dbp, ret, "DB->cursor");
goto err;
}
/* Position the cursor. */
memset(&key, 0, sizeof(key));
key.data = keyvalue;
key.size = strlen(keyvalue);
memset(&data, 0, sizeof(data));
if ((ret = dbcp->get(dbcp, &key, &data, DB_SET)) != 0) {
dbp->err(dbp, ret, "DBC->get(DB_SET): %s", keyvalue);
goto err;
}
/*
* Request the record number, and store it into appropriately
* sized and aligned local memory.
*/
memset(&data, 0, sizeof(data));
data.data = &recno;
data.ulen = sizeof(recno);
data.flags = DB_DBT_USERMEM;
if ((ret = dbcp->get(dbcp, &key, &data, DB_GET_RECNO)) != 0) {
dbp->err(dbp, ret, "DBC->get(DB_GET_RECNO)");
goto err;
}
printf("key for requested key was %lu\n", (u_long)recno);
err: /* Close the cursor. */
if ((t_ret = dbcp->close(dbcp)) != 0) {
if (ret == 0)
ret = t_ret;
dbp->err(dbp, ret, "DBC->close");
}
return (ret);
}
</pre>
</div>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="am_conf_bt_compress"></a>Compression</h3>
</div>
</div>
</div>
<p>
The Btree access method supports the automatic compression of key/data
pairs upon their insertion into the database. The key/data pairs are
decompressed before they are returned to the application, making an
application's interaction with a compressed database identical to that
for a non-compressed database. To configure Berkeley DB for
compression, call the <a href="../api_reference/C/dbset_bt_compress.html" class="olink">DB->set_bt_compress()</a> method and specify custom
compression and decompression functions. If <a href="../api_reference/C/dbset_bt_compress.html" class="olink">DB->set_bt_compress()</a> is
called with NULL compression and decompression functions, Berkeley DB
will use its default compression functions.
</p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
<p>
Compression only works with the Btree access method, and then only
so long as your database is not configured for unsorted duplicates.
</p>
</div>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
<p>
The default compression function is not guaranteed to reduce the
size of the on-disk database in every case. It has been tested
and shown to work well with English-language text. Of course, in
order to determine if the default compression algorithm is beneficial
for your application, it is important to test both the final size
and the performance using a representative set of data and access
patterns.
</p>
</div>
<p>
The default compression function performs prefix compression on each
key added to the database. This means that, for a key
<span class="emphasis"><em>n</em></span> bytes in length, the first
<span class="emphasis"><em>i</em></span> bytes that match the first
<span class="emphasis"><em>i</em></span> bytes of the previous key exactly are omitted
and only the final <span class="emphasis"><em>n-i</em></span> bytes are stored in the
database. If the bytes of key being stored match the bytes of the
previous key exactly, then the same prefix compression algorithm is
applied to the data value being stored. To use Berkeley DB's default
compression behavior, both the default compression and decompression
functions must be used.
</p>
<p>
For example, to configure your database for default compression:
</p>
<a id="prog_am7"></a>
<pre class="programlisting">
DB *dbp = NULL;
DB_ENV *envp = NULL;
u_int32_t db_flags;
const char *file_name = "mydb.db";
int ret;
...
/* Skipping environment open to shorten this example */
/* Initialize the DB handle */
ret = db_create(&dbp, envp, 0);
if (ret != 0) {
fprintf(stderr, "%s\n", db_strerror(ret));
return (EXIT_FAILURE);
}
/* Turn on default data compression */
dbp->set_bt_compress(dbp, NULL, NULL);
/* Now open the database */
db_flags = DB_CREATE; /* Allow database creation */
ret = dbp->open(dbp, /* Pointer to the database */
NULL, /* Txn pointer */
file_name, /* File name */
NULL, /* Logical db name */
DB_BTREE, /* Database type (using btree) */
db_flags, /* Open flags */
0); /* File mode. Using defaults */
if (ret != 0) {
dbp->err(dbp, ret, "Database '%s' open failed",
file_name);
return (EXIT_FAILURE);
}</pre>
<div class="sect3" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h4 class="title"><a id="am_conf_bt_custom_compress"></a>Custom compression</h4>
</div>
</div>
</div>
<p>
An application wishing to perform its own compression may supply a
compression and decompression function which will be called instead of
Berkeley DB's default functions. The compression function is
passed five <a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures:
</p>
<div class="itemizedlist">
<ul type="disc">
<li>
<p>
The key and data immediately preceeding the key/data pair
that is being stored.
</p>
</li>
<li>
<p>
The key and data being stored in the tree.
</p>
</li>
<li>
<p>
The buffer where the compressed data should be written.
</p>
</li>
</ul>
</div>
<p>
The total size of the buffer used to store the compressed data is
identified in the <a href="../api_reference/C/dbt.html" class="olink">DBT</a>'s <code class="literal">ulen</code> field. If the
compressed data cannot fit in the buffer, the compression function
should store the amount of space needed in <a href="../api_reference/C/dbt.html" class="olink">DBT</a>'s
<code class="literal">size</code> field and then return
<code class="literal">DB_BUFFER_SMALL</code>. Berkeley DB will subsequently
re-call the compression function with the required amount of space
allocated in the compression data buffer.
</p>
<p>
Multiple compressed key/data pairs will likely be written to the
same buffer and the compression function should take steps to
ensure it does not overwrite data.
</p>
<p>
For example, the following code fragments illustrate the use of a custom
compression routine. This code is actually a much simplified
example of the default compression provided by Berkeley DB. It does
simple prefix compression on the key part of the data.
</p>
<a id="prog_am8"></a>
<pre class="programlisting">
int compress(DB *dbp, const DBT *prevKey, const DBT *prevData,
const DBT *key, const DBT *data, DBT *dest)
{
u_int8_t *dest_data_ptr;
const u_int8_t *key_data, *prevKey_data;
size_t len, prefix, suffix;
key_data = (const u_int8_t*)key->data;
prevKey_data = (const u_int8_t*)prevKey->data;
len = key->size > prevKey->size ? prevKey->size : key->size;
for (; len-- && *key_data == *prevKey_data; ++key_data,
++prevKey_data)
continue;
prefix = (size_t)(key_data - (u_int8_t*)key->data);
suffix = key->size - prefix;
/* Check that we have enough space in dest */
dest->size = (u_int32_t)(__db_compress_count_int(prefix) +
__db_compress_count_int(suffix) +
__db_compress_count_int(data->size) + suffix + data->size);
if (dest->size > dest->ulen)
return (DB_BUFFER_SMALL);
/* prefix length */
dest_data_ptr = (u_int8_t*)dest->data;
dest_data_ptr += __db_compress_int(dest_data_ptr, prefix);
/* suffix length */
dest_data_ptr += __db_compress_int(dest_data_ptr, suffix);
/* data length */
dest_data_ptr += __db_compress_int(dest_data_ptr, data->size);
/* suffix */
memcpy(dest_data_ptr, key_data, suffix);
dest_data_ptr += suffix;
/* data */
memcpy(dest_data_ptr, data->data, data->size);
return (0);
} </pre>
<p>
The corresponding decompression function is likewise passed five <a href="../api_reference/C/dbt.html" class="olink">DBT</a> structures:
</p>
<div class="itemizedlist">
<ul type="disc">
<li>
<p>
The key and data <a href="../api_reference/C/dbt.html" class="olink">DBT</a>s immediately preceding the
decompressed key and data.
</p>
</li>
<li>
<p>
The compressed data from the database.
</p>
</li>
<li>
<p>
One to store the decompressed key and another one for the
decompressed data.
</p>
</li>
</ul>
</div>
<p>
Because the compression of <code class="literal">record X</code> relies upon
<code class="literal">record X-1</code>, the decompression function can be
called repeatedly to linearally decompress a set of records stored
in the compressed buffer.
</p>
<p>
The total size of the buffer available to store the decompressed data is
identified in the destination <a href="../api_reference/C/dbt.html" class="olink">DBT</a>'s <code class="literal">ulen</code> field. If the
decompressed data cannot fit in the buffer, the decompression function
should store the amount of space needed in the destination <a href="../api_reference/C/dbt.html" class="olink">DBT</a>'s
<code class="literal">size</code> field and then return
<code class="literal">DB_BUFFER_SMALL</code>. Berkeley DB will subsequently
re-call the decompression function with the required amount of space
allocated in the decompression data buffer.
</p>
<p>
For example, the decompression routine that corresponds to the
example compression routine provided above is:
</p>
<a id="prog_am9"></a>
<pre class="programlisting">int decompress(DB *dbp, const DBT *prevKey, const DBT *prevData,
DBT *compressed, DBT *destKey, DBT *destData)
{
u_int8_t *comp_data, *dest_data;
u_int32_t prefix, suffix, size;
/* Unmarshal prefix, suffix and data length */
comp_data = (u_int8_t*)compressed->data;
size = __db_decompress_count_int(comp_data);
if (size > compressed->size)
return (EINVAL);
comp_data += __db_decompress_int32(comp_data, &prefix);
size += __db_decompress_count_int(comp_data);
if (size > compressed->size)
return (EINVAL);
comp_data += __db_decompress_int32(comp_data, &suffix);
size += __db_decompress_count_int(comp_data);
if (size > compressed->size)
return (EINVAL);
comp_data += __db_decompress_int32(comp_data, &destData->size);
/* Check destination lengths */
destKey->size = prefix + suffix;
if (destKey->size > destKey->ulen ||
destData->size > destData->ulen)
return (DB_BUFFER_SMALL);
/* Write the prefix */
if (prefix > prevKey->size)
return (EINVAL);
dest_data = (u_int8_t*)destKey->data;
memcpy(dest_data, prevKey->data, prefix);
dest_data += prefix;
/* Write the suffix */
size += suffix;
if (size > compressed->size)
return (EINVAL);
memcpy(dest_data, comp_data, suffix);
comp_data += suffix;
/* Write the data */
size += destData->size;
if (size > compressed->size)
return (EINVAL);
memcpy(destData->data, comp_data, destData->size);
comp_data += destData->size;
/* Return bytes read */
compressed->size =
(u_int32_t)(comp_data - (u_int8_t*)compressed->data);
return (0);
} </pre>
</div>
<div class="sect3" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h4 class="title"><a id="idp50856856"></a>Programmer Notes</h4>
</div>
</div>
</div>
<p>
As you use compression with your databases, be aware of the
following:
</p>
<div class="itemizedlist">
<ul type="disc">
<li>
<p>
Compression works by placing key/data pairs from a single
database page into a single block of compressed data. This is true
whether you use DB's default compression, or you write
your own compression. Because all of key/data data is
placed in a single block of memory, you cannot decompress
data unless you have decompressed everything that came
before it in the block. That is, you cannot decompress item
<span class="emphasis"><em>n</em></span> in the data block, unless you also
decompress items <span class="emphasis"><em>0</em></span> through
<span class="emphasis"><em>n-1</em></span>.
</p>
</li>
<li>
<p>
If you increase the minimum number of key/data pairs placed
on a Btree leaf page (using <a href="../api_reference/C/dbset_bt_minkey.html" class="olink">DB->set_bt_minkey()</a>), you will
decrease your seek times on a compressed database. However,
this will also decrease the effectiveness of the
compression.
</p>
</li>
<li>
<p>
Compressed databases are fastest if bulk load is used to
add data to them. See
<a class="xref" href="am_misc_bulk.html" title="Retrieving and updating records in bulk">Retrieving and updating records in bulk</a>
for information on using bulk load.
</p>
</li>
</ul>
</div>
</div>
</div>
</div>
<div class="navfooter">
<hr />
<table width="100%" summary="Navigation footer">
<tr>
<td width="40%" align="left"><a accesskey="p" href="general_am_conf.html">Prev</a> </td>
<td width="20%" align="center">
<a accesskey="u" href="am_conf.html">Up</a>
</td>
<td width="40%" align="right"> <a accesskey="n" href="hash_conf.html">Next</a></td>
</tr>
<tr>
<td width="40%" align="left" valign="top">General access method configuration </td>
<td width="20%" align="center">
<a accesskey="h" href="index.html">Home</a>
</td>
<td width="40%" align="right" valign="top"> Hash access method specific configuration</td>
</tr>
</table>
</div>
</body>
</html>
|