1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Warming the memory pool</title>
<link rel="stylesheet" href="gettingStarted.css" type="text/css" />
<meta name="generator" content="DocBook XSL Stylesheets V1.73.2" />
<link rel="start" href="index.html" title="Berkeley DB Programmer's Reference Guide" />
<link rel="up" href="mp.html" title="Chapter 18. The Memory Pool Subsystem" />
<link rel="prev" href="mp_config.html" title="Configuring the memory pool" />
<link rel="next" href="txn.html" title="Chapter 19. The Transaction Subsystem" />
</head>
<body>
<div xmlns="" class="navheader">
<div class="libver">
<p>Library Version 11.2.5.3</p>
</div>
<table width="100%" summary="Navigation header">
<tr>
<th colspan="3" align="center">Warming the memory pool</th>
</tr>
<tr>
<td width="20%" align="left"><a accesskey="p" href="mp_config.html">Prev</a> </td>
<th width="60%" align="center">Chapter 18.
The Memory Pool Subsystem
</th>
<td width="20%" align="right"> <a accesskey="n" href="txn.html">Next</a></td>
</tr>
</table>
<hr />
</div>
<div class="sect1" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h2 class="title" style="clear: both"><a id="mp_warm"></a>Warming the memory pool</h2>
</div>
</div>
</div>
<div class="toc">
<dl>
<dt>
<span class="sect2">
<a href="mp_warm.html#warm_cache">The warm_cache() function</a>
</span>
</dt>
</dl>
</div>
<p>
Some applications find it is useful to pre-load the memory pool
upon application startup. This is a strictly optional activity that
provides faster initial access to your data at the expense of
longer application startup times.
</p>
<p>
To warm the cache, you simply have to read the records that your
application will operate on most frequently. You can do this with
normal database reads, and you can also use cursors. But the most
efficient way to warm the cache is to use memory pool APIs to get
the pages that contain your most frequently accessed records.
</p>
<p>
You read pages into the memory pool using the
<code class="methodname">DB_MPOOLFILE->get()</code> method. This method
acquires locks on the page, so immediately upon getting the page
you need to put it so as to release the locks.
</p>
<p>
Also, you obtain a memory pool file handle using a database handle.
This means that if your data is contained in more than one Berkeley
DB database, you must operate on each database handle in turn.
</p>
<p>
The following example code illustrates this. It does the following:
</p>
<div class="itemizedlist">
<ul type="disc">
<li>
<p>
Opens an environment and two database handles.
</p>
</li>
<li>
<p>
Determines how many database pages can fit into the memory
pool.
</p>
</li>
<li>
<p>
Uses <code class="methodname">DB_MPOOLFILE->get()</code> and
<code class="methodname">DB_MPOOLFILE->put()</code>
to load that number of pages into the memory pool.
</p>
</li>
</ul>
</div>
<p>
First, we include the libraries that we need, forward declare some
functions, and intialize some variables.
</p>
<a id="prog_mp01-1"></a>
<pre class="programlisting">#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <db.h>
/* Forward declarations */
int warm_cache(DB *, int *, int);
int open_db(DB_ENV *, DB **, const char *);
int
main(void)
{
DB *dbp1 = 0, *dbp2 = 0;
DB_ENV *envp = 0;
u_int32_t env_flags, pagesize, gbytes, bytes;
int ret = 0, ret_t = 0, numcachepages, pagecount; </pre>
<p>
Then we open the environment and our databases. The
<code class="methodname">open_db()</code> function that we use here simply
opens a database. We will provide that code at the end of this
example, but it should hold no surprises for you.
We only use the function so as to reuse the code.
</p>
<a id="prog_mp01-2"></a>
<pre class="programlisting"> /*
* Open the environment and the databases
*/
ret = db_env_create(&envp, 0);
if (ret != 0) {
fprintf(stderr, "Error creating environment handle: %s\n",
db_strerror(ret));
goto err;
}
env_flags =
DB_CREATE | /* Create the environment if it does
not exist */
DB_RECOVER | /* Run normal recovery. */
DB_INIT_LOCK | /* Initialize the locking subsystem */
DB_INIT_LOG | /* Initialize the logging subsystem */
DB_INIT_TXN | /* Initialize the transactional subsystem. This
* also turns on logging. */
DB_INIT_MPOOL; /* Initialize the memory pool */
/* Now actually open the environment */
ret = envp->open(envp, "./env", env_flags, 0);
if (ret != 0) {
fprintf(stderr, "Error opening environment: %s\n",
db_strerror(ret));
goto err;
}
ret = open_db(envp, &dbp1, "mydb1.db");
if (ret != 0)
goto err;
ret = open_db(envp, &dbp2, "mydb2.db");
if (ret != 0)
goto err; </pre>
<p>
Next we determine how many database pages we can fit into the
cache. We do this by finding out how large our pages are, and then
finding out how large our cache can be.
</p>
<a id="prog_mp01-3"></a>
<pre class="programlisting"> /* Find out how many pages can fit at most in the cache */
ret = envp->get_mp_pagesize(envp, &pagesize);
if (ret != 0) {
fprintf(stderr, "Error retrieving the cache pagesize: %s\n",
db_strerror(ret));
goto err;
}
ret = envp->get_cache_max(envp, &gbytes, &bytes);
if (ret != 0) {
fprintf(stderr, "Error retrieving maximum cache size: %s\n",
db_strerror(ret));
goto err;
}
/* Avoid an overflow by first calculating pages per gigabyte. */
numcachepages = gbytes * ((1024 * 1024 * 1024) / pagesize);
numcachepages += bytes / pagesize; </pre>
<p>
Now we call our <code class="methodname">warm_cache()</code>
function. We will describe this function in a little while, but
note that we call <code class="methodname">warm_cache()</code>
twice. This is because our example uses two databases, and the
memory pool methods operate on a per-handle basis.
</p>
<a id="prog_mp01-4"></a>
<pre class="programlisting"> /*
* Warm the cache by loading pages from each of the databases
* in turn.
*/
pagecount = 0;
ret = warm_cache(dbp1, &pagecount, numcachepages);
if (ret != 0) {
fprintf(stderr, "Error warming the cache: %s\n",
db_strerror(ret));
goto err;
}
ret = warm_cache(dbp2, &pagecount, numcachepages);
if (ret != 0) {
fprintf(stderr, "Error warming the cache: %s\n",
db_strerror(ret));
goto err;
} </pre>
<p>
Now we close all our handles and finish our
<code class="methodname">main()</code> function. Again, this is
straight-forward boilerplate code that we provide simply to be
complete.
</p>
<a id="prog_mp01-5"></a>
<pre class="programlisting">err:
/* Close our database handles, if they were opened. */
if (dbp1 != NULL) {
ret_t = dbp1->close(dbp1, 0);
if (ret_t != 0) {
fprintf(stderr, "dbp1 close failed: %s\n",
db_strerror(ret_t));
ret = ret_t;
}
}
if (dbp2 != NULL) {
ret_t = dbp2->close(dbp2, 0);
if (ret_t != 0) {
fprintf(stderr, "dbp2 close failed: %s\n",
db_strerror(ret_t));
ret = ret_t;
}
}
/* Close our environment, if it was opened. */
if (envp != NULL) {
ret_t = envp->close(envp, 0);
if (ret_t != 0) {
fprintf(stderr, "environment close failed: %s\n",
db_strerror(ret_t));
ret = ret_t;
}
}
/* Final status message and return. */
printf("I'm all done.\n");
return (ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
} </pre>
<p>
As noted above, this example uses an <code class="methodname">open_db()</code>
function, which opens a database handle inside the provided
environment. To be complete, this is the implementation of that
function:
</p>
<a id="prog_mp01-6"></a>
<pre class="programlisting">/* Open a database handle */
int
open_db(DB_ENV *envp, DB **dbpp, const char *file_name)
{
int ret = 0;
u_int32_t db_flags = 0;
DB *dbp;
/* Open the database */
ret = db_create(&dbp, envp, 0);
if (ret != 0) {
fprintf(stderr, "Error opening database: %s : %s\n",
file_name, db_strerror(ret));
return ret;
}
/* Point to the memory malloc'd by db_create() */
*dbpp = dbp;
db_flags = DB_CREATE | /* Create the database if it does
not exist */
DB_AUTO_COMMIT; /* Allow autocommit */
ret = dbp->open(dbp, /* Pointer to the database */
0, /* Txn pointer */
file_name, /* File name */
0, /* Logical db name */
DB_BTREE, /* Database type (using btree) */
db_flags, /* Open flags */
0); /* File mode. Using defaults */
if (ret != 0) {
dbp->err(dbp, ret, "Database open failed: %s : %s\n",
file_name, db_strerror(ret));
return ret;
}
return 0;
} </pre>
<div class="sect2" lang="en" xml:lang="en">
<div class="titlepage">
<div>
<div>
<h3 class="title"><a id="warm_cache"></a>The warm_cache() function</h3>
</div>
</div>
</div>
<p>
In this section we provide the implementation of the
<code class="methodname">warm_cache()</code> function. This example
function simply loads all the database pages that will fit into
the memory pool. It starts from the first database page and
continues until it either runs out of database pages or it runs
out of room in the memory pool.
</p>
<a id="prog_mp01-7"></a>
<pre class="programlisting">/* Warm the cache */
int
warm_cache(DB *dbp, int *pagecountp, int numcachepages)
{
DB_MPOOLFILE *mpf = 0;
void *page_addrp = 0;
db_pgno_t page_number = 0;
int ret = 0;
int pagecount = *pagecountp;
/*
* Get the mpool handle
*/
mpf = dbp->get_mpf(dbp);
/* Load pages until there are no more pages in the database,
* or until we've put as many pages into the cache as will fit.
*/
while (ret != DB_PAGE_NOTFOUND && pagecount < numcachepages) {
/*
* Get the page from the cache. This causes DB to retrieve
* the page from disk if it isn't already in the cache.
*/
ret = mpf->get(mpf, &page_number, 0, 0, &page_addrp);
if (ret && ret != DB_PAGE_NOTFOUND) {
fprintf(stderr, "Error retrieving db page: %i : %s\n",
page_number, db_strerror(ret));
return ret;
}
/*
* If a page was retrieved, put it back into the cache. This
* releases the page latch so that the page can be evicted
* if DB needs more room in the cache at some later time.
*/
if (ret != DB_PAGE_NOTFOUND) {
ret = mpf->put(mpf, page_addrp, DB_PRIORITY_UNCHANGED, 0);
if (ret) {
fprintf(stderr, "Error putting db page: %i : %s\n",
page_number, db_strerror(ret));
return ret;
}
}
++page_number;
++pagecount;
*pagecountp = pagecount;
}
return 0;
} </pre>
</div>
</div>
<div class="navfooter">
<hr />
<table width="100%" summary="Navigation footer">
<tr>
<td width="40%" align="left"><a accesskey="p" href="mp_config.html">Prev</a> </td>
<td width="20%" align="center">
<a accesskey="u" href="mp.html">Up</a>
</td>
<td width="40%" align="right"> <a accesskey="n" href="txn.html">Next</a></td>
</tr>
<tr>
<td width="40%" align="left" valign="top">Configuring the memory pool </td>
<td width="20%" align="center">
<a accesskey="h" href="index.html">Home</a>
</td>
<td width="40%" align="right" valign="top"> Chapter 19.
The Transaction Subsystem
</td>
</tr>
</table>
</div>
</body>
</html>
|