1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
|
/*
** 2009 Oct 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file is part of the SQLite FTS3 extension module. Specifically,
** this file contains code to insert, update and delete rows from FTS3
** tables. It also contains code to merge FTS3 b-tree segments. Some
** of the sub-routines used to merge segments are also used by the query
** code in fts3.c.
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#include "fts3Int.h"
#include <string.h>
#include <assert.h>
#include <stdlib.h>
/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
** of 920 bytes is allocated for it.
**
** This means that if we have a pointer into a buffer containing node data,
** it is always safe to read up to two varints from it without risking an
** overread, even if the node data is corrupted.
*/
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;
/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloc'd
** instance of this structure.
*/
struct PendingList {
int nData;
char *aData;
int nSpace;
sqlite3_int64 iLastDocid;
sqlite3_int64 iLastCol;
sqlite3_int64 iLastPos;
};
/*
** Each cursor has a (possibly empty) linked list of the following objects.
*/
struct Fts3DeferredToken {
Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
int iCol; /* Column token must occur in */
Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
PendingList *pList; /* Doclist is assembled here */
};
/*
** An instance of this structure is used to iterate through the terms on
** a contiguous set of segment b-tree leaf nodes. Although the details of
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
** sqlite3Fts3SegReaderNew()
** sqlite3Fts3SegReaderFree()
** sqlite3Fts3SegReaderCost()
** sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
** fts3SegReaderNext()
** fts3SegReaderFirstDocid()
** fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
char *aNode; /* Pointer to node data (or NULL) */
int nNode; /* Size of buffer at aNode (or 0) */
Fts3HashElem **ppNextElem;
/* Variables set by fts3SegReaderNext(). These may be read directly
** by the caller. They are valid from the time SegmentReaderNew() returns
** until SegmentReaderNext() returns something other than SQLITE_OK
** (i.e. SQLITE_DONE).
*/
int nTerm; /* Number of bytes in current term */
char *zTerm; /* Pointer to current term */
int nTermAlloc; /* Allocated size of zTerm buffer */
char *aDoclist; /* Pointer to doclist of current entry */
int nDoclist; /* Size of doclist in current entry */
/* The following variables are used to iterate through the current doclist */
char *pOffsetList;
sqlite3_int64 iDocid;
};
#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])
/*
** An instance of this structure is used to create a segment b-tree in the
** database. The internal details of this type are only accessed by the
** following functions:
**
** fts3SegWriterAdd()
** fts3SegWriterFlush()
** fts3SegWriterFree()
*/
struct SegmentWriter {
SegmentNode *pTree; /* Pointer to interior tree structure */
sqlite3_int64 iFirst; /* First slot in %_segments written */
sqlite3_int64 iFree; /* Next free slot in %_segments */
char *zTerm; /* Pointer to previous term buffer */
int nTerm; /* Number of bytes in zTerm */
int nMalloc; /* Size of malloc'd buffer at zMalloc */
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
int nSize; /* Size of allocation at aData */
int nData; /* Bytes of data in aData */
char *aData; /* Pointer to block from malloc() */
};
/*
** Type SegmentNode is used by the following three functions to create
** the interior part of the segment b+-tree structures (everything except
** the leaf nodes). These functions and type are only ever used by code
** within the fts3SegWriterXXX() family of functions described above.
**
** fts3NodeAddTerm()
** fts3NodeWrite()
** fts3NodeFree()
*/
struct SegmentNode {
SegmentNode *pParent; /* Parent node (or NULL for root node) */
SegmentNode *pRight; /* Pointer to right-sibling */
SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
int nEntry; /* Number of terms written to node so far */
char *zTerm; /* Pointer to previous term buffer */
int nTerm; /* Number of bytes in zTerm */
int nMalloc; /* Size of malloc'd buffer at zMalloc */
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
int nData; /* Bytes of valid data so far */
char *aData; /* Node data */
};
/*
** Valid values for the second argument to fts3SqlStmt().
*/
#define SQL_DELETE_CONTENT 0
#define SQL_IS_EMPTY 1
#define SQL_DELETE_ALL_CONTENT 2
#define SQL_DELETE_ALL_SEGMENTS 3
#define SQL_DELETE_ALL_SEGDIR 4
#define SQL_DELETE_ALL_DOCSIZE 5
#define SQL_DELETE_ALL_STAT 6
#define SQL_SELECT_CONTENT_BY_ROWID 7
#define SQL_NEXT_SEGMENT_INDEX 8
#define SQL_INSERT_SEGMENTS 9
#define SQL_NEXT_SEGMENTS_ID 10
#define SQL_INSERT_SEGDIR 11
#define SQL_SELECT_LEVEL 12
#define SQL_SELECT_ALL_LEVEL 13
#define SQL_SELECT_LEVEL_COUNT 14
#define SQL_SELECT_SEGDIR_COUNT_MAX 15
#define SQL_DELETE_SEGDIR_BY_LEVEL 16
#define SQL_DELETE_SEGMENTS_RANGE 17
#define SQL_CONTENT_INSERT 18
#define SQL_DELETE_DOCSIZE 19
#define SQL_REPLACE_DOCSIZE 20
#define SQL_SELECT_DOCSIZE 21
#define SQL_SELECT_DOCTOTAL 22
#define SQL_REPLACE_DOCTOTAL 23
/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**
** If argument apVal is not NULL, then it must point to an array with
** at least as many entries as the requested statement has bound
** parameters. The values are bound to the statements parameters before
** returning.
*/
static int fts3SqlStmt(
Fts3Table *p, /* Virtual table handle */
int eStmt, /* One of the SQL_XXX constants above */
sqlite3_stmt **pp, /* OUT: Statement handle */
sqlite3_value **apVal /* Values to bind to statement */
){
const char *azSql[] = {
/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
/* 2 */ "DELETE FROM %Q.'%q_content'",
/* 3 */ "DELETE FROM %Q.'%q_segments'",
/* 4 */ "DELETE FROM %Q.'%q_segdir'",
/* 5 */ "DELETE FROM %Q.'%q_docsize'",
/* 6 */ "DELETE FROM %Q.'%q_stat'",
/* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?",
/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
/* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
/* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
/* Return segments in order from oldest to newest.*/
/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
"FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
"FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC",
/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'",
/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
};
int rc = SQLITE_OK;
sqlite3_stmt *pStmt;
assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
pStmt = p->aStmt[eStmt];
if( !pStmt ){
char *zSql;
if( eStmt==SQL_CONTENT_INSERT ){
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
}else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName);
}else{
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
}
if( !zSql ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
sqlite3_free(zSql);
assert( rc==SQLITE_OK || pStmt==0 );
p->aStmt[eStmt] = pStmt;
}
}
if( apVal ){
int i;
int nParam = sqlite3_bind_parameter_count(pStmt);
for(i=0; rc==SQLITE_OK && i<nParam; i++){
rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
}
}
*pp = pStmt;
return rc;
}
static int fts3SelectDocsize(
Fts3Table *pTab, /* FTS3 table handle */
int eStmt, /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */
sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
int rc; /* Return code */
assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL );
rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0);
if( rc==SQLITE_OK ){
if( eStmt==SQL_SELECT_DOCSIZE ){
sqlite3_bind_int64(pStmt, 1, iDocid);
}
rc = sqlite3_step(pStmt);
if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
rc = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT;
pStmt = 0;
}else{
rc = SQLITE_OK;
}
}
*ppStmt = pStmt;
return rc;
}
int sqlite3Fts3SelectDoctotal(
Fts3Table *pTab, /* Fts3 table handle */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt);
}
int sqlite3Fts3SelectDocsize(
Fts3Table *pTab, /* Fts3 table handle */
sqlite3_int64 iDocid, /* Docid to read size data for */
sqlite3_stmt **ppStmt /* OUT: Statement handle */
){
return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt);
}
/*
** Similar to fts3SqlStmt(). Except, after binding the parameters in
** array apVal[] to the SQL statement identified by eStmt, the statement
** is executed.
**
** Returns SQLITE_OK if the statement is successfully executed, or an
** SQLite error code otherwise.
*/
static void fts3SqlExec(
int *pRC, /* Result code */
Fts3Table *p, /* The FTS3 table */
int eStmt, /* Index of statement to evaluate */
sqlite3_value **apVal /* Parameters to bind */
){
sqlite3_stmt *pStmt;
int rc;
if( *pRC ) return;
rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
if( rc==SQLITE_OK ){
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
*pRC = rc;
}
/*
** This function ensures that the caller has obtained a shared-cache
** table-lock on the %_content table. This is required before reading
** data from the fts3 table. If this lock is not acquired first, then
** the caller may end up holding read-locks on the %_segments and %_segdir
** tables, but no read-lock on the %_content table. If this happens
** a second connection will be able to write to the fts3 table, but
** attempting to commit those writes might return SQLITE_LOCKED or
** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain
** write-locks on the %_segments and %_segdir ** tables).
**
** We try to avoid this because if FTS3 returns any error when committing
** a transaction, the whole transaction will be rolled back. And this is
** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
** still happen if the user reads data directly from the %_segments or
** %_segdir tables instead of going through FTS3 though.
*/
int sqlite3Fts3ReadLock(Fts3Table *p){
int rc; /* Return code */
sqlite3_stmt *pStmt; /* Statement used to obtain lock */
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_null(pStmt, 1);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
return rc;
}
/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** return SQLITE_OK. If an error occurs while preparing the statement,
** return an SQLite error code.
**
** There is only ever one instance of this SQL statement compiled for
** each FTS3 table.
**
** The statement returns the following columns from the %_segdir table:
**
** 0: idx
** 1: start_block
** 2: leaves_end_block
** 3: end_block
** 4: root
*/
int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){
int rc;
sqlite3_stmt *pStmt = 0;
if( iLevel<0 ){
rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0);
}else{
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel);
}
*ppStmt = pStmt;
return rc;
}
/*
** Append a single varint to a PendingList buffer. SQLITE_OK is returned
** if successful, or an SQLite error code otherwise.
**
** This function also serves to allocate the PendingList structure itself.
** For example, to create a new PendingList structure containing two
** varints:
**
** PendingList *p = 0;
** fts3PendingListAppendVarint(&p, 1);
** fts3PendingListAppendVarint(&p, 2);
*/
static int fts3PendingListAppendVarint(
PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
sqlite3_int64 i /* Value to append to data */
){
PendingList *p = *pp;
/* Allocate or grow the PendingList as required. */
if( !p ){
p = sqlite3_malloc(sizeof(*p) + 100);
if( !p ){
return SQLITE_NOMEM;
}
p->nSpace = 100;
p->aData = (char *)&p[1];
p->nData = 0;
}
else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
int nNew = p->nSpace * 2;
p = sqlite3_realloc(p, sizeof(*p) + nNew);
if( !p ){
sqlite3_free(*pp);
*pp = 0;
return SQLITE_NOMEM;
}
p->nSpace = nNew;
p->aData = (char *)&p[1];
}
/* Append the new serialized varint to the end of the list. */
p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
p->aData[p->nData] = '\0';
*pp = p;
return SQLITE_OK;
}
/*
** Add a docid/column/position entry to a PendingList structure. Non-zero
** is returned if the structure is sqlite3_realloced as part of adding
** the entry. Otherwise, zero.
**
** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
** Zero is always returned in this case. Otherwise, if no OOM error occurs,
** it is set to SQLITE_OK.
*/
static int fts3PendingListAppend(
PendingList **pp, /* IN/OUT: PendingList structure */
sqlite3_int64 iDocid, /* Docid for entry to add */
sqlite3_int64 iCol, /* Column for entry to add */
sqlite3_int64 iPos, /* Position of term for entry to add */
int *pRc /* OUT: Return code */
){
PendingList *p = *pp;
int rc = SQLITE_OK;
assert( !p || p->iLastDocid<=iDocid );
if( !p || p->iLastDocid!=iDocid ){
sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
if( p ){
assert( p->nData<p->nSpace );
assert( p->aData[p->nData]==0 );
p->nData++;
}
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
goto pendinglistappend_out;
}
p->iLastCol = -1;
p->iLastPos = 0;
p->iLastDocid = iDocid;
}
if( iCol>0 && p->iLastCol!=iCol ){
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
|| SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
){
goto pendinglistappend_out;
}
p->iLastCol = iCol;
p->iLastPos = 0;
}
if( iCol>=0 ){
assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
if( rc==SQLITE_OK ){
p->iLastPos = iPos;
}
}
pendinglistappend_out:
*pRc = rc;
if( p!=*pp ){
*pp = p;
return 1;
}
return 0;
}
/*
** Tokenize the nul-terminated string zText and add all tokens to the
** pending-terms hash-table. The docid used is that currently stored in
** p->iPrevDocid, and the column is specified by argument iCol.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3PendingTermsAdd(
Fts3Table *p, /* Table into which text will be inserted */
const char *zText, /* Text of document to be inserted */
int iCol, /* Column into which text is being inserted */
u32 *pnWord /* OUT: Number of tokens inserted */
){
int rc;
int iStart;
int iEnd;
int iPos;
int nWord = 0;
char const *zToken;
int nToken;
sqlite3_tokenizer *pTokenizer = p->pTokenizer;
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
sqlite3_tokenizer_cursor *pCsr;
int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
const char**,int*,int*,int*,int*);
assert( pTokenizer && pModule );
rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
if( rc!=SQLITE_OK ){
return rc;
}
pCsr->pTokenizer = pTokenizer;
xNext = pModule->xNext;
while( SQLITE_OK==rc
&& SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
){
PendingList *pList;
if( iPos>=nWord ) nWord = iPos+1;
/* Positions cannot be negative; we use -1 as a terminator internally.
** Tokens must have a non-zero length.
*/
if( iPos<0 || !zToken || nToken<=0 ){
rc = SQLITE_ERROR;
break;
}
pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken);
if( pList ){
p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
}
if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){
/* Malloc failed while inserting the new entry. This can only
** happen if there was no previous entry for this token.
*/
assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) );
sqlite3_free(pList);
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
}
}
pModule->xClose(pCsr);
*pnWord = nWord;
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}
/*
** Calling this function indicates that subsequent calls to
** fts3PendingTermsAdd() are to add term/position-list pairs for the
** contents of the document with docid iDocid.
*/
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
/* TODO(shess) Explore whether partially flushing the buffer on
** forced-flush would provide better performance. I suspect that if
** we ordered the doclists by size and flushed the largest until the
** buffer was half empty, that would let the less frequent terms
** generate longer doclists.
*/
if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){
int rc = sqlite3Fts3PendingTermsFlush(p);
if( rc!=SQLITE_OK ) return rc;
}
p->iPrevDocid = iDocid;
return SQLITE_OK;
}
/*
** Discard the contents of the pending-terms hash table.
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
Fts3HashElem *pElem;
for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
sqlite3_free(fts3HashData(pElem));
}
fts3HashClear(&p->pendingTerms);
p->nPendingData = 0;
}
/*
** This function is called by the xUpdate() method as part of an INSERT
** operation. It adds entries for each term in the new record to the
** pendingTerms hash table.
**
** Argument apVal is the same as the similarly named argument passed to
** fts3InsertData(). Parameter iDocid is the docid of the new row.
*/
static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){
int i; /* Iterator variable */
for(i=2; i<p->nColumn+2; i++){
const char *zText = (const char *)sqlite3_value_text(apVal[i]);
if( zText ){
int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
if( rc!=SQLITE_OK ){
return rc;
}
}
aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
}
return SQLITE_OK;
}
/*
** This function is called by the xUpdate() method for an INSERT operation.
** The apVal parameter is passed a copy of the apVal argument passed by
** SQLite to the xUpdate() method. i.e:
**
** apVal[0] Not used for INSERT.
** apVal[1] rowid
** apVal[2] Left-most user-defined column
** ...
** apVal[p->nColumn+1] Right-most user-defined column
** apVal[p->nColumn+2] Hidden column with same name as table
** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
*/
static int fts3InsertData(
Fts3Table *p, /* Full-text table */
sqlite3_value **apVal, /* Array of values to insert */
sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
){
int rc; /* Return code */
sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
/* Locate the statement handle used to insert data into the %_content
** table. The SQL for this statement is:
**
** INSERT INTO %_content VALUES(?, ?, ?, ...)
**
** The statement features N '?' variables, where N is the number of user
** defined columns in the FTS3 table, plus one for the docid field.
*/
rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
if( rc!=SQLITE_OK ){
return rc;
}
/* There is a quirk here. The users INSERT statement may have specified
** a value for the "rowid" field, for the "docid" field, or for both.
** Which is a problem, since "rowid" and "docid" are aliases for the
** same value. For example:
**
** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
**
** In FTS3, this is an error. It is an error to specify non-NULL values
** for both docid and some other rowid alias.
*/
if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
if( SQLITE_NULL==sqlite3_value_type(apVal[0])
&& SQLITE_NULL!=sqlite3_value_type(apVal[1])
){
/* A rowid/docid conflict. */
return SQLITE_ERROR;
}
rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
if( rc!=SQLITE_OK ) return rc;
}
/* Execute the statement to insert the record. Set *piDocid to the
** new docid value.
*/
sqlite3_step(pContentInsert);
rc = sqlite3_reset(pContentInsert);
*piDocid = sqlite3_last_insert_rowid(p->db);
return rc;
}
/*
** Remove all data from the FTS3 table. Clear the hash table containing
** pending terms.
*/
static int fts3DeleteAll(Fts3Table *p){
int rc = SQLITE_OK; /* Return code */
/* Discard the contents of the pending-terms hash table. */
sqlite3Fts3PendingTermsClear(p);
/* Delete everything from the %_content, %_segments and %_segdir tables. */
fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
}
if( p->bHasStat ){
fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
}
return rc;
}
/*
** The first element in the apVal[] array is assumed to contain the docid
** (an integer) of a row about to be deleted. Remove all terms from the
** full-text index.
*/
static void fts3DeleteTerms(
int *pRC, /* Result code */
Fts3Table *p, /* The FTS table to delete from */
sqlite3_value **apVal, /* apVal[] contains the docid to be deleted */
u32 *aSz /* Sizes of deleted document written here */
){
int rc;
sqlite3_stmt *pSelect;
if( *pRC ) return;
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pSelect) ){
int i;
for(i=1; i<=p->nColumn; i++){
const char *zText = (const char *)sqlite3_column_text(pSelect, i);
rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]);
if( rc!=SQLITE_OK ){
sqlite3_reset(pSelect);
*pRC = rc;
return;
}
aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
}
}
rc = sqlite3_reset(pSelect);
}else{
sqlite3_reset(pSelect);
}
*pRC = rc;
}
/*
** Forward declaration to account for the circular dependency between
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
*/
static int fts3SegmentMerge(Fts3Table *, int);
/*
** This function allocates a new level iLevel index in the segdir table.
** Usually, indexes are allocated within a level sequentially starting
** with 0, so the allocated index is one greater than the value returned
** by:
**
** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
**
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
** level, they are merged into a single level (iLevel+1) segment and the
** allocated index is 0.
**
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
** returned. Otherwise, an SQLite error code is returned.
*/
static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){
int rc; /* Return Code */
sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
int iNext = 0; /* Result of query pNextIdx */
/* Set variable iNext to the next available segdir index at level iLevel. */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pNextIdx, 1, iLevel);
if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
iNext = sqlite3_column_int(pNextIdx, 0);
}
rc = sqlite3_reset(pNextIdx);
}
if( rc==SQLITE_OK ){
/* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
** full, merge all segments in level iLevel into a single iLevel+1
** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
*/
if( iNext>=FTS3_MERGE_COUNT ){
rc = fts3SegmentMerge(p, iLevel);
*piIdx = 0;
}else{
*piIdx = iNext;
}
}
return rc;
}
/*
** The %_segments table is declared as follows:
**
** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
**
** This function reads data from a single row of the %_segments table. The
** specific row is identified by the iBlockid parameter. If paBlob is not
** NULL, then a buffer is allocated using sqlite3_malloc() and populated
** with the contents of the blob stored in the "block" column of the
** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
** to the size of the blob in bytes before returning.
**
** If an error occurs, or the table does not contain the specified row,
** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
** paBlob is non-NULL, then it is the responsibility of the caller to
** eventually free the returned buffer.
**
** This function may leave an open sqlite3_blob* handle in the
** Fts3Table.pSegments variable. This handle is reused by subsequent calls
** to this function. The handle may be closed by calling the
** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
** performance improvement, but the blob handle should always be closed
** before control is returned to the user (to prevent a lock being held
** on the database file for longer than necessary). Thus, any virtual table
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
Fts3Table *p, /* FTS3 table handle */
sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
char **paBlob, /* OUT: Blob data in malloc'd buffer */
int *pnBlob /* OUT: Size of blob data */
){
int rc; /* Return code */
/* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
assert( pnBlob);
if( p->pSegments ){
rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
}else{
if( 0==p->zSegmentsTbl ){
p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
}
rc = sqlite3_blob_open(
p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
);
}
if( rc==SQLITE_OK ){
int nByte = sqlite3_blob_bytes(p->pSegments);
if( paBlob ){
char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
if( !aByte ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
if( rc!=SQLITE_OK ){
sqlite3_free(aByte);
aByte = 0;
}
}
*paBlob = aByte;
}
*pnBlob = nByte;
}
return rc;
}
/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
sqlite3_blob_close(p->pSegments);
p->pSegments = 0;
}
/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){
char *pNext; /* Cursor variable */
int nPrefix; /* Number of bytes in term prefix */
int nSuffix; /* Number of bytes in term suffix */
if( !pReader->aDoclist ){
pNext = pReader->aNode;
}else{
pNext = &pReader->aDoclist[pReader->nDoclist];
}
if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
int rc; /* Return code from Fts3ReadBlock() */
if( fts3SegReaderIsPending(pReader) ){
Fts3HashElem *pElem = *(pReader->ppNextElem);
if( pElem==0 ){
pReader->aNode = 0;
}else{
PendingList *pList = (PendingList *)fts3HashData(pElem);
pReader->zTerm = (char *)fts3HashKey(pElem);
pReader->nTerm = fts3HashKeysize(pElem);
pReader->nNode = pReader->nDoclist = pList->nData + 1;
pReader->aNode = pReader->aDoclist = pList->aData;
pReader->ppNextElem++;
assert( pReader->aNode );
}
return SQLITE_OK;
}
if( !fts3SegReaderIsRootOnly(pReader) ){
sqlite3_free(pReader->aNode);
}
pReader->aNode = 0;
/* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
** blocks have already been traversed. */
assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
return SQLITE_OK;
}
rc = sqlite3Fts3ReadBlock(
p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode
);
if( rc!=SQLITE_OK ) return rc;
pNext = pReader->aNode;
}
/* Because of the FTS3_NODE_PADDING bytes of padding, the following is
** safe (no risk of overread) even if the node data is corrupted.
*/
pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
if( nPrefix<0 || nSuffix<=0
|| &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
){
return SQLITE_CORRUPT;
}
if( nPrefix+nSuffix>pReader->nTermAlloc ){
int nNew = (nPrefix+nSuffix)*2;
char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
if( !zNew ){
return SQLITE_NOMEM;
}
pReader->zTerm = zNew;
pReader->nTermAlloc = nNew;
}
memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
pReader->nTerm = nPrefix+nSuffix;
pNext += nSuffix;
pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
pReader->aDoclist = pNext;
pReader->pOffsetList = 0;
/* Check that the doclist does not appear to extend past the end of the
** b-tree node. And that the final byte of the doclist is 0x00. If either
** of these statements is untrue, then the data structure is corrupt.
*/
if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
|| pReader->aDoclist[pReader->nDoclist-1]
){
return SQLITE_CORRUPT;
}
return SQLITE_OK;
}
/*
** Set the SegReader to point to the first docid in the doclist associated
** with the current term.
*/
static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){
int n;
assert( pReader->aDoclist );
assert( !pReader->pOffsetList );
n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
pReader->pOffsetList = &pReader->aDoclist[n];
}
/*
** Advance the SegReader to point to the next docid in the doclist
** associated with the current term.
**
** If arguments ppOffsetList and pnOffsetList are not NULL, then
** *ppOffsetList is set to point to the first column-offset list
** in the doclist entry (i.e. immediately past the docid varint).
** *pnOffsetList is set to the length of the set of column-offset
** lists, not including the nul-terminator byte. For example:
*/
static void fts3SegReaderNextDocid(
Fts3SegReader *pReader,
char **ppOffsetList,
int *pnOffsetList
){
char *p = pReader->pOffsetList;
char c = 0;
/* Pointer p currently points at the first byte of an offset list. The
** following two lines advance it to point one byte past the end of
** the same offset list.
*/
while( *p | c ) c = *p++ & 0x80;
p++;
/* If required, populate the output variables with a pointer to and the
** size of the previous offset-list.
*/
if( ppOffsetList ){
*ppOffsetList = pReader->pOffsetList;
*pnOffsetList = (int)(p - pReader->pOffsetList - 1);
}
/* If there are no more entries in the doclist, set pOffsetList to
** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
** Fts3SegReader.pOffsetList to point to the next offset list before
** returning.
*/
if( p>=&pReader->aDoclist[pReader->nDoclist] ){
pReader->pOffsetList = 0;
}else{
sqlite3_int64 iDelta;
pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
pReader->iDocid += iDelta;
}
}
/*
** This function is called to estimate the amount of data that will be
** loaded from the disk If SegReaderIterate() is called on this seg-reader,
** in units of average document size.
**
** This can be used as follows: If the caller has a small doclist that
** contains references to N documents, and is considering merging it with
** a large doclist (size X "average documents"), it may opt not to load
** the large doclist if X>N.
*/
int sqlite3Fts3SegReaderCost(
Fts3Cursor *pCsr, /* FTS3 cursor handle */
Fts3SegReader *pReader, /* Segment-reader handle */
int *pnCost /* IN/OUT: Number of bytes read */
){
Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
int rc = SQLITE_OK; /* Return code */
int nCost = 0; /* Cost in bytes to return */
int pgsz = p->nPgsz; /* Database page size */
/* If this seg-reader is reading the pending-terms table, or if all data
** for the segment is stored on the root page of the b-tree, then the cost
** is zero. In this case all required data is already in main memory.
*/
if( p->bHasStat
&& !fts3SegReaderIsPending(pReader)
&& !fts3SegReaderIsRootOnly(pReader)
){
int nBlob = 0;
sqlite3_int64 iBlock;
if( pCsr->nRowAvg==0 ){
/* The average document size, which is required to calculate the cost
** of each doclist, has not yet been determined. Read the required
** data from the %_stat table to calculate it.
**
** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
** varints, where nCol is the number of columns in the FTS3 table.
** The first varint is the number of documents currently stored in
** the table. The following nCol varints contain the total amount of
** data stored in all rows of each column of the table, from left
** to right.
*/
sqlite3_stmt *pStmt;
sqlite3_int64 nDoc = 0;
sqlite3_int64 nByte = 0;
const char *pEnd;
const char *a;
rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
if( rc!=SQLITE_OK ) return rc;
a = sqlite3_column_blob(pStmt, 0);
assert( a );
pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
a += sqlite3Fts3GetVarint(a, &nDoc);
while( a<pEnd ){
a += sqlite3Fts3GetVarint(a, &nByte);
}
if( nDoc==0 || nByte==0 ){
sqlite3_reset(pStmt);
return SQLITE_CORRUPT;
}
pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz);
assert( pCsr->nRowAvg>0 );
rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ) return rc;
}
/* Assume that a blob flows over onto overflow pages if it is larger
** than (pgsz-35) bytes in size (the file-format documentation
** confirms this).
*/
for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob);
if( rc!=SQLITE_OK ) break;
if( (nBlob+35)>pgsz ){
int nOvfl = (nBlob + 34)/pgsz;
nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
}
}
}
*pnCost += nCost;
return rc;
}
/*
** Free all allocations associated with the iterator passed as the
** second argument.
*/
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
if( pReader && !fts3SegReaderIsPending(pReader) ){
sqlite3_free(pReader->zTerm);
if( !fts3SegReaderIsRootOnly(pReader) ){
sqlite3_free(pReader->aNode);
}
}
sqlite3_free(pReader);
}
/*
** Allocate a new SegReader object.
*/
int sqlite3Fts3SegReaderNew(
int iAge, /* Segment "age". */
sqlite3_int64 iStartLeaf, /* First leaf to traverse */
sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
sqlite3_int64 iEndBlock, /* Final block of segment */
const char *zRoot, /* Buffer containing root node */
int nRoot, /* Size of buffer containing root node */
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
){
int rc = SQLITE_OK; /* Return code */
Fts3SegReader *pReader; /* Newly allocated SegReader object */
int nExtra = 0; /* Bytes to allocate segment root node */
assert( iStartLeaf<=iEndLeaf );
if( iStartLeaf==0 ){
nExtra = nRoot + FTS3_NODE_PADDING;
}
pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
if( !pReader ){
return SQLITE_NOMEM;
}
memset(pReader, 0, sizeof(Fts3SegReader));
pReader->iIdx = iAge;
pReader->iStartBlock = iStartLeaf;
pReader->iLeafEndBlock = iEndLeaf;
pReader->iEndBlock = iEndBlock;
if( nExtra ){
/* The entire segment is stored in the root node. */
pReader->aNode = (char *)&pReader[1];
pReader->nNode = nRoot;
memcpy(pReader->aNode, zRoot, nRoot);
memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
}else{
pReader->iCurrentBlock = iStartLeaf-1;
}
if( rc==SQLITE_OK ){
*ppReader = pReader;
}else{
sqlite3Fts3SegReaderFree(pReader);
}
return rc;
}
/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
int n = (n1<n2 ? n1 : n2);
int c = memcmp(z1, z2, n);
if( c==0 ){
c = n1 - n2;
}
return c;
}
/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.
*/
int sqlite3Fts3SegReaderPending(
Fts3Table *p, /* Virtual table handle */
const char *zTerm, /* Term to search for */
int nTerm, /* Size of buffer zTerm */
int isPrefix, /* True for a term-prefix query */
Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
){
Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
int nElem = 0; /* Size of array at aElem */
int rc = SQLITE_OK; /* Return Code */
if( isPrefix ){
int nAlloc = 0; /* Size of allocated array at aElem */
Fts3HashElem *pE = 0; /* Iterator variable */
for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){
char *zKey = (char *)fts3HashKey(pE);
int nKey = fts3HashKeysize(pE);
if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
if( nElem==nAlloc ){
Fts3HashElem **aElem2;
nAlloc += 16;
aElem2 = (Fts3HashElem **)sqlite3_realloc(
aElem, nAlloc*sizeof(Fts3HashElem *)
);
if( !aElem2 ){
rc = SQLITE_NOMEM;
nElem = 0;
break;
}
aElem = aElem2;
}
aElem[nElem++] = pE;
}
}
/* If more than one term matches the prefix, sort the Fts3HashElem
** objects in term order using qsort(). This uses the same comparison
** callback as is used when flushing terms to disk.
*/
if( nElem>1 ){
qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
}
}else{
Fts3HashElem *pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm);
if( pE ){
aElem = &pE;
nElem = 1;
}
}
if( nElem>0 ){
int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
if( !pReader ){
rc = SQLITE_NOMEM;
}else{
memset(pReader, 0, nByte);
pReader->iIdx = 0x7FFFFFFF;
pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
}
}
if( isPrefix ){
sqlite3_free(aElem);
}
*ppReader = pReader;
return rc;
}
/*
** Compare the entries pointed to by two Fts3SegReader structures.
** Comparison is as follows:
**
** 1) EOF is greater than not EOF.
**
** 2) The current terms (if any) are compared using memcmp(). If one
** term is a prefix of another, the longer term is considered the
** larger.
**
** 3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
int rc;
if( pLhs->aNode && pRhs->aNode ){
int rc2 = pLhs->nTerm - pRhs->nTerm;
if( rc2<0 ){
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
}else{
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
}
if( rc==0 ){
rc = rc2;
}
}else{
rc = (pLhs->aNode==0) - (pRhs->aNode==0);
}
if( rc==0 ){
rc = pRhs->iIdx - pLhs->iIdx;
}
assert( rc!=0 );
return rc;
}
/*
** A different comparison function for SegReader structures. In this
** version, it is assumed that each SegReader points to an entry in
** a doclist for identical terms. Comparison is made as follows:
**
** 1) EOF (end of doclist in this case) is greater than not EOF.
**
** 2) By current docid.
**
** 3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
if( rc==0 ){
if( pLhs->iDocid==pRhs->iDocid ){
rc = pRhs->iIdx - pLhs->iIdx;
}else{
rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
}
}
assert( pLhs->aNode && pRhs->aNode );
return rc;
}
/*
** Compare the term that the Fts3SegReader object passed as the first argument
** points to with the term specified by arguments zTerm and nTerm.
**
** If the pSeg iterator is already at EOF, return 0. Otherwise, return
** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
*/
static int fts3SegReaderTermCmp(
Fts3SegReader *pSeg, /* Segment reader object */
const char *zTerm, /* Term to compare to */
int nTerm /* Size of term zTerm in bytes */
){
int res = 0;
if( pSeg->aNode ){
if( pSeg->nTerm>nTerm ){
res = memcmp(pSeg->zTerm, zTerm, nTerm);
}else{
res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
}
if( res==0 ){
res = pSeg->nTerm-nTerm;
}
}
return res;
}
/*
** Argument apSegment is an array of nSegment elements. It is known that
** the final (nSegment-nSuspect) members are already in sorted order
** (according to the comparison function provided). This function shuffles
** the array around until all entries are in sorted order.
*/
static void fts3SegReaderSort(
Fts3SegReader **apSegment, /* Array to sort entries of */
int nSegment, /* Size of apSegment array */
int nSuspect, /* Unsorted entry count */
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
){
int i; /* Iterator variable */
assert( nSuspect<=nSegment );
if( nSuspect==nSegment ) nSuspect--;
for(i=nSuspect-1; i>=0; i--){
int j;
for(j=i; j<(nSegment-1); j++){
Fts3SegReader *pTmp;
if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
pTmp = apSegment[j+1];
apSegment[j+1] = apSegment[j];
apSegment[j] = pTmp;
}
}
#ifndef NDEBUG
/* Check that the list really is sorted now. */
for(i=0; i<(nSuspect-1); i++){
assert( xCmp(apSegment[i], apSegment[i+1])<0 );
}
#endif
}
/*
** Insert a record into the %_segments table.
*/
static int fts3WriteSegment(
Fts3Table *p, /* Virtual table handle */
sqlite3_int64 iBlock, /* Block id for new block */
char *z, /* Pointer to buffer containing block data */
int n /* Size of buffer z in bytes */
){
sqlite3_stmt *pStmt;
int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pStmt, 1, iBlock);
sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
return rc;
}
/*
** Insert a record into the %_segdir table.
*/
static int fts3WriteSegdir(
Fts3Table *p, /* Virtual table handle */
int iLevel, /* Value for "level" field */
int iIdx, /* Value for "idx" field */
sqlite3_int64 iStartBlock, /* Value for "start_block" field */
sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
sqlite3_int64 iEndBlock, /* Value for "end_block" field */
char *zRoot, /* Blob value for "root" field */
int nRoot /* Number of bytes in buffer zRoot */
){
sqlite3_stmt *pStmt;
int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pStmt, 1, iLevel);
sqlite3_bind_int(pStmt, 2, iIdx);
sqlite3_bind_int64(pStmt, 3, iStartBlock);
sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
sqlite3_bind_int64(pStmt, 5, iEndBlock);
sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
}
return rc;
}
/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example,
**
** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
*/
static int fts3PrefixCompress(
const char *zPrev, /* Buffer containing previous term */
int nPrev, /* Size of buffer zPrev in bytes */
const char *zNext, /* Buffer containing next term */
int nNext /* Size of buffer zNext in bytes */
){
int n;
UNUSED_PARAMETER(nNext);
for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
return n;
}
/*
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
** (according to memcmp) than the previous term.
*/
static int fts3NodeAddTerm(
Fts3Table *p, /* Virtual table handle */
SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
int isCopyTerm, /* True if zTerm/nTerm is transient */
const char *zTerm, /* Pointer to buffer containing term */
int nTerm /* Size of term in bytes */
){
SegmentNode *pTree = *ppTree;
int rc;
SegmentNode *pNew;
/* First try to append the term to the current node. Return early if
** this is possible.
*/
if( pTree ){
int nData = pTree->nData; /* Current size of node in bytes */
int nReq = nData; /* Required space after adding zTerm */
int nPrefix; /* Number of bytes of prefix compression */
int nSuffix; /* Suffix length */
nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
nSuffix = nTerm-nPrefix;
nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
if( nReq<=p->nNodeSize || !pTree->zTerm ){
if( nReq>p->nNodeSize ){
/* An unusual case: this is the first term to be added to the node
** and the static node buffer (p->nNodeSize bytes) is not large
** enough. Use a separately malloced buffer instead This wastes
** p->nNodeSize bytes, but since this scenario only comes about when
** the database contain two terms that share a prefix of almost 2KB,
** this is not expected to be a serious problem.
*/
assert( pTree->aData==(char *)&pTree[1] );
pTree->aData = (char *)sqlite3_malloc(nReq);
if( !pTree->aData ){
return SQLITE_NOMEM;
}
}
if( pTree->zTerm ){
/* There is no prefix-length field for first term in a node */
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
}
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
pTree->nData = nData + nSuffix;
pTree->nEntry++;
if( isCopyTerm ){
if( pTree->nMalloc<nTerm ){
char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
if( !zNew ){
return SQLITE_NOMEM;
}
pTree->nMalloc = nTerm*2;
pTree->zMalloc = zNew;
}
pTree->zTerm = pTree->zMalloc;
memcpy(pTree->zTerm, zTerm, nTerm);
pTree->nTerm = nTerm;
}else{
pTree->zTerm = (char *)zTerm;
pTree->nTerm = nTerm;
}
return SQLITE_OK;
}
}
/* If control flows to here, it was not possible to append zTerm to the
** current node. Create a new node (a right-sibling of the current node).
** If this is the first node in the tree, the term is added to it.
**
** Otherwise, the term is not added to the new node, it is left empty for
** now. Instead, the term is inserted into the parent of pTree. If pTree
** has no parent, one is created here.
*/
pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
if( !pNew ){
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SegmentNode));
pNew->nData = 1 + FTS3_VARINT_MAX;
pNew->aData = (char *)&pNew[1];
if( pTree ){
SegmentNode *pParent = pTree->pParent;
rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
if( pTree->pParent==0 ){
pTree->pParent = pParent;
}
pTree->pRight = pNew;
pNew->pLeftmost = pTree->pLeftmost;
pNew->pParent = pParent;
pNew->zMalloc = pTree->zMalloc;
pNew->nMalloc = pTree->nMalloc;
pTree->zMalloc = 0;
}else{
pNew->pLeftmost = pNew;
rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
}
*ppTree = pNew;
return rc;
}
/*
** Helper function for fts3NodeWrite().
*/
static int fts3TreeFinishNode(
SegmentNode *pTree,
int iHeight,
sqlite3_int64 iLeftChild
){
int nStart;
assert( iHeight>=1 && iHeight<128 );
nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
pTree->aData[nStart] = (char)iHeight;
sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
return nStart;
}
/*
** Write the buffer for the segment node pTree and all of its peers to the
** database. Then call this function recursively to write the parent of
** pTree and its peers to the database.
**
** Except, if pTree is a root node, do not write it to the database. Instead,
** set output variables *paRoot and *pnRoot to contain the root node.
**
** If successful, SQLITE_OK is returned and output variable *piLast is
** set to the largest blockid written to the database (or zero if no
** blocks were written to the db). Otherwise, an SQLite error code is
** returned.
*/
static int fts3NodeWrite(
Fts3Table *p, /* Virtual table handle */
SegmentNode *pTree, /* SegmentNode handle */
int iHeight, /* Height of this node in tree */
sqlite3_int64 iLeaf, /* Block id of first leaf node */
sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
char **paRoot, /* OUT: Data for root node */
int *pnRoot /* OUT: Size of root node in bytes */
){
int rc = SQLITE_OK;
if( !pTree->pParent ){
/* Root node of the tree. */
int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
*piLast = iFree-1;
*pnRoot = pTree->nData - nStart;
*paRoot = &pTree->aData[nStart];
}else{
SegmentNode *pIter;
sqlite3_int64 iNextFree = iFree;
sqlite3_int64 iNextLeaf = iLeaf;
for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
int nWrite = pIter->nData - nStart;
rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
iNextFree++;
iNextLeaf += (pIter->nEntry+1);
}
if( rc==SQLITE_OK ){
assert( iNextLeaf==iFree );
rc = fts3NodeWrite(
p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
);
}
}
return rc;
}
/*
** Free all memory allocations associated with the tree pTree.
*/
static void fts3NodeFree(SegmentNode *pTree){
if( pTree ){
SegmentNode *p = pTree->pLeftmost;
fts3NodeFree(p->pParent);
while( p ){
SegmentNode *pRight = p->pRight;
if( p->aData!=(char *)&p[1] ){
sqlite3_free(p->aData);
}
assert( pRight==0 || p->zMalloc==0 );
sqlite3_free(p->zMalloc);
sqlite3_free(p);
p = pRight;
}
}
}
/*
** Add a term to the segment being constructed by the SegmentWriter object
** *ppWriter. When adding the first term to a segment, *ppWriter should
** be passed NULL. This function will allocate a new SegmentWriter object
** and return it via the input/output variable *ppWriter in this case.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterAdd(
Fts3Table *p, /* Virtual table handle */
SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
int isCopyTerm, /* True if buffer zTerm must be copied */
const char *zTerm, /* Pointer to buffer containing term */
int nTerm, /* Size of term in bytes */
const char *aDoclist, /* Pointer to buffer containing doclist */
int nDoclist /* Size of doclist in bytes */
){
int nPrefix; /* Size of term prefix in bytes */
int nSuffix; /* Size of term suffix in bytes */
int nReq; /* Number of bytes required on leaf page */
int nData;
SegmentWriter *pWriter = *ppWriter;
if( !pWriter ){
int rc;
sqlite3_stmt *pStmt;
/* Allocate the SegmentWriter structure */
pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
if( !pWriter ) return SQLITE_NOMEM;
memset(pWriter, 0, sizeof(SegmentWriter));
*ppWriter = pWriter;
/* Allocate a buffer in which to accumulate data */
pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
if( !pWriter->aData ) return SQLITE_NOMEM;
pWriter->nSize = p->nNodeSize;
/* Find the next free blockid in the %_segments table */
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
if( rc!=SQLITE_OK ) return rc;
if( SQLITE_ROW==sqlite3_step(pStmt) ){
pWriter->iFree = sqlite3_column_int64(pStmt, 0);
pWriter->iFirst = pWriter->iFree;
}
rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ) return rc;
}
nData = pWriter->nData;
nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
nSuffix = nTerm-nPrefix;
/* Figure out how many bytes are required by this new entry */
nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
nSuffix + /* Term suffix */
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
nDoclist; /* Doclist data */
if( nData>0 && nData+nReq>p->nNodeSize ){
int rc;
/* The current leaf node is full. Write it out to the database. */
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
if( rc!=SQLITE_OK ) return rc;
/* Add the current term to the interior node tree. The term added to
** the interior tree must:
**
** a) be greater than the largest term on the leaf node just written
** to the database (still available in pWriter->zTerm), and
**
** b) be less than or equal to the term about to be added to the new
** leaf node (zTerm/nTerm).
**
** In other words, it must be the prefix of zTerm 1 byte longer than
** the common prefix (if any) of zTerm and pWriter->zTerm.
*/
assert( nPrefix<nTerm );
rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
if( rc!=SQLITE_OK ) return rc;
nData = 0;
pWriter->nTerm = 0;
nPrefix = 0;
nSuffix = nTerm;
nReq = 1 + /* varint containing prefix size */
sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
nTerm + /* Term suffix */
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
nDoclist; /* Doclist data */
}
/* If the buffer currently allocated is too small for this entry, realloc
** the buffer to make it large enough.
*/
if( nReq>pWriter->nSize ){
char *aNew = sqlite3_realloc(pWriter->aData, nReq);
if( !aNew ) return SQLITE_NOMEM;
pWriter->aData = aNew;
pWriter->nSize = nReq;
}
assert( nData+nReq<=pWriter->nSize );
/* Append the prefix-compressed term and doclist to the buffer. */
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
nData += nSuffix;
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
pWriter->nData = nData + nDoclist;
/* Save the current term so that it can be used to prefix-compress the next.
** If the isCopyTerm parameter is true, then the buffer pointed to by
** zTerm is transient, so take a copy of the term data. Otherwise, just
** store a copy of the pointer.
*/
if( isCopyTerm ){
if( nTerm>pWriter->nMalloc ){
char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
if( !zNew ){
return SQLITE_NOMEM;
}
pWriter->nMalloc = nTerm*2;
pWriter->zMalloc = zNew;
pWriter->zTerm = zNew;
}
assert( pWriter->zTerm==pWriter->zMalloc );
memcpy(pWriter->zTerm, zTerm, nTerm);
}else{
pWriter->zTerm = (char *)zTerm;
}
pWriter->nTerm = nTerm;
return SQLITE_OK;
}
/*
** Flush all data associated with the SegmentWriter object pWriter to the
** database. This function must be called after all terms have been added
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
** returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterFlush(
Fts3Table *p, /* Virtual table handle */
SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
int iLevel, /* Value for 'level' column of %_segdir */
int iIdx /* Value for 'idx' column of %_segdir */
){
int rc; /* Return code */
if( pWriter->pTree ){
sqlite3_int64 iLast = 0; /* Largest block id written to database */
sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
char *zRoot = NULL; /* Pointer to buffer containing root node */
int nRoot = 0; /* Size of buffer zRoot */
iLastLeaf = pWriter->iFree;
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
if( rc==SQLITE_OK ){
rc = fts3NodeWrite(p, pWriter->pTree, 1,
pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
}
if( rc==SQLITE_OK ){
rc = fts3WriteSegdir(
p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
}
}else{
/* The entire tree fits on the root node. Write it to the segdir table. */
rc = fts3WriteSegdir(
p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
}
return rc;
}
/*
** Release all memory held by the SegmentWriter object passed as the
** first argument.
*/
static void fts3SegWriterFree(SegmentWriter *pWriter){
if( pWriter ){
sqlite3_free(pWriter->aData);
sqlite3_free(pWriter->zMalloc);
fts3NodeFree(pWriter->pTree);
sqlite3_free(pWriter);
}
}
/*
** The first value in the apVal[] array is assumed to contain an integer.
** This function tests if there exist any documents with docid values that
** are different from that integer. i.e. if deleting the document with docid
** apVal[0] would mean the FTS3 table were empty.
**
** If successful, *pisEmpty is set to true if the table is empty except for
** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an
** error occurs, an SQLite error code is returned.
*/
static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){
sqlite3_stmt *pStmt;
int rc;
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pisEmpty = sqlite3_column_int(pStmt, 0);
}
rc = sqlite3_reset(pStmt);
}
return rc;
}
/*
** Set *pnSegment to the total number of segments in the database. Set
** *pnMax to the largest segment level in the database (segment levels
** are stored in the 'level' column of the %_segdir table).
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){
sqlite3_stmt *pStmt;
int rc;
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0);
if( rc!=SQLITE_OK ) return rc;
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pnSegment = sqlite3_column_int(pStmt, 0);
*pnMax = sqlite3_column_int(pStmt, 1);
}
return sqlite3_reset(pStmt);
}
/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
** it:
**
** 1) Deletes all %_segments entries for the segments associated with
** each of the SegReader objects in the array passed as the third
** argument, and
**
** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
** entries regardless of level if (iLevel<0).
**
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
*/
static int fts3DeleteSegdir(
Fts3Table *p, /* Virtual table handle */
int iLevel, /* Level of %_segdir entries to delete */
Fts3SegReader **apSegment, /* Array of SegReader objects */
int nReader /* Size of array apSegment */
){
int rc; /* Return Code */
int i; /* Iterator variable */
sqlite3_stmt *pDelete; /* SQL statement to delete rows */
rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
for(i=0; rc==SQLITE_OK && i<nReader; i++){
Fts3SegReader *pSegment = apSegment[i];
if( pSegment->iStartBlock ){
sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock);
sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock);
sqlite3_step(pDelete);
rc = sqlite3_reset(pDelete);
}
}
if( rc!=SQLITE_OK ){
return rc;
}
if( iLevel==FTS3_SEGCURSOR_ALL ){
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
}else if( iLevel==FTS3_SEGCURSOR_PENDING ){
sqlite3Fts3PendingTermsClear(p);
}else{
assert( iLevel>=0 );
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0);
if( rc==SQLITE_OK ){
sqlite3_bind_int(pDelete, 1, iLevel);
sqlite3_step(pDelete);
rc = sqlite3_reset(pDelete);
}
}
return rc;
}
/*
** When this function is called, buffer *ppList (size *pnList bytes) contains
** a position list that may (or may not) feature multiple columns. This
** function adjusts the pointer *ppList and the length *pnList so that they
** identify the subset of the position list that corresponds to column iCol.
**
** If there are no entries in the input position list for column iCol, then
** *pnList is set to zero before returning.
*/
static void fts3ColumnFilter(
int iCol, /* Column to filter on */
char **ppList, /* IN/OUT: Pointer to position list */
int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
){
char *pList = *ppList;
int nList = *pnList;
char *pEnd = &pList[nList];
int iCurrent = 0;
char *p = pList;
assert( iCol>=0 );
while( 1 ){
char c = 0;
while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
if( iCol==iCurrent ){
nList = (int)(p - pList);
break;
}
nList -= (int)(p - pList);
pList = p;
if( nList==0 ){
break;
}
p = &pList[1];
p += sqlite3Fts3GetVarint32(p, &iCurrent);
}
*ppList = pList;
*pnList = nList;
}
int sqlite3Fts3SegReaderStart(
Fts3Table *p, /* Virtual table handle */
Fts3SegReaderCursor *pCsr, /* Cursor object */
Fts3SegFilter *pFilter /* Restrictions on range of iteration */
){
int i;
/* Initialize the cursor object */
pCsr->pFilter = pFilter;
/* If the Fts3SegFilter defines a specific term (or term prefix) to search
** for, then advance each segment iterator until it points to a term of
** equal or greater value than the specified term. This prevents many
** unnecessary merge/sort operations for the case where single segment
** b-tree leaf nodes contain more than one term.
*/
for(i=0; i<pCsr->nSegment; i++){
int nTerm = pFilter->nTerm;
const char *zTerm = pFilter->zTerm;
Fts3SegReader *pSeg = pCsr->apSegment[i];
do {
int rc = fts3SegReaderNext(p, pSeg);
if( rc!=SQLITE_OK ) return rc;
}while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
}
fts3SegReaderSort(
pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp);
return SQLITE_OK;
}
int sqlite3Fts3SegReaderStep(
Fts3Table *p, /* Virtual table handle */
Fts3SegReaderCursor *pCsr /* Cursor object */
){
int rc = SQLITE_OK;
int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
Fts3SegReader **apSegment = pCsr->apSegment;
int nSegment = pCsr->nSegment;
Fts3SegFilter *pFilter = pCsr->pFilter;
if( pCsr->nSegment==0 ) return SQLITE_OK;
do {
int nMerge;
int i;
/* Advance the first pCsr->nAdvance entries in the apSegment[] array
** forward. Then sort the list in order of current term again.
*/
for(i=0; i<pCsr->nAdvance; i++){
rc = fts3SegReaderNext(p, apSegment[i]);
if( rc!=SQLITE_OK ) return rc;
}
fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
pCsr->nAdvance = 0;
/* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
assert( rc==SQLITE_OK );
if( apSegment[0]->aNode==0 ) break;
pCsr->nTerm = apSegment[0]->nTerm;
pCsr->zTerm = apSegment[0]->zTerm;
/* If this is a prefix-search, and if the term that apSegment[0] points
** to does not share a suffix with pFilter->zTerm/nTerm, then all
** required callbacks have been made. In this case exit early.
**
** Similarly, if this is a search for an exact match, and the first term
** of segment apSegment[0] is not a match, exit early.
*/
if( pFilter->zTerm && !isScan ){
if( pCsr->nTerm<pFilter->nTerm
|| (!isPrefix && pCsr->nTerm>pFilter->nTerm)
|| memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
){
break;
}
}
nMerge = 1;
while( nMerge<nSegment
&& apSegment[nMerge]->aNode
&& apSegment[nMerge]->nTerm==pCsr->nTerm
&& 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
){
nMerge++;
}
assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
if( nMerge==1 && !isIgnoreEmpty ){
pCsr->aDoclist = apSegment[0]->aDoclist;
pCsr->nDoclist = apSegment[0]->nDoclist;
rc = SQLITE_ROW;
}else{
int nDoclist = 0; /* Size of doclist */
sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
/* The current term of the first nMerge entries in the array
** of Fts3SegReader objects is the same. The doclists must be merged
** and a single term returned with the merged doclist.
*/
for(i=0; i<nMerge; i++){
fts3SegReaderFirstDocid(apSegment[i]);
}
fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp);
while( apSegment[0]->pOffsetList ){
int j; /* Number of segments that share a docid */
char *pList;
int nList;
int nByte;
sqlite3_int64 iDocid = apSegment[0]->iDocid;
fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
j = 1;
while( j<nMerge
&& apSegment[j]->pOffsetList
&& apSegment[j]->iDocid==iDocid
){
fts3SegReaderNextDocid(apSegment[j], 0, 0);
j++;
}
if( isColFilter ){
fts3ColumnFilter(pFilter->iCol, &pList, &nList);
}
if( !isIgnoreEmpty || nList>0 ){
nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0);
if( nDoclist+nByte>pCsr->nBuffer ){
char *aNew;
pCsr->nBuffer = (nDoclist+nByte)*2;
aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
if( !aNew ){
return SQLITE_NOMEM;
}
pCsr->aBuffer = aNew;
}
nDoclist += sqlite3Fts3PutVarint(
&pCsr->aBuffer[nDoclist], iDocid-iPrev
);
iPrev = iDocid;
if( isRequirePos ){
memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
nDoclist += nList;
pCsr->aBuffer[nDoclist++] = '\0';
}
}
fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp);
}
if( nDoclist>0 ){
pCsr->aDoclist = pCsr->aBuffer;
pCsr->nDoclist = nDoclist;
rc = SQLITE_ROW;
}
}
pCsr->nAdvance = nMerge;
}while( rc==SQLITE_OK );
return rc;
}
void sqlite3Fts3SegReaderFinish(
Fts3SegReaderCursor *pCsr /* Cursor object */
){
if( pCsr ){
int i;
for(i=0; i<pCsr->nSegment; i++){
sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
}
sqlite3_free(pCsr->apSegment);
sqlite3_free(pCsr->aBuffer);
pCsr->nSegment = 0;
pCsr->apSegment = 0;
pCsr->aBuffer = 0;
}
}
/*
** Merge all level iLevel segments in the database into a single
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
** single segment with a level equal to the numerically largest level
** currently present in the database.
**
** If this function is called with iLevel<0, but there is only one
** segment in the database, SQLITE_DONE is returned immediately.
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
int rc; /* Return code */
int iIdx = 0; /* Index of new segment */
int iNewLevel = 0; /* Level to create new segment at */
SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
Fts3SegFilter filter; /* Segment term filter condition */
Fts3SegReaderCursor csr; /* Cursor to iterate through level(s) */
rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr);
if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
if( iLevel==FTS3_SEGCURSOR_ALL ){
/* This call is to merge all segments in the database to a single
** segment. The level of the new segment is equal to the the numerically
** greatest segment level currently present in the database. The index
** of the new segment is always 0. */
int nDummy; /* TODO: Remove this */
if( csr.nSegment==1 ){
rc = SQLITE_DONE;
goto finished;
}
rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel);
}else{
/* This call is to merge all segments at level iLevel. Find the next
** available segment index at level iLevel+1. The call to
** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
** a single iLevel+2 segment if necessary. */
iNewLevel = iLevel+1;
rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);
}
if( rc!=SQLITE_OK ) goto finished;
assert( csr.nSegment>0 );
assert( iNewLevel>=0 );
memset(&filter, 0, sizeof(Fts3SegFilter));
filter.flags = FTS3_SEGMENT_REQUIRE_POS;
filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
while( SQLITE_OK==rc ){
rc = sqlite3Fts3SegReaderStep(p, &csr);
if( rc!=SQLITE_ROW ) break;
rc = fts3SegWriterAdd(p, &pWriter, 1,
csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
}
if( rc!=SQLITE_OK ) goto finished;
assert( pWriter );
rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment);
if( rc!=SQLITE_OK ) goto finished;
rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
finished:
fts3SegWriterFree(pWriter);
sqlite3Fts3SegReaderFinish(&csr);
return rc;
}
/*
** Flush the contents of pendingTerms to a level 0 segment.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING);
}
/*
** Encode N integers as varints into a blob.
*/
static void fts3EncodeIntArray(
int N, /* The number of integers to encode */
u32 *a, /* The integer values */
char *zBuf, /* Write the BLOB here */
int *pNBuf /* Write number of bytes if zBuf[] used here */
){
int i, j;
for(i=j=0; i<N; i++){
j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
}
*pNBuf = j;
}
/*
** Decode a blob of varints into N integers
*/
static void fts3DecodeIntArray(
int N, /* The number of integers to decode */
u32 *a, /* Write the integer values */
const char *zBuf, /* The BLOB containing the varints */
int nBuf /* size of the BLOB */
){
int i, j;
UNUSED_PARAMETER(nBuf);
for(i=j=0; i<N; i++){
sqlite3_int64 x;
j += sqlite3Fts3GetVarint(&zBuf[j], &x);
assert(j<=nBuf);
a[i] = (u32)(x & 0xffffffff);
}
}
/*
** Insert the sizes (in tokens) for each column of the document
** with docid equal to p->iPrevDocid. The sizes are encoded as
** a blob of varints.
*/
static void fts3InsertDocsize(
int *pRC, /* Result code */
Fts3Table *p, /* Table into which to insert */
u32 *aSz /* Sizes of each column */
){
char *pBlob; /* The BLOB encoding of the document size */
int nBlob; /* Number of bytes in the BLOB */
sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
int rc; /* Result code from subfunctions */
if( *pRC ) return;
pBlob = sqlite3_malloc( 10*p->nColumn );
if( pBlob==0 ){
*pRC = SQLITE_NOMEM;
return;
}
fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
if( rc ){
sqlite3_free(pBlob);
*pRC = rc;
return;
}
sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
sqlite3_step(pStmt);
*pRC = sqlite3_reset(pStmt);
}
/*
** Record 0 of the %_stat table contains a blob consisting of N varints,
** where N is the number of user defined columns in the fts3 table plus
** two. If nCol is the number of user defined columns, then values of the
** varints are set as follows:
**
** Varint 0: Total number of rows in the table.
**
** Varint 1..nCol: For each column, the total number of tokens stored in
** the column for all rows of the table.
**
** Varint 1+nCol: The total size, in bytes, of all text values in all
** columns of all rows of the table.
**
*/
static void fts3UpdateDocTotals(
int *pRC, /* The result code */
Fts3Table *p, /* Table being updated */
u32 *aSzIns, /* Size increases */
u32 *aSzDel, /* Size decreases */
int nChng /* Change in the number of documents */
){
char *pBlob; /* Storage for BLOB written into %_stat */
int nBlob; /* Size of BLOB written into %_stat */
u32 *a; /* Array of integers that becomes the BLOB */
sqlite3_stmt *pStmt; /* Statement for reading and writing */
int i; /* Loop counter */
int rc; /* Result code from subfunctions */
const int nStat = p->nColumn+2;
if( *pRC ) return;
a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
if( a==0 ){
*pRC = SQLITE_NOMEM;
return;
}
pBlob = (char*)&a[nStat];
rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0);
if( rc ){
sqlite3_free(a);
*pRC = rc;
return;
}
if( sqlite3_step(pStmt)==SQLITE_ROW ){
fts3DecodeIntArray(nStat, a,
sqlite3_column_blob(pStmt, 0),
sqlite3_column_bytes(pStmt, 0));
}else{
memset(a, 0, sizeof(u32)*(nStat) );
}
sqlite3_reset(pStmt);
if( nChng<0 && a[0]<(u32)(-nChng) ){
a[0] = 0;
}else{
a[0] += nChng;
}
for(i=0; i<p->nColumn+1; i++){
u32 x = a[i+1];
if( x+aSzIns[i] < aSzDel[i] ){
x = 0;
}else{
x = x + aSzIns[i] - aSzDel[i];
}
a[i+1] = x;
}
fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0);
if( rc ){
sqlite3_free(a);
*pRC = rc;
return;
}
sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
sqlite3_step(pStmt);
*pRC = sqlite3_reset(pStmt);
sqlite3_free(a);
}
/*
** Handle a 'special' INSERT of the form:
**
** "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
int rc; /* Return Code */
const char *zVal = (const char *)sqlite3_value_text(pVal);
int nVal = sqlite3_value_bytes(pVal);
if( !zVal ){
return SQLITE_NOMEM;
}else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
}else{
sqlite3Fts3PendingTermsClear(p);
}
#ifdef SQLITE_TEST
}else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
p->nNodeSize = atoi(&zVal[9]);
rc = SQLITE_OK;
}else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
p->nMaxPendingData = atoi(&zVal[11]);
rc = SQLITE_OK;
#endif
}else{
rc = SQLITE_ERROR;
}
sqlite3Fts3SegmentsClose(p);
return rc;
}
/*
** Return the deferred doclist associated with deferred token pDeferred.
** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already
** been called to allocate and populate the doclist.
*/
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *pDeferred, int *pnByte){
if( pDeferred->pList ){
*pnByte = pDeferred->pList->nData;
return pDeferred->pList->aData;
}
*pnByte = 0;
return 0;
}
/*
** Helper fucntion for FreeDeferredDoclists(). This function removes all
** references to deferred doclists from within the tree of Fts3Expr
** structures headed by
*/
static void fts3DeferredDoclistClear(Fts3Expr *pExpr){
if( pExpr ){
fts3DeferredDoclistClear(pExpr->pLeft);
fts3DeferredDoclistClear(pExpr->pRight);
if( pExpr->isLoaded ){
sqlite3_free(pExpr->aDoclist);
pExpr->isLoaded = 0;
pExpr->aDoclist = 0;
pExpr->nDoclist = 0;
pExpr->pCurrent = 0;
pExpr->iCurrent = 0;
}
}
}
/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
Fts3DeferredToken *pDef;
for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
sqlite3_free(pDef->pList);
pDef->pList = 0;
}
if( pCsr->pDeferred ){
fts3DeferredDoclistClear(pCsr->pExpr);
}
}
/*
** Free all entries in the pCsr->pDeffered list. Entries are added to
** this list using sqlite3Fts3DeferToken().
*/
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
Fts3DeferredToken *pDef;
Fts3DeferredToken *pNext;
for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
pNext = pDef->pNext;
sqlite3_free(pDef->pList);
sqlite3_free(pDef);
}
pCsr->pDeferred = 0;
}
/*
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
** based on the row that pCsr currently points to.
**
** A deferred-doclist is like any other doclist with position information
** included, except that it only contains entries for a single row of the
** table, not for all rows.
*/
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
int rc = SQLITE_OK; /* Return code */
if( pCsr->pDeferred ){
int i; /* Used to iterate through table columns */
sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
sqlite3_tokenizer *pT = p->pTokenizer;
sqlite3_tokenizer_module const *pModule = pT->pModule;
assert( pCsr->isRequireSeek==0 );
iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
sqlite3_tokenizer_cursor *pTC = 0;
rc = pModule->xOpen(pT, zText, -1, &pTC);
while( rc==SQLITE_OK ){
char const *zToken; /* Buffer containing token */
int nToken; /* Number of bytes in token */
int iDum1, iDum2; /* Dummy variables */
int iPos; /* Position of token in zText */
pTC->pTokenizer = pT;
rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
Fts3PhraseToken *pPT = pDef->pToken;
if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
&& (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
&& (0==memcmp(zToken, pPT->z, pPT->n))
){
fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
}
}
}
if( pTC ) pModule->xClose(pTC);
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
}
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
if( pDef->pList ){
rc = fts3PendingListAppendVarint(&pDef->pList, 0);
}
}
}
return rc;
}
/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
int sqlite3Fts3DeferToken(
Fts3Cursor *pCsr, /* Fts3 table cursor */
Fts3PhraseToken *pToken, /* Token to defer */
int iCol /* Column that token must appear in (or -1) */
){
Fts3DeferredToken *pDeferred;
pDeferred = sqlite3_malloc(sizeof(*pDeferred));
if( !pDeferred ){
return SQLITE_NOMEM;
}
memset(pDeferred, 0, sizeof(*pDeferred));
pDeferred->pToken = pToken;
pDeferred->pNext = pCsr->pDeferred;
pDeferred->iCol = iCol;
pCsr->pDeferred = pDeferred;
assert( pToken->pDeferred==0 );
pToken->pDeferred = pDeferred;
return SQLITE_OK;
}
/*
** This function does the work for the xUpdate method of FTS3 virtual
** tables.
*/
int sqlite3Fts3UpdateMethod(
sqlite3_vtab *pVtab, /* FTS3 vtab object */
int nArg, /* Size of argument array */
sqlite3_value **apVal, /* Array of arguments */
sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
){
Fts3Table *p = (Fts3Table *)pVtab;
int rc = SQLITE_OK; /* Return Code */
int isRemove = 0; /* True for an UPDATE or DELETE */
sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */
u32 *aSzIns; /* Sizes of inserted documents */
u32 *aSzDel; /* Sizes of deleted documents */
int nChng = 0; /* Net change in number of documents */
assert( p->pSegments==0 );
/* Allocate space to hold the change in document sizes */
aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
if( aSzIns==0 ) return SQLITE_NOMEM;
aSzDel = &aSzIns[p->nColumn+1];
memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);
/* If this is a DELETE or UPDATE operation, remove the old record. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
int isEmpty = 0;
rc = fts3IsEmpty(p, apVal, &isEmpty);
if( rc==SQLITE_OK ){
if( isEmpty ){
/* Deleting this row means the whole table is empty. In this case
** delete the contents of all three tables and throw away any
** data in the pendingTerms hash table.
*/
rc = fts3DeleteAll(p);
}else{
isRemove = 1;
iRemove = sqlite3_value_int64(apVal[0]);
rc = fts3PendingTermsDocid(p, iRemove);
fts3DeleteTerms(&rc, p, apVal, aSzDel);
fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, apVal);
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, apVal);
}
nChng--;
}
}
}else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){
sqlite3_free(aSzIns);
return fts3SpecialInsert(p, apVal[p->nColumn+2]);
}
/* If this is an INSERT or UPDATE operation, insert the new record. */
if( nArg>1 && rc==SQLITE_OK ){
rc = fts3InsertData(p, apVal, pRowid);
if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
rc = fts3PendingTermsDocid(p, *pRowid);
}
if( rc==SQLITE_OK ){
rc = fts3InsertTerms(p, apVal, aSzIns);
}
if( p->bHasDocsize ){
fts3InsertDocsize(&rc, p, aSzIns);
}
nChng++;
}
if( p->bHasStat ){
fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
}
sqlite3_free(aSzIns);
sqlite3Fts3SegmentsClose(p);
return rc;
}
/*
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if
** there was any data to flush) into a single segment.
*/
int sqlite3Fts3Optimize(Fts3Table *p){
int rc;
rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
if( rc==SQLITE_OK ){
rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
if( rc==SQLITE_OK ){
sqlite3Fts3PendingTermsClear(p);
}
}else{
sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
}
}
sqlite3Fts3SegmentsClose(p);
return rc;
}
#endif
|