File: db_page.h

package info (click to toggle)
db5.3 5.3.28-12%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,332 kB
  • ctags: 82,990
  • sloc: ansic: 448,411; java: 111,824; tcl: 80,544; sh: 44,326; cs: 33,697; cpp: 21,604; perl: 14,557; xml: 10,799; makefile: 4,106; yacc: 1,003; awk: 965; sql: 801; erlang: 342; python: 216; php: 24; asm: 14
file content (852 lines) | stat: -rw-r--r-- 31,991 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 1996, 2013 Oracle and/or its affiliates.  All rights reserved.
 *
 * $Id$
 */

#ifndef _DB_PAGE_H_
#define	_DB_PAGE_H_

#if defined(__cplusplus)
extern "C" {
#endif

/*
 * DB page formats.
 *
 * !!!
 * This implementation requires that values within the following structures
 * NOT be padded -- note, ANSI C permits random padding within structures.
 * If your compiler pads randomly you can just forget ever making DB run on
 * your system.  In addition, no data type can require larger alignment than
 * its own size, e.g., a 4-byte data element may not require 8-byte alignment.
 *
 * Note that key/data lengths are often stored in db_indx_t's -- this is
 * not accidental, nor does it limit the key/data size.  If the key/data
 * item fits on a page, it's guaranteed to be small enough to fit into a
 * db_indx_t, and storing it in one saves space.
 */

#define	PGNO_INVALID	0	/* Invalid page number in any database. */
#define	PGNO_BASE_MD	0	/* Base database: metadata page number. */

/* Page types. */
#define	P_INVALID	0	/* Invalid page type. */
#define	__P_DUPLICATE	1	/* Duplicate. DEPRECATED in 3.1 */
#define	P_HASH_UNSORTED	2	/* Hash pages created pre 4.6. DEPRECATED */
#define	P_IBTREE	3	/* Btree internal. */
#define	P_IRECNO	4	/* Recno internal. */
#define	P_LBTREE	5	/* Btree leaf. */
#define	P_LRECNO	6	/* Recno leaf. */
#define	P_OVERFLOW	7	/* Overflow. */
#define	P_HASHMETA	8	/* Hash metadata page. */
#define	P_BTREEMETA	9	/* Btree metadata page. */
#define	P_QAMMETA	10	/* Queue metadata page. */
#define	P_QAMDATA	11	/* Queue data page. */
#define	P_LDUP		12	/* Off-page duplicate leaf. */
#define	P_HASH		13	/* Sorted hash page. */
#define	P_HEAPMETA	14	/* Heap metadata page. */
#define	P_HEAP		15	/* Heap data page. */
#define	P_IHEAP		16	/* Heap internal. */
#define	P_PAGETYPE_MAX	17
/* Flag to __db_new */
#define	P_DONTEXTEND	0x8000	/* Don't allocate if there are no free pages. */

/*
 * When we create pages in mpool, we ask mpool to clear some number of bytes
 * in the header.  This number must be at least as big as the regular page
 * headers and cover enough of the btree and hash meta-data pages to obliterate
 * the page type.
 */
#define	DB_PAGE_DB_LEN		32
#define	DB_PAGE_QUEUE_LEN	0

/************************************************************************
 GENERIC METADATA PAGE HEADER
 *
 * !!!
 * The magic and version numbers have to be in the same place in all versions
 * of the metadata page as the application may not have upgraded the database.
 ************************************************************************/
typedef struct _dbmeta33 {
	DB_LSN	  lsn;		/* 00-07: LSN. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t magic;	/* 12-15: Magic number. */
	u_int32_t version;	/* 16-19: Version. */
	u_int32_t pagesize;	/* 20-23: Pagesize. */
	u_int8_t  encrypt_alg;	/*    24: Encryption algorithm. */
	u_int8_t  type;		/*    25: Page type. */
#define	DBMETA_CHKSUM		0x01
#define	DBMETA_PART_RANGE	0x02
#define	DBMETA_PART_CALLBACK	0x04
	u_int8_t  metaflags;	/* 26: Meta-only flags */
	u_int8_t  unused1;	/* 27: Unused. */
	u_int32_t free;		/* 28-31: Free list page number. */
	db_pgno_t last_pgno;	/* 32-35: Page number of last page in db. */
	u_int32_t nparts;	/* 36-39: Number of partitions. */
	u_int32_t key_count;	/* 40-43: Cached key count. */
	u_int32_t record_count;	/* 44-47: Cached record count. */
	u_int32_t flags;	/* 48-51: Flags: unique to each AM. */
				/* 52-71: Unique file ID. */
	u_int8_t  uid[DB_FILE_ID_LEN];
} DBMETA33, DBMETA;

/************************************************************************
 BTREE METADATA PAGE LAYOUT
 ************************************************************************/
typedef struct _btmeta33 {
#define	BTM_DUP		0x001	/*	  Duplicates. */
#define	BTM_RECNO	0x002	/*	  Recno tree. */
#define	BTM_RECNUM	0x004	/*	  Btree: maintain record count. */
#define	BTM_FIXEDLEN	0x008	/*	  Recno: fixed length records. */
#define	BTM_RENUMBER	0x010	/*	  Recno: renumber on insert/delete. */
#define	BTM_SUBDB	0x020	/*	  Subdatabases. */
#define	BTM_DUPSORT	0x040	/*	  Duplicates are sorted. */
#define	BTM_COMPRESS	0x080	/*	  Compressed. */
#define	BTM_MASK	0x0ff
	DBMETA	dbmeta;		/* 00-71: Generic meta-data header. */

	u_int32_t unused1;	/* 72-75: Unused space. */
	u_int32_t minkey;	/* 76-79: Btree: Minkey. */
	u_int32_t re_len;	/* 80-83: Recno: fixed-length record length. */
	u_int32_t re_pad;	/* 84-87: Recno: fixed-length record pad. */
	u_int32_t root;		/* 88-91: Root page. */
	u_int32_t unused2[92];	/* 92-459: Unused space. */
	u_int32_t crypto_magic;		/* 460-463: Crypto magic number */
	u_int32_t trash[3];		/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */

	/*
	 * Minimum page size is 512.
	 */
} BTMETA33, BTMETA;

/************************************************************************
 HASH METADATA PAGE LAYOUT
 ************************************************************************/
typedef struct _hashmeta33 {
#define	DB_HASH_DUP	0x01	/*	  Duplicates. */
#define	DB_HASH_SUBDB	0x02	/*	  Subdatabases. */
#define	DB_HASH_DUPSORT	0x04	/*	  Duplicates are sorted. */
	DBMETA dbmeta;		/* 00-71: Generic meta-data page header. */

	u_int32_t max_bucket;	/* 72-75: ID of Maximum bucket in use */
	u_int32_t high_mask;	/* 76-79: Modulo mask into table */
	u_int32_t low_mask;	/* 80-83: Modulo mask into table lower half */
	u_int32_t ffactor;	/* 84-87: Fill factor */
	u_int32_t nelem;	/* 88-91: Number of keys in hash table */
	u_int32_t h_charkey;	/* 92-95: Value of hash(CHARKEY) */
#define	NCACHED	32		/* number of spare points */
				/* 96-223: Spare pages for overflow */
	u_int32_t spares[NCACHED];
	u_int32_t unused[59];	/* 224-459: Unused space */
	u_int32_t crypto_magic;	/* 460-463: Crypto magic number */
	u_int32_t trash[3];	/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */

	/*
	 * Minimum page size is 512.
	 */
} HMETA33, HMETA;

/************************************************************************
 HEAP METADATA PAGE LAYOUT
*************************************************************************/
/*
 * Heap Meta data page structure
 *
 */
typedef struct _heapmeta {
	DBMETA    dbmeta;		/* 00-71: Generic meta-data header. */

	db_pgno_t curregion;		/* 72-75: Current region pgno. */
	u_int32_t nregions;		/* 76-79: Number of regions. */
	u_int32_t gbytes;		/* 80-83: GBytes for fixed size heap. */
	u_int32_t bytes;		/* 84-87: Bytes for fixed size heap. */
	u_int32_t region_size;		/* 88-91: Max region size. */
	u_int32_t unused2[92];		/* 92-459: Unused space.*/
	u_int32_t crypto_magic;		/* 460-463: Crypto magic number */
	u_int32_t trash[3];		/* 464-475: Trash space - Do not use */
	u_int8_t  iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t  chksum[DB_MAC_KEY];	/* 496-511: Page chksum */


	/*
	 * Minimum page size is 512.
	 */
} HEAPMETA;
		
/************************************************************************
 QUEUE METADATA PAGE LAYOUT
 ************************************************************************/
/*
 * QAM Meta data page structure
 *
 */
typedef struct _qmeta33 {
	DBMETA    dbmeta;	/* 00-71: Generic meta-data header. */

	u_int32_t first_recno;	/* 72-75: First not deleted record. */
	u_int32_t cur_recno;	/* 76-79: Next recno to be allocated. */
	u_int32_t re_len;	/* 80-83: Fixed-length record length. */
	u_int32_t re_pad;	/* 84-87: Fixed-length record pad. */
	u_int32_t rec_page;	/* 88-91: Records Per Page. */
	u_int32_t page_ext;	/* 92-95: Pages per extent */

	u_int32_t unused[91];	/* 96-459: Unused space */
	u_int32_t crypto_magic;	/* 460-463: Crypto magic number */
	u_int32_t trash[3];	/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */
	/*
	 * Minimum page size is 512.
	 */
} QMETA33, QMETA;

/*
 * DBMETASIZE is a constant used by __db_file_setup and DB->verify
 * as a buffer which is guaranteed to be larger than any possible
 * metadata page size and smaller than any disk sector.
 */
#define	DBMETASIZE	512

/************************************************************************
 BTREE/HASH MAIN PAGE LAYOUT
 ************************************************************************/
/*
 *	+-----------------------------------+
 *	|    lsn    |   pgno    | prev pgno |
 *	+-----------------------------------+
 *	| next pgno |  entries  | hf offset |
 *	+-----------------------------------+
 *	|   level   |   type    |   chksum  |
 *	+-----------------------------------+
 *	|    iv     |   index   | free -->  |
 *	+-----------+-----------------------+
 *	|	 F R E E A R E A            |
 *	+-----------------------------------+
 *	|              <-- free |   item    |
 *	+-----------------------------------+
 *	|   item    |   item    |   item    |
 *	+-----------------------------------+
 *
 * sizeof(PAGE) == 26 bytes + possibly 20 bytes of checksum and possibly
 * 16 bytes of IV (+ 2 bytes for alignment), and the following indices
 * are guaranteed to be two-byte aligned.  If we aren't doing crypto or
 * checksumming the bytes are reclaimed for data storage.
 *
 * For hash and btree leaf pages, index items are paired, e.g., inp[0] is the
 * key for inp[1]'s data.  All other types of pages only contain single items.
 */
typedef struct __pg_chksum {
	u_int8_t	unused[2];		/* 26-27: For alignment */
	u_int8_t	chksum[4];		/* 28-31: Checksum */
} PG_CHKSUM;

typedef struct __pg_crypto {
	u_int8_t	unused[2];		/* 26-27: For alignment */
	u_int8_t	chksum[DB_MAC_KEY];	/* 28-47: Checksum */
	u_int8_t	iv[DB_IV_BYTES];	/* 48-63: IV */
	/* !!!
	 * Must be 16-byte aligned for crypto
	 */
} PG_CRYPTO;

/*
 * With most compilers sizeof(PG_CRYPTO) == 38.  However some ABIs
 * require it to be padded to 40 bytes.  The padding must be excluded
 * from our size calculations due to the 16-byte alignment requirement
 * for crypto.
 *
 * A similar problem applies to PG_CHKSUM, but it's too late to change
 * that.
 */
#define SIZEOF_PG_CRYPTO 38

typedef struct _db_page {
	DB_LSN	  lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	db_pgno_t prev_pgno;	/* 12-15: Previous page number. */
	db_pgno_t next_pgno;	/* 16-19: Next page number. */
	db_indx_t entries;	/* 20-21: Number of items on the page. */
	db_indx_t hf_offset;	/* 22-23: High free byte page offset. */

	/*
	 * The btree levels are numbered from the leaf to the root, starting
	 * with 1, so the leaf is level 1, its parent is level 2, and so on.
	 * We maintain this level on all btree pages, but the only place that
	 * we actually need it is on the root page.  It would not be difficult
	 * to hide the byte on the root page once it becomes an internal page,
	 * so we could get this byte back if we needed it for something else.
	 */
#define	LEAFLEVEL	  1
#define	MAXBTREELEVEL	255
	u_int8_t  level;	/*    24: Btree tree level. */
	u_int8_t  type;		/*    25: Page type. */
} PAGE;

/*
 * With many compilers sizeof(PAGE) == 28, while SIZEOF_PAGE == 26.
 * We add in other things directly after the page header and need
 * the SIZEOF_PAGE.  When giving the sizeof(), many compilers will
 * pad it out to the next 4-byte boundary.
 */
#define	SIZEOF_PAGE	26
/*
 * !!!
 * DB_AM_ENCRYPT always implies DB_AM_CHKSUM so that must come first.
 */
#define	P_INP(dbp, pg)							\
	((db_indx_t *)((u_int8_t *)(pg) + SIZEOF_PAGE +			\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? SIZEOF_PG_CRYPTO :		\
	(F_ISSET((dbp), DB_AM_CHKSUM) ? sizeof(PG_CHKSUM) : 0))))

#define	P_IV(dbp, pg)							\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CRYPTO, iv))				\
	: NULL)

#define	P_CHKSUM(dbp, pg)						\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CRYPTO, chksum)) :			\
	(F_ISSET((dbp), DB_AM_CHKSUM) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CHKSUM, chksum))				\
	: NULL))

/* PAGE element macros. */
#define	LSN(p)		(((PAGE *)p)->lsn)
#define	PGNO(p)		(((PAGE *)p)->pgno)
#define	PREV_PGNO(p)	(((PAGE *)p)->prev_pgno)
#define	NEXT_PGNO(p)	(((PAGE *)p)->next_pgno)
#define	NUM_ENT(p)	(((PAGE *)p)->entries)
#define	HOFFSET(p)	(((PAGE *)p)->hf_offset)
#define	LEVEL(p)	(((PAGE *)p)->level)
#define	TYPE(p)		(((PAGE *)p)->type)

/************************************************************************
 HEAP PAGE LAYOUT
 ************************************************************************/
#define HEAPPG_NORMAL	26
#define HEAPPG_CHKSUM	48
#define HEAPPG_SEC	64

/*
 *	+0-----------2------------4-----------6-----------7+
 *	|                        lsn                       |
 *	+-------------------------+------------------------+
 *	|           pgno          |         unused0        |
 *      +-------------+-----------+-----------+------------+
 *	|  high_indx  | free_indx |  entries  |  hf offset |
 *	+-------+-----+-----------+-----------+------------+
 *	|unused2|type |  unused3  |      ...chksum...      |
 *	+-------+-----+-----------+------------------------+
 *	|  ...iv...   |   offset table / free space map    |
 *	+-------------+------------------------------------+
 *	|free->	 	F R E E A R E A                    |
 *	+--------------------------------------------------+
 *	|                <-- free |          item          |
 *	+-------------------------+------------------------+
 *	|           item          |          item          |
 *	+-------------------------+------------------------+
 *
 * The page layout of both heap internal and data pages.  If not using
 * crypto, iv will be overwritten with data.  If not using checksumming,
 * unused3 and chksum will also be overwritten with data and data will start at
 * 26.  Note that this layout lets us re-use a lot of the PAGE element macros
 * defined above.
 */
typedef struct _heappg {
	DB_LSN lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t high_pgno;	/* 12-15: Highest page in region. */
	u_int16_t high_indx;	/* 16-17: Highest index in the offset table. */
	db_indx_t free_indx;	/* 18-19: First available index. */
	db_indx_t entries;	/* 20-21: Number of items on the page. */
	db_indx_t hf_offset;	/* 22-23: High free byte page offset. */
	u_int8_t unused2[1];	/*    24: Unused. */
	u_int8_t type;		/*    25: Page type. */
	u_int8_t unused3[2];    /* 26-27: Never used, just checksum alignment. */
	u_int8_t  chksum[DB_MAC_KEY]; /* 28-47: Checksum */
	u_int8_t  iv[DB_IV_BYTES]; /* 48-63: IV */
} HEAPPG;

/* Define first possible data page for heap, 0 is metapage, 1 is region page */
#define FIRST_HEAP_RPAGE 1 
#define FIRST_HEAP_DPAGE 2

typedef struct __heaphdr {
#define HEAP_RECSPLIT 0x01 /* Heap data record is split */
#define HEAP_RECFIRST 0x02 /* First piece of a split record */
#define HEAP_RECLAST  0x04 /* Last piece of a split record */
	u_int8_t flags;		/* 00: Flags describing record. */
	u_int8_t unused;	/* 01: Padding. */
	u_int16_t size;		/* 02-03: The size of the stored data piece. */
} HEAPHDR;

typedef struct __heaphdrsplt {
	HEAPHDR std_hdr;	/* 00-03: The standard data header */
	u_int32_t tsize;	/* 04-07: Total record size, 1st piece only */
	db_pgno_t nextpg;	/* 08-11: RID.pgno of the next record piece */
	db_indx_t nextindx;	/* 12-13: RID.indx of the next record piece */
	u_int16_t unused;	/* 14-15: Padding. */
} HEAPSPLITHDR;

#define HEAP_HDRSIZE(hdr) 					\
	(F_ISSET((hdr), HEAP_RECSPLIT) ? sizeof(HEAPSPLITHDR) : sizeof(HEAPHDR))

#define HEAPPG_SZ(dbp)			       			\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? HEAPPG_SEC :		\
	F_ISSET((dbp), DB_AM_CHKSUM) ? HEAPPG_CHKSUM : HEAPPG_NORMAL)

/* Each byte in the bitmap describes 4 pages (2 bits per page.) */
#define HEAP_REGION_COUNT(dbp, size) (((size) - HEAPPG_SZ(dbp)) * 4)
#define HEAP_DEFAULT_REGION_MAX(dbp)				\
	(HEAP_REGION_COUNT(dbp, (u_int32_t)8 * 1024))
#define	HEAP_REGION_SIZE(dbp)	(((HEAP*) (dbp)->heap_internal)->region_size)

/* Figure out which region a given page belongs to. */
#define HEAP_REGION_PGNO(dbp, p) 				\
	((((p) - 1) / (HEAP_REGION_SIZE(dbp) + 1)) * 		\
	(HEAP_REGION_SIZE(dbp) + 1) + 1)
/* Translate a region pgno to region number */
#define HEAP_REGION_NUM(dbp, pgno)				\
	((((pgno) - 1) / (HEAP_REGION_SIZE((dbp)) + 1)) + 1)
/* 
 * Given an internal heap page and page number relative to that page, return the
 * bits from map describing free space on the nth page.  Each byte in the map
 * describes 4 pages. Point at the correct byte and mask the correct 2 bits.
 */
#define HEAP_SPACE(dbp, pg, n)					\
	(HEAP_SPACEMAP((dbp), (pg))[(n) / 4] >> (2 * ((n) % 4)) & 3)
      
#define HEAP_SETSPACE(dbp, pg, n, b) do {				\
	HEAP_SPACEMAP((dbp), (pg))[(n) / 4] &= ~(3 << (2 * ((n) % 4))); \
	HEAP_SPACEMAP((dbp), (pg))[(n) / 4] |= ((b & 3) << (2 * ((n) % 4))); \
} while (0)
		
/* Return the bitmap describing free space on heap data pages. */
#define HEAP_SPACEMAP(dbp, pg) ((u_int8_t *)P_INP((dbp), (pg)))

/* Return the offset table for a heap data page. */
#define HEAP_OFFSETTBL(dbp, pg) P_INP((dbp), (pg))

/* 
 * Calculate the % of a page a given size occupies and translate that to the
 * corresponding bitmap value. 
 */
#define HEAP_CALCSPACEBITS(dbp, sz, space) do {			\
	(space) = 100 * (sz) / (dbp)->pgsize;			\
	if ((space) <= HEAP_PG_FULL_PCT)			\
		(space) = HEAP_PG_FULL;				\
	else if ((space) <= HEAP_PG_GT66_PCT)			\
		(space) = HEAP_PG_GT66;				\
	else if ((space) <= HEAP_PG_GT33_PCT)			\
		(space) = HEAP_PG_GT33;				\
	else							\
		(space) = HEAP_PG_LT33;				\
} while (0)
	
/* Return the amount of free space on a heap data page. */
#define HEAP_FREESPACE(dbp, p)                                  \
	(HOFFSET(p) - HEAPPG_SZ(dbp) -				\
	(NUM_ENT(p) == 0 ? 0 : ((HEAP_HIGHINDX(p) + 1) * sizeof(db_indx_t))))

/* The maximum amount of data that can fit on an empty heap data page. */
#define HEAP_MAXDATASIZE(dbp)					\
	((dbp)->pgsize - HEAPPG_SZ(dbp) - sizeof(db_indx_t))

#define HEAP_FREEINDX(p)	(((HEAPPG *)p)->free_indx)
#define HEAP_HIGHINDX(p)	(((HEAPPG *)p)->high_indx)

/* True if we have a page that deals with heap */
#define HEAPTYPE(h)                                           \
    (TYPE(h) == P_HEAPMETA || TYPE(h) == P_HEAP || TYPE(h) == P_IHEAP)

/************************************************************************
 QUEUE MAIN PAGE LAYOUT
 ************************************************************************/
/*
 * Sizes of page below.  Used to reclaim space if not doing
 * crypto or checksumming.  If you change the QPAGE below you
 * MUST adjust this too.
 */
#define	QPAGE_NORMAL	28
#define	QPAGE_CHKSUM	48
#define	QPAGE_SEC	64

typedef struct _qpage {
	DB_LSN	  lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t unused0[3];	/* 12-23: Unused. */
	u_int8_t  unused1[1];	/*    24: Unused. */
	u_int8_t  type;		/*    25: Page type. */
	u_int8_t  unused2[2];	/* 26-27: Unused. */
	u_int8_t  chksum[DB_MAC_KEY]; /* 28-47: Checksum */
	u_int8_t  iv[DB_IV_BYTES]; /* 48-63: IV */
} QPAGE;

#define	QPAGE_SZ(dbp)						\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? QPAGE_SEC :		\
	F_ISSET((dbp), DB_AM_CHKSUM) ? QPAGE_CHKSUM : QPAGE_NORMAL)
/*
 * !!!
 * The next_pgno and prev_pgno fields are not maintained for btree and recno
 * internal pages.  Doing so only provides a minor performance improvement,
 * it's hard to do when deleting internal pages, and it increases the chance
 * of deadlock during deletes and splits because we have to re-link pages at
 * more than the leaf level.
 *
 * !!!
 * The btree/recno access method needs db_recno_t bytes of space on the root
 * page to specify how many records are stored in the tree.  (The alternative
 * is to store the number of records in the meta-data page, which will create
 * a second hot spot in trees being actively modified, or recalculate it from
 * the BINTERNAL fields on each access.)  Overload the PREV_PGNO field.
 */
#define	RE_NREC(p)							\
	((TYPE(p) == P_IBTREE || TYPE(p) == P_IRECNO) ?	PREV_PGNO(p) :	\
	(db_pgno_t)(TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 : NUM_ENT(p)))
#define	RE_NREC_ADJ(p, adj)						\
	PREV_PGNO(p) += adj;
#define	RE_NREC_SET(p, num)						\
	PREV_PGNO(p) = (num);

/*
 * Initialize a page.
 *
 * !!!
 * Don't modify the page's LSN, code depends on it being unchanged after a
 * P_INIT call.
 */
#define	P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do {	\
	PGNO(pg) = (n);							\
	PREV_PGNO(pg) = (pg_prev);					\
	NEXT_PGNO(pg) = (pg_next);					\
	NUM_ENT(pg) = (0);						\
	HOFFSET(pg) = (db_indx_t)(pg_size);				\
	LEVEL(pg) = (btl);						\
	TYPE(pg) = (pg_type);						\
} while (0)

/* Page header length (offset to first index). */
#define	P_OVERHEAD(dbp)	P_TO_UINT16(P_INP(dbp, 0))

/* First free byte. */
#define	LOFFSET(dbp, pg)						\
    (P_OVERHEAD(dbp) + NUM_ENT(pg) * sizeof(db_indx_t))

/* Free space on a regular page. */
#define	P_FREESPACE(dbp, pg)	(HOFFSET(pg) - LOFFSET(dbp, pg))

/* Get a pointer to the bytes at a specific index. */
#define	P_ENTRY(dbp, pg, indx)	((u_int8_t *)pg + P_INP(dbp, pg)[indx])

/************************************************************************
 OVERFLOW PAGE LAYOUT
 ************************************************************************/

/*
 * Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which
 * store a page number (the first page of the overflow item) and a length
 * (the total length of the overflow item).  The overflow item consists of
 * some number of overflow pages, linked by the next_pgno field of the page.
 * A next_pgno field of PGNO_INVALID flags the end of the overflow item.
 *
 * Overflow page overloads:
 *	The amount of overflow data stored on each page is stored in the
 *	hf_offset field.
 *
 *	Before 4.3 the implementation reference counted overflow items as it
 *	once was possible for them to be promoted onto btree internal pages.
 *	The reference count is stored in the entries field. 
 */
#define	OV_LEN(p)	(((PAGE *)p)->hf_offset)
#define	OV_REF(p)	(((PAGE *)p)->entries)

/* Maximum number of bytes that you can put on an overflow page. */
#define	P_MAXSPACE(dbp, psize)	((psize) - P_OVERHEAD(dbp))

/* Free space on an overflow page. */
#define	P_OVFLSPACE(dbp, psize, pg)	(P_MAXSPACE(dbp, psize) - HOFFSET(pg))

/************************************************************************
 HASH PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	H_KEYDATA	1	/* Key/data item. */
#define	H_DUPLICATE	2	/* Duplicate key/data item. */
#define	H_OFFPAGE	3	/* Overflow key/data item. */
#define	H_OFFDUP	4	/* Overflow page of duplicates. */

/*
 * !!!
 * Items on hash pages are (potentially) unaligned, so we can never cast the
 * (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as
 * we do with B+tree on-page structures.  Because we frequently want the type
 * field, it requires no alignment, and it's in the same location in all three
 * structures, there's a pair of macros.
 */
#define	HPAGE_PTYPE(p)		(*(u_int8_t *)p)
#define	HPAGE_TYPE(dbp, pg, indx)	(*P_ENTRY(dbp, pg, indx))

/*
 * The first and second types are H_KEYDATA and H_DUPLICATE, represented
 * by the HKEYDATA structure:
 *
 *	+-----------------------------------+
 *	|    type   | key/data ...          |
 *	+-----------------------------------+
 *
 * For duplicates, the data field encodes duplicate elements in the data
 * field:
 *
 *	+---------------------------------------------------------------+
 *	|    type   | len1 | element1 | len1 | len2 | element2 | len2   |
 *	+---------------------------------------------------------------+
 *
 * Thus, by keeping track of the offset in the element, we can do both
 * backward and forward traversal.
 */
typedef struct _hkeydata {
	u_int8_t  type;		/*    00: Page type. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} HKEYDATA;
#define	HKEYDATA_DATA(p)	(((u_int8_t *)p) + SSZA(HKEYDATA, data))

/*
 * The length of any HKEYDATA item. Note that indx is an element index,
 * not a PAIR index.
 */
#define	LEN_HITEM(dbp, pg, pgsize, indx)				\
	(((indx) == 0 ? (pgsize) :					\
	(P_INP(dbp, pg)[(indx) - 1])) - (P_INP(dbp, pg)[indx]))

#define	LEN_HKEYDATA(dbp, pg, psize, indx)				\
	(db_indx_t)(LEN_HITEM(dbp, pg, psize, indx) - HKEYDATA_SIZE(0))

/*
 * Page space required to add a new HKEYDATA item to the page, with and
 * without the index value.
 */
#define	HKEYDATA_SIZE(len)						\
	((len) + SSZA(HKEYDATA, data))
#define	HKEYDATA_PSIZE(len)						\
	(HKEYDATA_SIZE(len) + sizeof(db_indx_t))

/* Put a HKEYDATA item at the location referenced by a page entry. */
#define	PUT_HKEYDATA(pe, kd, len, etype) {				\
	((HKEYDATA *)(pe))->type = etype;				\
	memcpy((u_int8_t *)(pe) + sizeof(u_int8_t), kd, len);		\
}

/*
 * Macros the describe the page layout in terms of key-data pairs.
 */
#define	H_NUMPAIRS(pg)			(NUM_ENT(pg) / 2)
#define	H_KEYINDEX(indx)		(indx)
#define	H_DATAINDEX(indx)		((indx) + 1)
#define	H_PAIRKEY(dbp, pg, indx)	P_ENTRY(dbp, pg, H_KEYINDEX(indx))
#define	H_PAIRDATA(dbp, pg, indx)	P_ENTRY(dbp, pg, H_DATAINDEX(indx))
#define	H_PAIRSIZE(dbp, pg, psize, indx)				\
	(LEN_HITEM(dbp, pg, psize, H_KEYINDEX(indx)) +			\
	LEN_HITEM(dbp, pg, psize, H_DATAINDEX(indx)))
#define	LEN_HDATA(dbp, p, psize, indx)					\
    LEN_HKEYDATA(dbp, p, psize, H_DATAINDEX(indx))
#define	LEN_HKEY(dbp, p, psize, indx)					\
    LEN_HKEYDATA(dbp, p, psize, H_KEYINDEX(indx))

/*
 * The third type is the H_OFFPAGE, represented by the HOFFPAGE structure:
 */
typedef struct _hoffpage {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} HOFFPAGE;

#define	HOFFPAGE_PGNO(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, pgno))
#define	HOFFPAGE_TLEN(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, tlen))

/*
 * Page space required to add a new HOFFPAGE item to the page, with and
 * without the index value.
 */
#define	HOFFPAGE_SIZE		(sizeof(HOFFPAGE))
#define	HOFFPAGE_PSIZE		(HOFFPAGE_SIZE + sizeof(db_indx_t))

/*
 * The fourth type is H_OFFDUP represented by the HOFFDUP structure:
 */
typedef struct _hoffdup {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
} HOFFDUP;
#define	HOFFDUP_PGNO(p)		(((u_int8_t *)p) + SSZ(HOFFDUP, pgno))

/*
 * Page space required to add a new HOFFDUP item to the page, with and
 * without the index value.
 */
#define	HOFFDUP_SIZE		(sizeof(HOFFDUP))

/************************************************************************
 BTREE PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	B_KEYDATA	1	/* Key/data item. */
#define	B_DUPLICATE	2	/* Duplicate key/data item. */
#define	B_OVERFLOW	3	/* Overflow key/data item. */

/*
 * We have to store a deleted entry flag in the page.   The reason is complex,
 * but the simple version is that we can't delete on-page items referenced by
 * a cursor -- the return order of subsequent insertions might be wrong.  The
 * delete flag is an overload of the top bit of the type byte.
 */
#define	B_DELETE	(0x80)
#define	B_DCLR(t)	(t) &= ~B_DELETE
#define	B_DSET(t)	(t) |= B_DELETE
#define	B_DISSET(t)	((t) & B_DELETE)

#define	B_TYPE(t)		((t) & ~B_DELETE)
#define	B_TSET(t, type)	((t) = B_TYPE(type))
#define	B_TSET_DELETED(t, type) ((t) = (type) | B_DELETE)

/*
 * The first type is B_KEYDATA, represented by the BKEYDATA structure:
 */
typedef struct _bkeydata {
	db_indx_t len;		/* 00-01: Key/data item length. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} BKEYDATA;

/* Get a BKEYDATA item for a specific index. */
#define	GET_BKEYDATA(dbp, pg, indx)					\
	((BKEYDATA *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BKEYDATA item to the page, with and
 * without the index value.  The (u_int16_t) cast avoids warnings: DB_ALIGN
 * casts to uintmax_t, the cast converts it to a small integral type so we
 * don't get complaints when we assign the final result to an integral type
 * smaller than uintmax_t.
 */
#define	BKEYDATA_SIZE(len)						\
	(u_int16_t)DB_ALIGN((len) + SSZA(BKEYDATA, data), sizeof(u_int32_t))
#define	BKEYDATA_PSIZE(len)						\
	(BKEYDATA_SIZE(len) + sizeof(db_indx_t))

/*
 * The second and third types are B_DUPLICATE and B_OVERFLOW, represented
 * by the BOVERFLOW structure.
 */
typedef struct _boverflow {
	db_indx_t unused1;	/* 00-01: Padding, unused. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  unused2;	/*    03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Next page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} BOVERFLOW;

/* Get a BOVERFLOW item for a specific index. */
#define	GET_BOVERFLOW(dbp, pg, indx)					\
	((BOVERFLOW *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BOVERFLOW item to the page, with and
 * without the index value.
 */
#define	BOVERFLOW_SIZE							\
	((u_int16_t)DB_ALIGN(sizeof(BOVERFLOW), sizeof(u_int32_t)))
#define	BOVERFLOW_PSIZE							\
	(BOVERFLOW_SIZE + sizeof(db_indx_t))

#define	BITEM_SIZE(bk)							\
	(B_TYPE((bk)->type) != B_KEYDATA ? BOVERFLOW_SIZE :		\
	BKEYDATA_SIZE((bk)->len))

#define	BITEM_PSIZE(bk)							\
	(B_TYPE((bk)->type) != B_KEYDATA ? BOVERFLOW_PSIZE :		\
	BKEYDATA_PSIZE((bk)->len))

/*
 * Btree leaf and hash page layouts group indices in sets of two, one for the
 * key and one for the data.  Everything else does it in sets of one to save
 * space.  Use the following macros so that it's real obvious what's going on.
 */
#define	O_INDX	1
#define	P_INDX	2

/************************************************************************
 BTREE INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * Btree internal entry.
 */
typedef struct _binternal {
	db_indx_t  len;		/* 00-01: Key/data item length. */
	u_int8_t   type;	/*    02: Page type AND DELETE FLAG. */
	u_int8_t   unused;	/*    03: Padding, unused. */
	db_pgno_t  pgno;	/* 04-07: Page number of referenced page. */
	db_recno_t nrecs;	/* 08-11: Subtree record count. */
	u_int8_t   data[1];	/* Variable length key item. */
} BINTERNAL;

/* Get a BINTERNAL item for a specific index. */
#define	GET_BINTERNAL(dbp, pg, indx)					\
	((BINTERNAL *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BINTERNAL item to the page, with and
 * without the index value.
 */
#define	BINTERNAL_SIZE(len)						\
	(u_int16_t)DB_ALIGN((len) + SSZA(BINTERNAL, data), sizeof(u_int32_t))
#define	BINTERNAL_PSIZE(len)						\
	(BINTERNAL_SIZE(len) + sizeof(db_indx_t))

/************************************************************************
 RECNO INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * The recno internal entry.
 */
typedef struct _rinternal {
	db_pgno_t  pgno;	/* 00-03: Page number of referenced page. */
	db_recno_t nrecs;	/* 04-07: Subtree record count. */
} RINTERNAL;

/* Get a RINTERNAL item for a specific index. */
#define	GET_RINTERNAL(dbp, pg, indx)					\
	((RINTERNAL *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new RINTERNAL item to the page, with and
 * without the index value.
 */
#define	RINTERNAL_SIZE							\
	(u_int16_t)DB_ALIGN(sizeof(RINTERNAL), sizeof(u_int32_t))
#define	RINTERNAL_PSIZE							\
	(RINTERNAL_SIZE + sizeof(db_indx_t))

typedef struct __pglist {
	db_pgno_t pgno, next_pgno;
	DB_LSN lsn;
} db_pglist_t;

#if defined(__cplusplus)
}
#endif

#endif /* !_DB_PAGE_H_ */