1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import dballe
from volnd import *
import unittest, random, sys
from datetime import *
import numpy
import numpy.ma as ma
db = dballe.DB.connect_test()
class TestTddiv(unittest.TestCase):
# def tons(td):
# return td.days * 86400000000 + td.seconds * 1000000 + td.microseconds
def dtest(self, td1, td2):
self.assertEquals(tddivmod1(td1, td2), tddivmod2(td1, td2))
q, r = tddivmod1(td1, td2)
self.assertEquals(td2 * q + r, td1)
def testtddiv(self):
#self.assertEquals(tddivmod(timedelta(10, 0, 0), timedelta(2, 0, 0)), (5, timedelta(0)))
#self.assertEquals(tddivmod(timedelta(10, 0, 1), timedelta(2, 0, 0)), (5, timedelta(0, 0, 1)))
#self.assertEquals(tddivmod(timedelta(10, 0, 1), timedelta(3, 0, 0)), (3, timedelta(1, 0, 1)))
#self.assertEquals(tddivmod(timedelta(10, 6, 18), timedelta(5, 3, 9)), (2, timedelta(0)))
#self.assertEquals(tddivmod(timedelta(3, 4, 5), timedelta(1, 3, 10)), (2, timedelta(0, 86397, 999985)))
#self.assertEquals(tddivmod(timedelta(0, 4, 5), timedelta(0, 3, 10)), (1, timedelta(0, 0, 999995)))
#self.assertEquals(tddivmod(timedelta(2, 40, 10), timedelta(0, 0, 5)), (34568000002, timedelta(0)))
self.dtest(timedelta(10, 0, 0), timedelta(2, 0, 0))
self.dtest(timedelta(10, 0, 1), timedelta(2, 0, 0))
self.dtest(timedelta(10, 0, 1), timedelta(3, 0, 0))
self.dtest(timedelta(10, 6, 18), timedelta(5, 3, 9))
self.dtest(timedelta(3, 4, 5), timedelta(1, 3, 10))
self.dtest(timedelta(0, 4, 5), timedelta(0, 3, 10))
self.dtest(timedelta(2, 40, 10), timedelta(0, 0, 5))
# Re-enable when Debian bug #48872 has been fixed
#self.dtest(timedelta(999999999, 86399, 999999), timedelta(0, 0, 2))
random.seed(1)
for i in xrange(100):
td1 = timedelta(random.randint(0, 999999999), random.randint(0, 86400), random.randint(0, 1000000))
td2 = timedelta(random.randint(0, 999999999), random.randint(0, 86400), random.randint(0, 1000000))
self.dtest(td1, td2)
# Re-enable when Debian bug #48872 has been fixed
#for i in xrange(100):
# td1 = timedelta(random.randint(0, 999999999), random.randint(0, 86400), random.randint(0, 1000000))
# td2 = timedelta(0, random.randint(0, 86400), random.randint(0, 1000000))
# self.dtest(td1, td2)
#for i in xrange(100):
# td1 = timedelta(random.randint(0, 999999999), random.randint(0, 86400), random.randint(0, 1000000))
# td2 = timedelta(0, 0, random.randint(0, 1000000))
# self.dtest(td1, td2)
#for i in xrange(100):
# td1 = timedelta(0, random.randint(0, 86400), random.randint(0, 1000000))
# td2 = timedelta(0, 0, random.randint(0, 1000000))
# self.dtest(td1, td2)
class TestRead(unittest.TestCase):
def setUp(self):
# We want a predictable dataset
random.seed(1)
rattr = random.Random()
rattr.seed(1)
self.db = db
# Wipe the test database
self.db.reset()
attrs = dballe.Record()
rec = dballe.Record(mobile=0)
def contexts():
# 2 networks
for net in ('synop', 'temp'):
# 6 stations
for lat in (10., 20., 30.):
for lon in (15., 25.):
yield net, lat, lon
def dtrange(start, stop, delta):
while (start < stop):
yield start
start += delta
def everyxhours(x):
return dtrange(
datetime(2007, 1, 1, 0, 0, 0),
datetime(2007, 1, 7, 0, 0, 0),
timedelta(0, x*3600, 0))
def maybe_insert(rec, aname):
if random.random() <= 0.9:
#print repr(rec)
self.db.insert(rec, False, True)
attrs.clear()
attrs[aname] = rattr.random() * 100.
for code in rec:
self.db.attr_insert(code, attrs)
# Enter some sample data
for net, lat, lon in contexts():
rec["rep_memo"] = net
if net == 'synop':
aname = 'B33007'
else:
aname = 'B33040'
rec["lat"] = lat
rec["lon"] = lon
# 6 hours precipitations
rec["level"] = (1,)
rec["trange"] = (4, -21600, 0)
for dt in everyxhours(6):
rec["date"] = dt
rec["B13011"] = random.random()*10.
maybe_insert(rec, aname)
# 12 hours precipitations at different times
rec["level"] = (1,)
rec["trange"] = (4, -43200, 0)
for dt in everyxhours(12):
rec["date"] = dt
rec["B13011"] = random.random()*10.
maybe_insert(rec, aname)
# Randomly measured
# precipitations on a different
# (meaningless) level
# At slightly off times
rec["level"] = (3, 2)
rec["trange"] = (4, -21600, 0)
for dt in everyxhours(6):
rec["date"] = (dt + timedelta(0, random.randint(-600, 600)))
rec["B13011"] = random.random()*10.
maybe_insert(rec, aname)
del rec["B13011"]
# Pressures every 12 hours
rec["level"] = (1,)
rec["trange"] = (0,)
for dt in everyxhours(12):
rec["date"] = dt
rec["B10004"] = float(random.randint(70000, 105000))
maybe_insert(rec, aname)
del rec["B10004"]
# Insert some pseudoana data for the station 1, to test
# pseudoana export and mixed data types
rec.clear()
rec.update(ana_id=1, B01001=12, B01002=123, B01019="Test of long station name", rep_memo="synop")
rec.set_station_context()
self.db.insert(rec, False, True)
def tearDown(self):
#self.db.disconnect()
pass
def testIndexFind(self):
# Ana in one dimension, network in the other
query = dballe.Record(ana_id=1, var="B13011", rep_memo="synop")
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), TimeRangeIndex()))
self.assertEquals(vars["B13011"].dims[1].index((4, -21600, 0)), 1)
def testFilter(self):
# Ana in one dimension, network in the other
query = dballe.Record(ana_id=1, var="B13011", rep_memo="synop")
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), \
(AnaIndex(), TimeRangeIndex()), \
filter=lambda rec: rec["timerange"] == (4, -21600, 0))
self.assertEquals(vars["B13011"].dims[1].index((4, -21600, 0)), 0)
def testUnsharedIndex(self):
# Ana in one dimension, network in the other
query = dballe.Record(ana_id=1, rep_memo="synop")
vars = read(self.db.query_data(query),
(AnaIndex(), TimeRangeIndex(), DateTimeIndex()))
self.assertEquals(len(vars["B13011"].dims[2]), len(vars["B10004"].dims[2]))
self.assertEquals(vars["B13011"].dims[2], vars["B10004"].dims[2])
vars = read(self.db.query_data(query),
(AnaIndex(), TimeRangeIndex(), DateTimeIndex(shared=False)))
self.assertNotEquals(len(vars["B13011"].dims[2]), len(vars["B10004"].dims[2]))
def testConflicts(self):
# Ana in one dimension, network in the other
query = dballe.Record(ana_id=1, var="B13011")
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
# Here conflicting values are overwritten
vars = read(self.db.query_data(query), (AnaIndex(), ), checkConflicts=False)
self.assertEquals(type(vars), dict)
# Here insted they should be detected
self.assertRaises(IndexError, read,
self.db.query_data(query),
(AnaIndex(),),
checkConflicts=True)
def testFixedIndex(self):
# Ana in one dimension, network in the other
query = dballe.Record(ana_id=1, rep_memo="synop", year=2007, month=1, day=1)
vars = read(self.db.query_data(query),
(AnaIndex(), TimeRangeIndex(frozen=True,
start=((4, -21600, 0), (4, -43200, 0)) ) ),
checkConflicts=False)
self.assertEquals(len(vars["B13011"].dims[1]), 2)
vars = read(self.db.query_data(query),
(AnaIndex(), TimeRangeIndex()),
checkConflicts=False)
self.assertEquals(len(vars["B13011"].dims[1]), 3)
vars = read(self.db.query_data(query),
(AnaIndex(), LevelIndex(frozen=True, start=((1, None, None, None),))),
checkConflicts=False)
self.assertEquals(len(vars["B13011"].dims[1]), 1)
vars = read(self.db.query_data(query),
(AnaIndex(), LevelIndex()),
checkConflicts=False)
self.assertEquals(len(vars["B13011"].dims[1]), 2)
def testAnaNetwork(self):
# Ana in one dimension, network in the other
query = dballe.Record()
query["var"] = "B10004"
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()))
self.assertEquals(len(vars), 1)
self.assertEquals(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEquals(data.name, "B10004")
self.assertEquals(len(data.attrs), 0)
self.assertEquals(len(data.dims), 2)
self.assertEquals(len(data.dims[0]), 6)
self.assertEquals(len(data.dims[1]), 2)
self.assertEquals(data.vals.size, 12)
self.assertEquals(data.vals.shape, (6, 2))
self.assertEquals(sum(data.vals.mask.flat), 1)
self.assertEquals(ma.average(data.vals), 86890)
self.assertEquals(data.dims[0][0], (1, 10., 15., None))
self.assertEquals(data.dims[0][1], (2, 10., 25., None))
self.assertEquals(data.dims[0][2], (3, 20., 15., None))
self.assertEquals(data.dims[0][3], (4, 20., 25., None))
self.assertEquals(data.dims[0][4], (5, 30., 15., None))
self.assertEquals(data.dims[0][5], (6, 30., 25., None))
self.assertEquals(set(data.dims[1]), set((("temp",), ("synop",))))
def testAnaTrangeNetwork(self):
# 3 dimensions: ana, timerange, network
# 2 variables
query = dballe.Record(date=datetime(2007, 1, 1, 0, 0, 0))
vars = read(self.db.query_data(query), (AnaIndex(), TimeRangeIndex(shared=False), NetworkIndex()))
self.assertEquals(len(vars), 2)
self.assertEquals(sorted(vars.keys()), ["B10004", "B13011"])
data = vars["B10004"]
self.assertEquals(data.name, "B10004")
self.assertEquals(len(data.attrs), 0)
self.assertEquals(len(data.dims), 3)
self.assertEquals(len(data.dims[0]), 6)
self.assertEquals(len(data.dims[1]), 1)
self.assertEquals(len(data.dims[2]), 2)
self.assertEquals(data.vals.size, 12)
self.assertEquals(data.vals.shape, (6, 1, 2))
self.assertEquals(sum(data.vals.mask.flat), 1)
self.assertEquals(ma.average(data.vals), 86890)
self.assertEquals(data.dims[0][0], (1, 10., 15., None))
self.assertEquals(data.dims[0][1], (2, 10., 25., None))
self.assertEquals(data.dims[0][2], (3, 20., 15., None))
self.assertEquals(data.dims[0][3], (4, 20., 25., None))
self.assertEquals(data.dims[0][4], (5, 30., 15., None))
self.assertEquals(data.dims[0][5], (6, 30., 25., None))
self.assertEquals(data.dims[1][0], (0, None, None))
self.assertEquals(set(data.dims[2]), set((("temp",), ("synop",))))
data = vars["B13011"]
self.assertEquals(data.name, "B13011")
self.assertEquals(len(data.attrs), 0)
self.assertEquals(len(data.dims), 3)
self.assertEquals(len(data.dims[0]), 6)
self.assertEquals(len(data.dims[1]), 2)
self.assertEquals(len(data.dims[2]), 2)
self.assertEquals(data.vals.size, 24)
self.assertEquals(data.vals.shape, (6, 2, 2))
self.assertEquals(sum(data.vals.mask.flat), 3)
self.assertAlmostEquals(ma.average(data.vals), 4.033333, 6)
self.assertEquals(data.dims[0][0], (1, 10., 15., None))
self.assertEquals(data.dims[0][1], (2, 10., 25., None))
self.assertEquals(data.dims[0][2], (3, 20., 15., None))
self.assertEquals(data.dims[0][3], (4, 20., 25., None))
self.assertEquals(data.dims[0][4], (5, 30., 15., None))
self.assertEquals(data.dims[0][5], (6, 30., 25., None))
self.assertEquals(data.dims[1][0], (4, -43200, 0))
self.assertEquals(data.dims[1][1], (4, -21600, 0))
self.assertEquals(set(data.dims[2]), set((("temp",), ("synop",))))
self.assertEquals(vars["B10004"].dims[0], vars["B13011"].dims[0])
self.assertNotEquals(vars["B10004"].dims[1], vars["B13011"].dims[1])
self.assertEquals(vars["B10004"].dims[2], vars["B13011"].dims[2])
def testAttrs(self):
# Same export as testAnaNetwork, but check that the
# attributes are synchronised
query = dballe.Record()
query["var"] = "B10004"
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()), attributes=True)
self.assertEquals(len(vars), 1)
self.assertEquals(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEquals(len(data.attrs), 2)
self.assertEquals(sorted(data.attrs.keys()), ['B33007', 'B33040'])
for net, a in ('synop', 'B33007'), ('temp', 'B33040'):
self.assertEquals(data.dims, data.attrs[a].dims)
self.assertEquals(data.vals.size, data.attrs[a].vals.size)
self.assertEquals(data.vals.shape, data.attrs[a].vals.shape)
# Find what is the network dimension where we have the attributes
netidx = -1
for idx, n in enumerate(data.dims[1]):
if n[0] == net:
netidx = idx
break
self.assertNotEquals(netidx, -1)
# No attrs in the other network
self.assertEquals([x for x in data.attrs[a].vals.mask[:,1-netidx].flat], [True]*len(data.attrs[a].vals.mask[:,1-netidx].flat))
# Same attrs as values in this network
self.assertEquals([x for x in data.vals.mask[:,netidx].flat], [x for x in data.attrs[a].vals.mask[:,netidx].flat])
self.assertEquals(ma.average(data.attrs['B33007'].vals), 53.5)
self.assertEquals(ma.average(data.attrs['B33040'].vals), 36.8)
def testSomeAttrs(self):
# Same export as testAnaNetwork, but check that the
# attributes are synchronised
query = dballe.Record()
query["var"] = "B10004"
query["date"] = datetime(2007, 1, 1, 0, 0, 0)
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()), attributes=('B33040',))
self.assertEquals(len(vars), 1)
self.assertEquals(vars.keys(), ["B10004"])
data = vars["B10004"]
self.assertEquals(len(data.attrs), 1)
self.assertEquals(data.attrs.keys(), ['B33040'])
a = data.attrs['B33040']
self.assertEquals(data.dims, a.dims)
self.assertEquals(data.vals.size, a.vals.size)
self.assertEquals(data.vals.shape, a.vals.shape)
# Find the temp index
netidx = -1
for idx, n in enumerate(data.dims[1]):
if n[0] == "temp":
netidx = idx
break
self.assertNotEquals(netidx, -1)
# Only compare the values on the temp index
self.assertEquals([x for x in a.vals.mask[:,1-netidx].flat], [True]*len(a.vals.mask[:,1-netidx].flat))
self.assertEquals([x for x in data.vals.mask[:,netidx].flat], [x for x in a.vals.mask[:,netidx].flat])
self.assertEquals(ma.average(a.vals), 36.8)
def testEmptyExport(self):
query = dballe.Record()
query["ana_id"] = 5000
vars = read(self.db.query_data(query), (AnaIndex(), NetworkIndex()), attributes=True)
self.assertEquals(len(vars), 0)
def testGhostIndexes(self):
# If an index rejects a variable after another index
# has successfuly added an item, we used to end up with
# a 'ghost' index entry with no items in it
indexes = (TimeRangeIndex(), \
LevelIndex(frozen=True, start=((3, 2, None, None),) ))
query = dballe.Record()
query['ana_id'] = 1
query['var'] = 'B13011'
vars = read(self.db.query_data(query), indexes, \
checkConflicts=False)
self.assertEquals(vars.keys(), ["B13011"])
self.assertEquals(len(vars["B13011"].dims[1]), 1)
self.assertEquals(vars["B13011"].dims[0][0], (4, -21600, 0))
def testBuggyExport1(self):
indexes = (AnaIndex(),
LevelIndex(frozen=True, start=((1, None, None), (3, 2, None))),
TimeRangeIndex(),
DateTimeIndex())
query = dballe.Record()
query['rep_memo'] = 'synop'
vars = read(self.db.query_data(query), indexes,
checkConflicts=True, attributes=True)
def testExportAna(self):
indexes = (AnaIndex(),)
query = dballe.Record()
query.set_station_context()
query["rep_memo"] = "synop"
vars = read(self.db.query_data(query), indexes, checkConflicts=True)
self.assertEquals(sorted(vars.keys()), ["B01001", "B01002", "B01019"])
def testExportSyncAna(self):
# Export some data
indexes = (AnaIndex(), DateTimeIndex())
query = dballe.Record()
query["rep_memo"] = 'synop'
query["level"] = (1,)
query["trange"] = (4, -21600, 0)
vars = read(self.db.query_data(query), indexes, checkConflicts=True)
self.assertEquals(sorted(vars.keys()), ["B13011"])
# Freeze all the indexes
for i in range(len(indexes)):
indexes[i].freeze()
# Export the pseudoana data in sync with the data
query.clear()
query.set_station_context()
query["rep_memo"] = "synop"
anas = read(self.db.query_data(query), (indexes[0],), checkConflicts=True)
self.assertEquals(sorted(anas.keys()), ["B01001", "B01002", "B01019"])
self.assertEquals(anas["B01001"].dims[0], vars["B13011"].dims[0])
if __name__ == "__main__":
db.connect_test();
unittest.main()
# This is already automatically done
#if len(sys.argv) == 1:
# unittest.main()
#else:
# suite = unittest.TestLoader().loadTestsFromNames(
# map(lambda x: __name__ + '.' + x, sys.argv[1:]))
# unittest.TextTestRunner().run(suite)
#query = dballe.Record()
##query.set("var", "B12001")
##vars = readv7d(db.query(query), (AnaIndex,NetworkIndex))
##vars = readv7d(db.query(query), (AnaIndex,LevelIndex))
##vars = read(db.query(query), (AnaIndex(),DateTimeIndex()))
#
#query.set("rep_memo", "temp")
#vars = read(db.query(query), (AnaIndex(),IntervalIndex(datetime(2007,01,11,11,24), timedelta(0, 120), timedelta(0, 60))))
#
#print vars
##print vars['B12001'].dims[0][:20]
##print vars['B12001'].dims[1][:20]
#
##print "Lat:", res[0][:10]
##print "Lon:", res[1][:10]
##print "Id :", res[2][:10]
|