1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
|
!--------------------------------------------------------------------------------------------------!
! Copyright (C) by the DBCSR developers group - All rights reserved !
! This file is part of the DBCSR library. !
! !
! For information on the license, see the LICENSE file. !
! For further information please visit https://dbcsr.cp2k.org !
! SPDX-License-Identifier: GPL-2.0+ !
!--------------------------------------------------------------------------------------------------!
program dbcsr_tensor_example_1
!! Sparse tensor contraction example
use mpi
use dbcsr_api, only: &
dbcsr_type, dbcsr_distribution_type, dbcsr_init_lib, dbcsr_distribution_new, &
dbcsr_type_no_symmetry, dbcsr_create, dbcsr_iterator_start, dbcsr_iterator_blocks_left, &
dbcsr_iterator_stop, dbcsr_iterator_next_block, dbcsr_iterator_type, dbcsr_put_block, &
dbcsr_reserve_blocks, dbcsr_scalar, dbcsr_finalize_lib, dbcsr_distribution_release, &
dbcsr_nblkrows_total, dbcsr_type_real_8, dbcsr_release, dbcsr_nblkcols_total, dbcsr_finalize, &
dbcsr_get_stored_coordinates, dbcsr_get_info, dbcsr_filter, dbcsr_checksum
use dbcsr_tensor_api, only: &
dbcsr_t_create, dbcsr_t_copy_matrix_to_tensor, &
dbcsr_t_pgrid_type, dbcsr_t_type, dbcsr_t_distribution_type, dbcsr_t_nblks_total, &
dbcsr_t_reserve_blocks, dbcsr_t_iterator_start, dbcsr_t_iterator_blocks_left, &
dbcsr_t_iterator_next_block, dbcsr_t_iterator_stop, dbcsr_t_default_distvec, dbcsr_t_put_block, &
dbcsr_t_copy, dbcsr_t_distribution_new, dbcsr_t_distribution_destroy, dbcsr_t_write_blocks, dbcsr_t_contract, &
dbcsr_t_copy_tensor_to_matrix, dbcsr_t_destroy, dbcsr_t_pgrid_destroy, dbcsr_t_nblks_total, &
dbcsr_t_pgrid_create, dbcsr_t_iterator_type, dbcsr_t_get_stored_coordinates, dbcsr_t_get_info, dbcsr_t_filter, &
dbcsr_t_checksum, dbcsr_t_clear, dbcsr_t_batched_contract_init, dbcsr_t_batched_contract_finalize
use iso_fortran_env, only: &
output_unit, real64, int64
! --------------------------------------------------------------------------------------------------
! this example implements the sparse tensor contraction (einstein notation)
! c(n,o) = c(n,o) + a(i,j,k) x a(l,m,k) x b(i,l,n) x (b(m,o,j) + b(o,m,j))
!
! the tensors have the following shape and entries:
! a: n x n x 2n: a(i,j,k) = exp(-1/3*alpha*((i-j)**2+(i-k)**2+(j-k)**2))
! b: n x n x n: b(i,j,k) = exp(-1/3*beta*((i-j)**2+(i-k)**2+(j-k)**2))
! c: n x n: c(i,j) = exp(-1/2*gamma*(i-j)**2)
!
! due to the exponential decay of the tensor elements w.r.t. difference between two indices,
! all tensors are sparse. neglect of small tensor elements is controlled by threshold 'filter_eps':
! tensor blocks with frobenius norm < filter_eps are neglected.
!
! block sizes are set randomly in this example to demonstrate a heterogeneous sparsity pattern,
! these should ideally be adapted to the natural sparsity pattern of the problem
! (e.g. blocks corresponding to a set of gaussian basis functions with same exponent)
!
! DBCSR provides two basic operations in terms of which any tensor contraction can be expressed:
! dbcsr_t_contract: contraction of a pair of tensors
! dbcsr_t_copy: copy supporting redistribution and index permutation
!
! by default, DBCSR supports tensors of ranks between 2 and 4.
! higher ranks can be enabled by adapting 'maxrank' in 'dbcsr_tensor.fypp'.
!
! the above contraction is executed in the following order:
! 1) d(i,j,l,m) = a(i,j,k) x a(l,m,k)
! 2) e(j,m,n) = d(i,j,l,m) x b(i,l,n)
! 3) f(j,m,o) = b(m,o,j) + b(o,m,j)
! 4) c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o)
!
! how to run (this example and DBCSR for tensors in general):
! - best performance is obtained by running with mpi and one openmp thread per rank.
! - ideally number of mpi ranks should be composed of small prime factors (e.g. powers of 2).
! - for sparse data & heterogeneous block sizes, DBCSR should be run on CPUs with libxsmm backend.
! - for dense data best performance is obtained by choosing homogeneous block sizes of 64 and by
! compiling with GPU support.
! --------------------------------------------------------------------------------------------------
! ------ Parameters ------
! example type:
! - 1: debug (small & verbose)
! - 2: default (medium size)
! - 3: large (requires parallelism)
! - 4: large, batched contraction to reduce memory (does not require parallelism)
integer, parameter :: example_type = 2
! filter threshold (larger value means more sparse but less accurate)
real(real64), parameter :: filter_eps = 1.0e-08_real64
! number of batches in one dimension (to reduce memory footprint)
integer, parameter :: nbatch = 8
! exponents for gaussians
real(real64) :: alpha, beta, gamma
! maximum block size (actual block sizes are random between 1 and this number)
integer :: max_bsize
! tensor size in one dimension (n)
integer :: nel
! tune sparsity by scaling exponent for calculation of tensor elements
real(real64) :: scale_exp
! contract all tensors at once
logical :: contract_direct
! contract in batches (memory saving)
logical :: contract_batched
! verbosity level
! 0: essential output
! 1: tensor log
! 2: verbose tensor log
! 3: verbose tensor log and print all tensor data
integer :: verbosity
integer :: &
ierr, numnodes, mynode, node_holds_blk, io_unit, io_unit_dbcsr, ind, row, col, blk, group, &
i, j, k, l, n, o, i_arr, j_arr, k_arr, l_arr, n_arr, o_arr, blk_size, &
min_exp, min_exp_ij, min_exp_ik, min_exp_jk, min_exp_il, min_exp_in, min_exp_ln, &
ibatch, jbatch, lbatch, mbatch
integer, dimension(:), allocatable :: &
offset_i, offset_j, offset_l, offset_k, offset_n, tmp, &
start_batch_i, start_batch_j, start_batch_l, start_batch_m, &
end_batch_i, end_batch_j, end_batch_l, end_batch_m
integer, dimension(:), allocatable, target :: &
blk_ind_1, blk_ind_2, blk_ind_3, &
blk_size_i, blk_size_j, blk_size_k, blk_size_l, blk_size_m, blk_size_n, blk_size_o, &
dist_1, dist_2, dist_3, dist_4
integer, dimension(:, :), allocatable :: bounds_1, bounds_2, bounds_3
integer, dimension(:), pointer :: &
row_dist, col_dist, row_blk_size, col_blk_size, row_offset, col_offset
integer, dimension(2) :: shape_2d, blk_ind_2d, blk_size_2d, blk_offset_2d, pdims_2d
integer, dimension(3) :: blk_ind_3d, pdims_3d, shape_3d, blk_size_3d, blk_offset_3d
integer, dimension(4) :: shape_4d, pdims_4d
integer, dimension(7) :: shape_ijklmno
integer(int64) :: nflop_sum, nflop
real(real64) :: cs, t1, t0, time, flop_rate
real(real64), dimension(:, :), pointer :: blk_values_2d
real(real64), dimension(:, :, :), allocatable :: blk_values_3d
logical :: tr
logical, dimension(2) :: period = .true.
type(dbcsr_type) :: c_matrix
type(dbcsr_distribution_type) :: dist_matrix
type(dbcsr_iterator_type) :: iter_matrix
type(dbcsr_t_pgrid_type) :: pgrid_3d, pgrid_4d
type(dbcsr_t_distribution_type) :: dist_tensor
type(dbcsr_t_type) :: a_ijk, a_lmk, b_iln, c_no, d_ijlm, e_jmn, f_jmo
type(dbcsr_t_iterator_type) :: iter_tensor
! prefactor in exponent for tensor data
alpha = 1.0_real64; beta = 0.5_real64; gamma = 2.0_real64
! parameters for different example types
select case (example_type)
case (1)
nel = 10
max_bsize = 3
verbosity = 3
scale_exp = 10.0_real64
contract_direct = .true.
contract_batched = .false.
case (2)
nel = 200
max_bsize = 10
verbosity = 1
scale_exp = 0.01_real64
contract_direct = .true.
contract_batched = .false.
case (3)
nel = 2000
max_bsize = 10
verbosity = 1
scale_exp = 0.01_real64
contract_direct = .true.
contract_batched = .false.
case (4)
nel = 2000
max_bsize = 10
verbosity = 0
scale_exp = 0.01_real64
contract_direct = .false.
contract_batched = .true.
end select
alpha = alpha*scale_exp
beta = beta*scale_exp
gamma = gamma*scale_exp
! initialize mpi
call mpi_init(ierr)
if (ierr /= 0) stop "error in mpi_init"
call mpi_comm_size(mpi_comm_world, numnodes, ierr)
if (ierr /= 0) stop "error in mpi_comm_size"
call mpi_comm_rank(mpi_comm_world, mynode, ierr)
if (ierr /= 0) stop "error in mpi_comm_rank"
! initialize DBCSR
call dbcsr_init_lib(mpi_comm_world)
! prepare output
io_unit_dbcsr = -1
io_unit = -1
if (mynode == 0 .and. verbosity > 0) io_unit_dbcsr = output_unit
if (mynode == 0) io_unit = output_unit
! create block sizes
call random_blk_sizes(nel, shape_ijklmno(1), blk_size_i)
call random_blk_sizes(nel, shape_ijklmno(2), blk_size_j)
call random_blk_sizes(2*nel, shape_ijklmno(3), blk_size_k)
call random_blk_sizes(nel, shape_ijklmno(4), blk_size_l)
call random_blk_sizes(nel, shape_ijklmno(5), blk_size_m)
call random_blk_sizes(nel, shape_ijklmno(6), blk_size_n)
call random_blk_sizes(nel, shape_ijklmno(7), blk_size_o)
! ------ create matrix c[no] ------
! shape (number of blocks in each dimension)
shape_2d = shape_ijklmno(6:7)
! set up 2-dimensional process grid
pdims_2d(:) = 0
call mpi_dims_create(numnodes, 2, pdims_2d, ierr)
if (ierr /= 0) stop "error in mpi_dims_create"
call mpi_cart_create(mpi_comm_world, 2, pdims_2d, period, .false., group, ierr)
if (ierr /= 0) stop "error in mpi_cart_create"
! row and column distribution (mapping blocks in each dimension to process grid coordinate)
! this routine creates a load-balanced distribution for heterogeneous block sizes, alternatively
! any custom distribution can be used
allocate (dist_1(shape_2d(1)))
call dbcsr_t_default_distvec(shape_2d(1), pdims_2d(1), blk_size_n, dist_1)
allocate (dist_2(shape_2d(2)))
call dbcsr_t_default_distvec(shape_2d(2), pdims_2d(2), blk_size_o, dist_2)
! convert to pointers because DBCSR matrix api only accepts pointers
row_dist => dist_1
col_dist => dist_2
! create distribution
call dbcsr_distribution_new(dist_matrix, group=group, row_dist=row_dist, col_dist=col_dist)
deallocate (dist_1, dist_2)
! convert to pointers since DBCSR matrix api only accepts pointers
row_blk_size => blk_size_n
col_blk_size => blk_size_o
! create DBCSR matrix
call dbcsr_create(matrix=c_matrix, name="c[n|o]", dist=dist_matrix, matrix_type=dbcsr_type_no_symmetry, &
row_blk_size=row_blk_size, col_blk_size=col_blk_size, data_type=dbcsr_type_real_8)
call dbcsr_distribution_release(dist_matrix)
! ------ fill matrix c[no] ------
! reserve non-zero blocks. for performance it is important to first reserve all present blocks
! before calculating them and inserting them into DBCSR matrix.
call dbcsr_get_info(c_matrix, row_blk_offset=row_offset, col_blk_offset=col_offset)
ind = 0
allocate (blk_ind_1(0), blk_ind_2(0))
do row = 1, dbcsr_nblkrows_total(c_matrix)
do col = 1, dbcsr_nblkcols_total(c_matrix)
! only consider blocks that are local to this rank (according to distribution)
call dbcsr_get_stored_coordinates(c_matrix, row, col, node_holds_blk)
if (node_holds_blk /= mynode) cycle
! calculate largest matrix element to determine an upper bound for block frobenius norm
! block is reserved only if this estimate is larger than the filter_eps parameter
min_exp = block_minabsdiff(row_offset(row), col_offset(col), row_blk_size(row), col_blk_size(col))
blk_size = row_blk_size(row)*col_blk_size(col)
if (blk_size*exp(-0.5*gamma*real(min_exp**2)) < filter_eps) cycle
ind = ind + 1
! store index of block to be reserved
call move_alloc(blk_ind_1, tmp)
allocate (blk_ind_1(ind))
blk_ind_1(:ind - 1) = tmp; deallocate (tmp)
call move_alloc(blk_ind_2, tmp)
allocate (blk_ind_2(ind))
blk_ind_2(:ind - 1) = tmp; deallocate (tmp)
blk_ind_1(ind) = row
blk_ind_2(ind) = col
end do
end do
! reserve blocks
call dbcsr_reserve_blocks(c_matrix, blk_ind_1, blk_ind_2)
deallocate (blk_ind_1, blk_ind_2)
! iterate over reserved matrix blocks to fill them with data
call dbcsr_iterator_start(iter_matrix, c_matrix)
do while (dbcsr_iterator_blocks_left(iter_matrix))
call dbcsr_iterator_next_block(iter_matrix, blk_ind_2d(1), blk_ind_2d(2), blk_values_2d, tr, &
row_size=blk_size_2d(1), col_size=blk_size_2d(2), &
row_offset=blk_offset_2d(1), col_offset=blk_offset_2d(2))
do n_arr = 1, blk_size_2d(1)
do o_arr = 1, blk_size_2d(2)
! get matrix element index n & o from block offset
n = n_arr + blk_offset_2d(1) - 1
o = o_arr + blk_offset_2d(2) - 1
! calculate matrix element
blk_values_2d(n_arr, o_arr) = exp(-0.5*gamma*real((n - o)**2))
end do
end do
end do
call dbcsr_iterator_stop(iter_matrix)
! finalize the DBCSR matrix
call dbcsr_finalize(c_matrix)
! sparsity refinement by removing small blocks
call dbcsr_filter(c_matrix, filter_eps)
! create tensor from DBCSR matrix for tensor contraction and copy data
! (alternatively we could have directly created c_matrix as a tensor)
call dbcsr_t_create(c_matrix, c_no)
call dbcsr_t_copy_matrix_to_tensor(c_matrix, c_no)
! ------ create tensor a[ijk] ------
! note: tensor api is analogous to matrix api with a few differences of technical and historical nature
shape_3d = shape_ijklmno(1:3)
! n-rank tensor requires an n-dimensional process grid:
! 'dbcsr_t_pgrid_create' is analogous to 'mpi_cart_create' but comes with some additional defaults.
! If the tensor dimensions vary significantly in size, it's important for performance to use the
! optional argument 'tensor_dims' to specify the tensor (block) dimensions.
pdims_3d(:) = 0
call dbcsr_t_pgrid_create(mpi_comm_world, pdims_3d, pgrid_3d)
allocate (dist_1(shape_3d(1)))
call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_i, dist_1)
allocate (dist_2(shape_3d(2)))
call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_j, dist_2)
allocate (dist_3(shape_3d(3)))
call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_k, dist_3)
call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
! create tensor. Compared with dbcsr_create this takes 2 additional arguments to control how the
! tensor is internally represented as a matrix:
! - map1_2d: which tensor dimensions are mapped to the first matrix dimension (in this case i & j)
! - map2_2d: which tensor dimensions are mapped to the second matrix dimension (in this case k)
! (these arguments need to be given for performance reasons, see documentation of dbcsr_t_contract
! for more info)
call dbcsr_t_create(a_ijk, "a[ij|k]", dist_tensor, &
map1_2d=[1, 2], map2_2d=[3], &
data_type=dbcsr_type_real_8, &
blk_size_1=blk_size_i, blk_size_2=blk_size_j, blk_size_3=blk_size_k)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ create a[lmk] ------
! note: normally we can just create an exact copy by calling:
! call dbcsr_t_create(a_ijk, a_lmk)
! call dbcsr_t_copy(a_ijk, a_lmk)
! here we need to create from scratch since the tensors have different block sizes
shape_3d = shape_ijklmno([4, 5, 3])
allocate (dist_1(shape_3d(1)))
call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_l, dist_1)
allocate (dist_2(shape_3d(2)))
call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)
allocate (dist_3(shape_3d(3)))
call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_k, dist_3)
call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
call dbcsr_t_create(a_lmk, "a[lm|k]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
blk_size_l, blk_size_m, blk_size_k)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ fill tensor a[ijk] and copy to a[lmk] ------
allocate (offset_i(dbcsr_t_nblks_total(a_ijk, 1)))
allocate (offset_j(dbcsr_t_nblks_total(a_ijk, 2)))
allocate (offset_k(dbcsr_t_nblks_total(a_ijk, 3)))
call dbcsr_t_get_info(a_ijk, blk_offset_1=offset_i, blk_offset_2=offset_j, blk_offset_3=offset_k)
ind = 0
allocate (blk_ind_1(0), blk_ind_2(0), blk_ind_3(0))
do i = 1, dbcsr_t_nblks_total(a_ijk, 1)
do j = 1, dbcsr_t_nblks_total(a_ijk, 2)
do k = 1, dbcsr_t_nblks_total(a_ijk, 3)
call dbcsr_t_get_stored_coordinates(a_ijk, [i, j, k], node_holds_blk)
if (node_holds_blk /= mynode) cycle
min_exp_ij = block_minabsdiff(offset_i(i), offset_j(j), blk_size_i(i), blk_size_j(j))
min_exp_ik = block_minabsdiff(offset_i(i), offset_k(k), blk_size_i(i), blk_size_k(k))
min_exp_jk = block_minabsdiff(offset_j(j), offset_k(k), blk_size_j(j), blk_size_k(k))
blk_size = blk_size_i(i)*blk_size_j(j)*blk_size_k(k)
if (blk_size*exp(-1./3*alpha*real(min_exp_ij**2 + min_exp_ik**2 + min_exp_jk**2)) < filter_eps) cycle
ind = ind + 1
call move_alloc(blk_ind_1, tmp)
allocate (blk_ind_1(ind))
blk_ind_1(:ind - 1) = tmp; deallocate (tmp)
call move_alloc(blk_ind_2, tmp)
allocate (blk_ind_2(ind))
blk_ind_2(:ind - 1) = tmp; deallocate (tmp)
call move_alloc(blk_ind_3, tmp)
allocate (blk_ind_3(ind))
blk_ind_3(:ind - 1) = tmp; deallocate (tmp)
blk_ind_1(ind) = i
blk_ind_2(ind) = j
blk_ind_3(ind) = k
end do
end do
end do
call dbcsr_t_reserve_blocks(a_ijk, blk_ind_1, blk_ind_2, blk_ind_3)
deallocate (blk_ind_1, blk_ind_2, blk_ind_3)
call dbcsr_t_iterator_start(iter_tensor, a_ijk)
do while (dbcsr_t_iterator_blocks_left(iter_tensor))
! direct access to block pointers via iterator is not possible in the tensor api
! the iterator goes over indices and then we call 'put_block'
call dbcsr_t_iterator_next_block(iter_tensor, blk_ind_3d, blk, blk_size=blk_size_3d, blk_offset=blk_offset_3d)
allocate (blk_values_3d(blk_size_3d(1), blk_size_3d(2), blk_size_3d(3)))
do i_arr = 1, blk_size_3d(1)
do j_arr = 1, blk_size_3d(2)
do k_arr = 1, blk_size_3d(3)
i = i_arr + blk_offset_3d(1) - 1
j = j_arr + blk_offset_3d(2) - 1
k = k_arr + blk_offset_3d(3) - 1
blk_values_3d(i_arr, j_arr, k_arr) = exp(-1./3*alpha*real((i - j)**2 + (i - k)**2 + (j - k)**2))
end do
end do
end do
call dbcsr_t_put_block(a_ijk, blk_ind_3d, blk_size_3d, blk_values_3d)
deallocate (blk_values_3d)
end do
call dbcsr_t_iterator_stop(iter_tensor)
call dbcsr_t_filter(a_ijk, filter_eps)
! no need to finalize for tensors, this is done internally
! fill tensor (lmk) by copying from a[ijk]
call dbcsr_t_copy(a_ijk, a_lmk)
call dbcsr_t_filter(a_lmk, filter_eps)
! ------ create tensor b[iln] ------
shape_3d = shape_ijklmno([1, 4, 6])
allocate (dist_1(shape_3d(1)))
call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_i, dist_1)
allocate (dist_2(shape_3d(2)))
call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_l, dist_2)
allocate (dist_3(shape_3d(3)))
call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_n, dist_3)
call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
call dbcsr_t_create(b_iln, "b[il|n]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
blk_size_i, blk_size_l, blk_size_n)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ fill tensor b[iln] ------
allocate (offset_l(dbcsr_t_nblks_total(b_iln, 2)))
allocate (offset_n(dbcsr_t_nblks_total(b_iln, 3)))
call dbcsr_t_get_info(b_iln, blk_offset_2=offset_l, blk_offset_3=offset_n)
ind = 0
allocate (blk_ind_1(0), blk_ind_2(0), blk_ind_3(0))
do i = 1, dbcsr_t_nblks_total(b_iln, 1)
do l = 1, dbcsr_t_nblks_total(b_iln, 2)
do n = 1, dbcsr_t_nblks_total(b_iln, 3)
call dbcsr_t_get_stored_coordinates(b_iln, [i, l, n], node_holds_blk)
if (node_holds_blk /= mynode) cycle
min_exp_il = block_minabsdiff(offset_i(i), offset_l(l), blk_size_i(i), blk_size_l(l))
min_exp_in = block_minabsdiff(offset_i(i), offset_n(n), blk_size_i(i), blk_size_n(n))
min_exp_ln = block_minabsdiff(offset_l(l), offset_n(n), blk_size_l(l), blk_size_n(n))
blk_size = blk_size_i(i)*blk_size_l(l)*blk_size_n(n)
if (blk_size*exp(-1./3*beta*real(min_exp_il**2 + min_exp_in**2 + min_exp_ln**2)) < filter_eps) cycle
ind = ind + 1
call move_alloc(blk_ind_1, tmp)
allocate (blk_ind_1(ind))
blk_ind_1(:ind - 1) = tmp; deallocate (tmp)
call move_alloc(blk_ind_2, tmp)
allocate (blk_ind_2(ind))
blk_ind_2(:ind - 1) = tmp; deallocate (tmp)
call move_alloc(blk_ind_3, tmp)
allocate (blk_ind_3(ind))
blk_ind_3(:ind - 1) = tmp; deallocate (tmp)
blk_ind_1(ind) = i
blk_ind_2(ind) = l
blk_ind_3(ind) = n
end do
end do
end do
call dbcsr_t_reserve_blocks(b_iln, blk_ind_1, blk_ind_2, blk_ind_3)
deallocate (blk_ind_1, blk_ind_2, blk_ind_3)
call dbcsr_t_iterator_start(iter_tensor, b_iln)
do while (dbcsr_t_iterator_blocks_left(iter_tensor))
call dbcsr_t_iterator_next_block(iter_tensor, blk_ind_3d, blk, blk_size=blk_size_3d, blk_offset=blk_offset_3d)
allocate (blk_values_3d(blk_size_3d(1), blk_size_3d(2), blk_size_3d(3)))
do i_arr = 1, blk_size_3d(1)
do l_arr = 1, blk_size_3d(2)
do n_arr = 1, blk_size_3d(3)
i = i_arr + blk_offset_3d(1) - 1
l = l_arr + blk_offset_3d(2) - 1
n = n_arr + blk_offset_3d(3) - 1
blk_values_3d(i_arr, l_arr, n_arr) = exp(-1./3*beta*real((i - l)**2 + (i - n)**2 + (l - n)**2))
end do
end do
end do
call dbcsr_t_put_block(b_iln, blk_ind_3d, blk_size_3d, blk_values_3d)
deallocate (blk_values_3d)
end do
call dbcsr_t_iterator_stop(iter_tensor)
call dbcsr_t_filter(b_iln, filter_eps)
! ------ create tensor e[jmn] ------
shape_3d = shape_ijklmno([2, 5, 6])
allocate (dist_1(shape_3d(1)))
call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_j, dist_1)
allocate (dist_2(shape_3d(2)))
call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)
allocate (dist_3(shape_3d(3)))
call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_n, dist_3)
call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
call dbcsr_t_create(e_jmn, "e[jm|n]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
blk_size_j, blk_size_m, blk_size_n)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ create tensor f[jmo] ------
shape_3d = shape_ijklmno([2, 5, 7])
allocate (dist_1(shape_3d(1)))
call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_j, dist_1)
allocate (dist_2(shape_3d(2)))
call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)
allocate (dist_3(shape_3d(3)))
call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_o, dist_3)
call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
deallocate (dist_1, dist_2, dist_3)
call dbcsr_t_create(f_jmo, "f[jm|o]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
blk_size_j, blk_size_m, blk_size_o)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ create and fill tensor f[jmo] ------
! ------ f(j,m,o) = b(m,o,j) + b(o,m,j) ------
! note: order argument of dbcsr_t_copy allows for arbitrary index permutations
! (same convention as fortran reshape intrinsic)
! f(j,m,o) = b(m,o,j)
call dbcsr_t_copy(b_iln, f_jmo, order=[2, 3, 1])
! f(j,m,o) = f(j,m,o) + b(o,m,j)
call dbcsr_t_copy(b_iln, f_jmo, order=[3, 2, 1], summation=.true.)
call dbcsr_t_filter(f_jmo, filter_eps)
! ------ create tensor d[i,j,l,m] ------
shape_4d = shape_ijklmno([1, 2, 4, 5])
pdims_4d(:) = 0
call dbcsr_t_pgrid_create(mpi_comm_world, pdims_4d, pgrid_4d)
allocate (dist_1(shape_4d(1)))
call dbcsr_t_default_distvec(shape_4d(1), pdims_4d(1), blk_size_i, dist_1)
allocate (dist_2(shape_4d(2)))
call dbcsr_t_default_distvec(shape_4d(2), pdims_4d(2), blk_size_j, dist_2)
allocate (dist_3(shape_4d(3)))
call dbcsr_t_default_distvec(shape_4d(3), pdims_4d(3), blk_size_l, dist_3)
allocate (dist_4(shape_4d(4)))
call dbcsr_t_default_distvec(shape_4d(4), pdims_4d(4), blk_size_m, dist_4)
call dbcsr_t_distribution_new(dist_tensor, pgrid_4d, dist_1, dist_2, dist_3, dist_4)
deallocate (dist_1, dist_2, dist_3, dist_4)
call dbcsr_t_create(d_ijlm, "d[ij|lm]", dist_tensor, [1, 2], [3, 4], dbcsr_type_real_8, &
blk_size_i, blk_size_j, blk_size_l, blk_size_m)
call dbcsr_t_distribution_destroy(dist_tensor)
! ------ write tensors (for debugging purposes only) ------
if (verbosity == 3) call dbcsr_t_write_blocks(a_ijk, io_unit_dbcsr, output_unit)
if (verbosity == 3) call dbcsr_t_write_blocks(b_iln, io_unit_dbcsr, output_unit)
if (verbosity == 3) call dbcsr_t_write_blocks(c_no, io_unit_dbcsr, output_unit)
if (contract_direct) then
! ------ d(i,j,l,m) = a(i,j,k) x a(l,m,k) ------
! performance measurement
nflop_sum = 0
call cpu_time(t0)
! contract_1: indices of first tensor to sum
! notcontract_1: all other indices of first tensor
! contract_2: indices of second tensor to sum (corresponding to contract_1)
! notcontract_2: all other indices of second tensor
! map_1: indices of result tensor corresponding to notcontract_1
! map_2: indices of result tensor corresponding to notcontract_2
call dbcsr_t_contract(alpha=dbcsr_scalar(1.0_real64), tensor_1=a_ijk, tensor_2=a_lmk, &
beta=dbcsr_scalar(0.0_real64), tensor_3=d_ijlm, &
contract_1=[3], notcontract_1=[1, 2], &
contract_2=[3], notcontract_2=[1, 2], &
map_1=[1, 2], map_2=[3, 4], &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
flop=nflop)
nflop_sum = nflop_sum + nflop
! ------ e(j,m,n) = d(i,j,l,m) x b(i,l,n) ------
! note: tensor d was created with map1_2d, map2_2d arguments inconsistent with
! contract_1 and notcontract_1 since this tensor was created with the previous contraction in mind.
! in this case tensor will be redistributed to the correct layout automatically.
call dbcsr_t_contract(dbcsr_scalar(1.0_real64), d_ijlm, b_iln, dbcsr_scalar(0.0_real64), e_jmn, &
contract_1=[1, 3], notcontract_1=[2, 4], &
contract_2=[1, 2], notcontract_2=[3], &
map_1=[1, 2], map_2=[3], &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
flop=nflop)
nflop_sum = nflop_sum + nflop
! free memory
call dbcsr_t_clear(d_ijlm)
! ------ c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o) ------
! summation to c is done by setting beta parameter to 1
call dbcsr_t_contract(dbcsr_scalar(1.0_real64), e_jmn, f_jmo, dbcsr_scalar(1.0_real64), c_no, &
contract_1=[1, 2], notcontract_1=[3], &
contract_2=[1, 2], notcontract_2=[3], &
map_1=[1], map_2=[2], &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
flop=nflop)
nflop_sum = nflop_sum + nflop
! free memory
call dbcsr_t_clear(e_jmn)
call cpu_time(t1)
! ------ verify result by calculating checksum of c ------
cs = dbcsr_t_checksum(c_no)
if (io_unit > 0) write (io_unit, "(a, e20.13)") "checksum matrix c", cs
! ------ write contraction result (for debugging purposes only) ------
if (verbosity == 3) call dbcsr_t_write_blocks(c_no, io_unit_dbcsr, output_unit)
! ------ output performance measurements ------
! useful to test strong scaling & overhead of batched contraction
time = t1 - t0
flop_rate = real(nflop_sum, real64)/(1.0e09_real64*time)
if (io_unit > 0) then
write (io_unit, "(a,t73,es8.2)") "performance: total number of flops:", real(nflop_sum*numnodes)
write (io_unit, "(a,t66,f15.2)") "performance: total execution time:", time
write (io_unit, "(a,t66,f15.2)") "performance: contraction flop rate (gflops / mpi rank):", flop_rate
end if
end if
if (contract_batched) then
! ------ batched contraction ------
! reduce memory by contracting over batches (such that intermediate tensors are never fully held in memory)
! indices i,j,l,m are split into n batches each (these indices belong to largest tensor d[ijlm])
! performance measurement
nflop_sum = 0
call cpu_time(t0)
call create_batches(blk_size_i, nbatch, start_batch_i, end_batch_i)
call create_batches(blk_size_j, nbatch, start_batch_j, end_batch_j)
call create_batches(blk_size_l, nbatch, start_batch_l, end_batch_l)
call create_batches(blk_size_m, nbatch, start_batch_m, end_batch_m)
call dbcsr_t_copy_matrix_to_tensor(c_matrix, c_no)
! for better performance (avoiding communications) call init routine on all tensors that appear
! in multiple contraction calls with the same bounds:
call dbcsr_t_batched_contract_init(c_no)
! iterate over index batches
do jbatch = 1, nbatch
do mbatch = 1, nbatch
do ibatch = 1, nbatch
call dbcsr_t_batched_contract_init(a_ijk)
do lbatch = 1, nbatch
! ------ d(i,j,l,m) = a(i,j,k) x a(l,m,k) ------
! specify bounds corresponding to the contraction index sets
allocate (bounds_2(2, 2), bounds_3(2, 2))
! bounds corresponding to notcontract_1 indices i,j
bounds_2(:, 1) = [start_batch_i(ibatch), end_batch_i(ibatch)]
bounds_2(:, 2) = [start_batch_j(jbatch), end_batch_j(jbatch)]
! bounds corresponding to notcontract_2 indices l,m
bounds_3(:, 1) = [start_batch_l(lbatch), end_batch_l(lbatch)]
bounds_3(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]
call dbcsr_t_contract(dbcsr_scalar(1.0_real64), a_ijk, a_lmk, &
dbcsr_scalar(0.0_real64), d_ijlm, &
contract_1=[3], notcontract_1=[1, 2], &
contract_2=[3], notcontract_2=[1, 2], &
map_1=[1, 2], map_2=[3, 4], &
bounds_2=bounds_2, &
bounds_3=bounds_3, &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, &
flop=nflop)
nflop_sum = nflop_sum + nflop
deallocate (bounds_2, bounds_3)
! ------ e(j,m,n) = d(i,j,l,m) x b(i,l,n) ------
allocate (bounds_1(2, 2), bounds_2(2, 2))
! bounds corresponding to contract indices i,l
bounds_1(:, 1) = [start_batch_i(ibatch), end_batch_i(ibatch)]
bounds_1(:, 2) = [start_batch_l(lbatch), end_batch_l(lbatch)]
! bounds corresponding to notcontract_1 indices j,m
bounds_2(:, 1) = [start_batch_j(jbatch), end_batch_j(jbatch)]
bounds_2(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]
! note: we sum up contributions from batches i & l, thus beta parameter set to 1
call dbcsr_t_contract(dbcsr_scalar(1.0_real64), d_ijlm, b_iln, dbcsr_scalar(1.0_real64), e_jmn, &
contract_1=[1, 3], notcontract_1=[2, 4], &
contract_2=[1, 2], notcontract_2=[3], &
map_1=[1, 2], map_2=[3], &
bounds_1=bounds_1, bounds_2=bounds_2, &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, &
flop=nflop)
nflop_sum = nflop_sum + nflop
deallocate (bounds_1, bounds_2)
! free memory
call dbcsr_t_clear(d_ijlm)
end do
! complete batched contraction of a
call dbcsr_t_batched_contract_finalize(a_ijk)
end do
! ------ c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o) ------
allocate (bounds_1(2, 2))
! bounds corresponding to contract indices j,m
bounds_1(:, 1) = [start_batch_j(jbatch), end_batch_j(jbatch)]
bounds_1(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]
call dbcsr_t_contract(dbcsr_scalar(1.0_real64), e_jmn, f_jmo, dbcsr_scalar(1.0_real64), c_no, &
contract_1=[1, 2], notcontract_1=[3], &
contract_2=[1, 2], notcontract_2=[3], &
map_1=[1], map_2=[2], &
bounds_1=bounds_1, &
filter_eps=filter_eps, &
unit_nr=io_unit_dbcsr, &
flop=nflop)
nflop_sum = nflop_sum + nflop
deallocate (bounds_1)
! free memory
call dbcsr_t_clear(e_jmn)
end do
end do
! complete batched contraction of c
call dbcsr_t_batched_contract_finalize(c_no)
call cpu_time(t1)
! ------ verify result by calculating checksum of c ------
cs = dbcsr_t_checksum(c_no)
if (io_unit > 0) write (io_unit, "(a, e20.13)") "checksum matrix c", cs
! ------ output performance measurements ------
! useful to test strong scaling & overhead of batched contraction
time = t1 - t0
flop_rate = real(nflop_sum, real64)/(1.0e09_real64*time)
if (io_unit > 0) then
write (io_unit, "(a,t73,es8.2)") "performance (batched): total number of flops:", real(nflop_sum*numnodes)
write (io_unit, "(a,t66,f15.2)") "performance (batched): total execution time:", time
write (io_unit, "(a,t66,f15.2)") "performance (batched): contraction flop rate (gflops / mpi rank):", flop_rate
end if
deallocate (start_batch_i, start_batch_j, start_batch_l, start_batch_m, &
end_batch_i, end_batch_j, end_batch_l, end_batch_m)
end if
! ------ copy tensor c to matrix c ------
call dbcsr_t_copy_tensor_to_matrix(c_no, c_matrix)
! ------ cleanup ------
call dbcsr_t_pgrid_destroy(pgrid_3d)
call dbcsr_t_pgrid_destroy(pgrid_4d)
call dbcsr_release(c_matrix)
call dbcsr_t_destroy(c_no)
call dbcsr_t_destroy(a_ijk)
call dbcsr_t_destroy(e_jmn)
call dbcsr_t_destroy(a_lmk)
call dbcsr_t_destroy(b_iln)
call dbcsr_t_destroy(f_jmo)
call dbcsr_t_destroy(d_ijlm)
deallocate (blk_size_i, blk_size_j, blk_size_k, blk_size_l, blk_size_m, blk_size_n, blk_size_o, &
offset_i, offset_j, offset_k, offset_l, offset_n)
call mpi_comm_free(group, ierr)
if (ierr /= 0) stop "error in mpi_comm_free"
! finalize libdbcsr
call dbcsr_finalize_lib()
! finalize mpi
call mpi_finalize(ierr)
if (ierr /= 0) stop "error in mpi_finalize"
contains
subroutine random_blk_sizes(total_size, nblk, blk_sizes)
! random block sizes such that sum is equal to total_size
integer, intent(in) :: total_size
integer, intent(out) :: nblk
integer, intent(out), allocatable :: blk_sizes(:)
integer, allocatable :: tmp(:)
integer :: mynode, ierr, blk_sum, bsize
real :: rand
call mpi_comm_rank(mpi_comm_world, mynode, ierr)
if (ierr /= 0) stop "error in mpi_comm_rank"
if (mynode == 0) then
blk_sum = 0
allocate (blk_sizes(0))
nblk = 0
do while (blk_sum < total_size)
call random_number(rand)
bsize = int(rand*max_bsize + 1)
if (blk_sum + bsize > total_size) bsize = total_size - blk_sum
blk_sum = blk_sum + bsize
nblk = nblk + 1
call move_alloc(blk_sizes, tmp)
allocate (blk_sizes(nblk))
blk_sizes(1:nblk - 1) = tmp; deallocate (tmp)
blk_sizes(nblk) = bsize
end do
end if
call mpi_bcast(nblk, 1, mpi_integer, 0, mpi_comm_world, ierr)
if (ierr /= 0) stop "error in mpi_bcast"
if (mynode /= 0) allocate (blk_sizes(nblk))
call mpi_bcast(blk_sizes, nblk, mpi_integer, 0, mpi_comm_world, ierr)
if (ierr /= 0) stop "error in mpi_bcast"
end subroutine
function block_minabsdiff(offset_1, offset_2, size_1, size_2)
! get minimum difference between row and column indices belonging to a block defined by its
! size and offset
integer, intent(in) :: offset_1, offset_2, size_1, size_2
integer :: block_minabsdiff
integer, dimension(2) :: limits_1, limits_2
limits_1 = offset_1 - 1 + [1, size_1]
limits_2 = offset_2 - 1 + [1, size_2]
if (limits_1(2) < limits_2(1)) then
block_minabsdiff = limits_2(1) - limits_1(2)
elseif (limits_2(2) < limits_1(1)) then
block_minabsdiff = limits_1(1) - limits_2(2)
else
block_minabsdiff = 0
end if
end function
subroutine create_batches(blk_sizes, nbatch, start_batch, end_batch)
! create tensor batches: split index at block boundaries such that each batch contains approximately
! the same number of tensor elements.
integer, dimension(:), intent(in) :: blk_sizes
integer, intent(in) :: nbatch
integer, dimension(:), allocatable, intent(out) :: start_batch, end_batch
integer :: nel, nel_batch, nblk, blk_sum, batch_sum, iblk
integer, dimension(:), allocatable :: tmp
nblk = size(blk_sizes)
nel = sum(blk_sizes)
nel_batch = nel/nbatch
ibatch = 0
blk_sum = 0; batch_sum = nel_batch
allocate (end_batch(0:nbatch))
allocate (start_batch(1:nbatch))
end_batch(0) = 0
do iblk = 1, nblk
blk_sum = blk_sum + blk_sizes(iblk)
if (blk_sum >= batch_sum) then
ibatch = ibatch + 1
end_batch(ibatch) = blk_sum
start_batch(ibatch) = end_batch(ibatch - 1) + 1
batch_sum = min(batch_sum + nel_batch, nel)
end if
end do
call move_alloc(end_batch, tmp)
allocate (end_batch(1:nbatch))
end_batch(:) = tmp(1:)
end subroutine
end program
|