File: dbcsr_tensor_example_1.F

package info (click to toggle)
dbcsr 2.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 39,836 kB
  • sloc: fortran: 54,534; ansic: 7,060; python: 3,482; cpp: 2,431; sh: 1,639; f90: 1,178; lisp: 689; makefile: 633
file content (966 lines) | stat: -rw-r--r-- 40,289 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
!--------------------------------------------------------------------------------------------------!
! Copyright (C) by the DBCSR developers group - All rights reserved                                !
! This file is part of the DBCSR library.                                                          !
!                                                                                                  !
! For information on the license, see the LICENSE file.                                            !
! For further information please visit https://dbcsr.cp2k.org                                      !
! SPDX-License-Identifier: GPL-2.0+                                                                !
!--------------------------------------------------------------------------------------------------!

program dbcsr_tensor_example_1
   !! Sparse tensor contraction example
   use mpi
   use dbcsr_api, only: &
      dbcsr_type, dbcsr_distribution_type, dbcsr_init_lib, dbcsr_distribution_new, &
      dbcsr_type_no_symmetry, dbcsr_create, dbcsr_iterator_start, dbcsr_iterator_blocks_left, &
      dbcsr_iterator_stop, dbcsr_iterator_next_block, dbcsr_iterator_type, dbcsr_put_block, &
      dbcsr_reserve_blocks, dbcsr_scalar, dbcsr_finalize_lib, dbcsr_distribution_release, &
      dbcsr_nblkrows_total, dbcsr_type_real_8, dbcsr_release, dbcsr_nblkcols_total, dbcsr_finalize, &
      dbcsr_get_stored_coordinates, dbcsr_get_info, dbcsr_filter, dbcsr_checksum
   use dbcsr_tensor_api, only: &
      dbcsr_t_create, dbcsr_t_copy_matrix_to_tensor, &
      dbcsr_t_pgrid_type, dbcsr_t_type, dbcsr_t_distribution_type, dbcsr_t_nblks_total, &
      dbcsr_t_reserve_blocks, dbcsr_t_iterator_start, dbcsr_t_iterator_blocks_left, &
      dbcsr_t_iterator_next_block, dbcsr_t_iterator_stop, dbcsr_t_default_distvec, dbcsr_t_put_block, &
      dbcsr_t_copy, dbcsr_t_distribution_new, dbcsr_t_distribution_destroy, dbcsr_t_write_blocks, dbcsr_t_contract, &
      dbcsr_t_copy_tensor_to_matrix, dbcsr_t_destroy, dbcsr_t_pgrid_destroy, dbcsr_t_nblks_total, &
      dbcsr_t_pgrid_create, dbcsr_t_iterator_type, dbcsr_t_get_stored_coordinates, dbcsr_t_get_info, dbcsr_t_filter, &
      dbcsr_t_checksum, dbcsr_t_clear, dbcsr_t_batched_contract_init, dbcsr_t_batched_contract_finalize
   use iso_fortran_env, only: &
      output_unit, real64, int64

! --------------------------------------------------------------------------------------------------
! this example implements the sparse tensor contraction (einstein notation)
! c(n,o) = c(n,o) + a(i,j,k) x a(l,m,k) x b(i,l,n) x (b(m,o,j) + b(o,m,j))
!
! the tensors have the following shape and entries:
! a: n x n x 2n: a(i,j,k) = exp(-1/3*alpha*((i-j)**2+(i-k)**2+(j-k)**2))
! b: n x n x n: b(i,j,k) = exp(-1/3*beta*((i-j)**2+(i-k)**2+(j-k)**2))
! c: n x n: c(i,j) = exp(-1/2*gamma*(i-j)**2)
!
! due to the exponential decay of the tensor elements w.r.t. difference between two indices,
! all tensors are sparse. neglect of small tensor elements is controlled by threshold 'filter_eps':
! tensor blocks with frobenius norm < filter_eps are neglected.
!
! block sizes are set randomly in this example to demonstrate a heterogeneous sparsity pattern,
! these should ideally be adapted to the natural sparsity pattern of the problem
! (e.g. blocks corresponding to a set of gaussian basis functions with same exponent)
!
! DBCSR provides two basic operations in terms of which any tensor contraction can be expressed:
! dbcsr_t_contract: contraction of a pair of tensors
! dbcsr_t_copy: copy supporting redistribution and index permutation
!
! by default, DBCSR supports tensors of ranks between 2 and 4.
! higher ranks can be enabled by adapting 'maxrank' in 'dbcsr_tensor.fypp'.
!
! the above contraction is executed in the following order:
! 1) d(i,j,l,m) = a(i,j,k) x a(l,m,k)
! 2) e(j,m,n) = d(i,j,l,m) x b(i,l,n)
! 3) f(j,m,o) = b(m,o,j) + b(o,m,j)
! 4) c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o)
!
! how to run (this example and DBCSR for tensors in general):
! - best performance is obtained by running with mpi and one openmp thread per rank.
! - ideally number of mpi ranks should be composed of small prime factors (e.g. powers of 2).
! - for sparse data & heterogeneous block sizes, DBCSR should be run on CPUs with libxsmm backend.
! - for dense data best performance is obtained by choosing homogeneous block sizes of 64 and by
!   compiling with GPU support.
! --------------------------------------------------------------------------------------------------

! ------ Parameters ------

   ! example type:
   ! - 1: debug (small & verbose)
   ! - 2: default (medium size)
   ! - 3: large (requires parallelism)
   ! - 4: large, batched contraction to reduce memory (does not require parallelism)
   integer, parameter :: example_type = 2

   ! filter threshold (larger value means more sparse but less accurate)
   real(real64), parameter :: filter_eps = 1.0e-08_real64

   ! number of batches in one dimension (to reduce memory footprint)
   integer, parameter :: nbatch = 8

   ! exponents for gaussians
   real(real64) :: alpha, beta, gamma

   ! maximum block size (actual block sizes are random between 1 and this number)
   integer :: max_bsize

   ! tensor size in one dimension (n)
   integer :: nel

   ! tune sparsity by scaling exponent for calculation of tensor elements
   real(real64) :: scale_exp

   ! contract all tensors at once
   logical :: contract_direct

   ! contract in batches (memory saving)
   logical :: contract_batched

   ! verbosity level
   ! 0: essential output
   ! 1: tensor log
   ! 2: verbose tensor log
   ! 3: verbose tensor log and print all tensor data
   integer :: verbosity

   integer :: &
      ierr, numnodes, mynode, node_holds_blk, io_unit, io_unit_dbcsr, ind, row, col, blk, group, &
      i, j, k, l, n, o, i_arr, j_arr, k_arr, l_arr, n_arr, o_arr, blk_size, &
      min_exp, min_exp_ij, min_exp_ik, min_exp_jk, min_exp_il, min_exp_in, min_exp_ln, &
      ibatch, jbatch, lbatch, mbatch
   integer, dimension(:), allocatable :: &
      offset_i, offset_j, offset_l, offset_k, offset_n, tmp, &
      start_batch_i, start_batch_j, start_batch_l, start_batch_m, &
      end_batch_i, end_batch_j, end_batch_l, end_batch_m
   integer, dimension(:), allocatable, target :: &
      blk_ind_1, blk_ind_2, blk_ind_3, &
      blk_size_i, blk_size_j, blk_size_k, blk_size_l, blk_size_m, blk_size_n, blk_size_o, &
      dist_1, dist_2, dist_3, dist_4
   integer, dimension(:, :), allocatable :: bounds_1, bounds_2, bounds_3
   integer, dimension(:), pointer :: &
      row_dist, col_dist, row_blk_size, col_blk_size, row_offset, col_offset
   integer, dimension(2) :: shape_2d, blk_ind_2d, blk_size_2d, blk_offset_2d, pdims_2d
   integer, dimension(3) :: blk_ind_3d, pdims_3d, shape_3d, blk_size_3d, blk_offset_3d
   integer, dimension(4) :: shape_4d, pdims_4d
   integer, dimension(7) :: shape_ijklmno
   integer(int64) :: nflop_sum, nflop
   real(real64) :: cs, t1, t0, time, flop_rate
   real(real64), dimension(:, :), pointer :: blk_values_2d
   real(real64), dimension(:, :, :), allocatable :: blk_values_3d
   logical :: tr
   logical, dimension(2) :: period = .true.
   type(dbcsr_type) :: c_matrix
   type(dbcsr_distribution_type) :: dist_matrix
   type(dbcsr_iterator_type) :: iter_matrix
   type(dbcsr_t_pgrid_type) :: pgrid_3d, pgrid_4d
   type(dbcsr_t_distribution_type) :: dist_tensor
   type(dbcsr_t_type) :: a_ijk, a_lmk, b_iln, c_no, d_ijlm, e_jmn, f_jmo
   type(dbcsr_t_iterator_type) :: iter_tensor

   ! prefactor in exponent for tensor data
   alpha = 1.0_real64; beta = 0.5_real64; gamma = 2.0_real64

   ! parameters for different example types
   select case (example_type)
   case (1)
      nel = 10
      max_bsize = 3
      verbosity = 3
      scale_exp = 10.0_real64
      contract_direct = .true.
      contract_batched = .false.
   case (2)
      nel = 200
      max_bsize = 10
      verbosity = 1
      scale_exp = 0.01_real64
      contract_direct = .true.
      contract_batched = .false.
   case (3)
      nel = 2000
      max_bsize = 10
      verbosity = 1
      scale_exp = 0.01_real64
      contract_direct = .true.
      contract_batched = .false.
   case (4)
      nel = 2000
      max_bsize = 10
      verbosity = 0
      scale_exp = 0.01_real64
      contract_direct = .false.
      contract_batched = .true.
   end select

   alpha = alpha*scale_exp
   beta = beta*scale_exp
   gamma = gamma*scale_exp

   ! initialize mpi
   call mpi_init(ierr)
   if (ierr /= 0) stop "error in mpi_init"

   call mpi_comm_size(mpi_comm_world, numnodes, ierr)
   if (ierr /= 0) stop "error in mpi_comm_size"

   call mpi_comm_rank(mpi_comm_world, mynode, ierr)
   if (ierr /= 0) stop "error in mpi_comm_rank"

   ! initialize DBCSR
   call dbcsr_init_lib(mpi_comm_world)

   ! prepare output
   io_unit_dbcsr = -1
   io_unit = -1
   if (mynode == 0 .and. verbosity > 0) io_unit_dbcsr = output_unit
   if (mynode == 0) io_unit = output_unit

   ! create block sizes
   call random_blk_sizes(nel, shape_ijklmno(1), blk_size_i)
   call random_blk_sizes(nel, shape_ijklmno(2), blk_size_j)
   call random_blk_sizes(2*nel, shape_ijklmno(3), blk_size_k)
   call random_blk_sizes(nel, shape_ijklmno(4), blk_size_l)
   call random_blk_sizes(nel, shape_ijklmno(5), blk_size_m)
   call random_blk_sizes(nel, shape_ijklmno(6), blk_size_n)
   call random_blk_sizes(nel, shape_ijklmno(7), blk_size_o)

! ------ create matrix c[no] ------

   ! shape (number of blocks in each dimension)
   shape_2d = shape_ijklmno(6:7)

   ! set up 2-dimensional process grid
   pdims_2d(:) = 0
   call mpi_dims_create(numnodes, 2, pdims_2d, ierr)
   if (ierr /= 0) stop "error in mpi_dims_create"
   call mpi_cart_create(mpi_comm_world, 2, pdims_2d, period, .false., group, ierr)
   if (ierr /= 0) stop "error in mpi_cart_create"

   ! row and column distribution (mapping blocks in each dimension to process grid coordinate)
   ! this routine creates a load-balanced distribution for heterogeneous block sizes, alternatively
   ! any custom distribution can be used
   allocate (dist_1(shape_2d(1)))
   call dbcsr_t_default_distvec(shape_2d(1), pdims_2d(1), blk_size_n, dist_1)
   allocate (dist_2(shape_2d(2)))
   call dbcsr_t_default_distvec(shape_2d(2), pdims_2d(2), blk_size_o, dist_2)

   ! convert to pointers because DBCSR matrix api only accepts pointers
   row_dist => dist_1
   col_dist => dist_2

   ! create distribution
   call dbcsr_distribution_new(dist_matrix, group=group, row_dist=row_dist, col_dist=col_dist)
   deallocate (dist_1, dist_2)

   ! convert to pointers since DBCSR matrix api only accepts pointers
   row_blk_size => blk_size_n
   col_blk_size => blk_size_o

   ! create DBCSR matrix
   call dbcsr_create(matrix=c_matrix, name="c[n|o]", dist=dist_matrix, matrix_type=dbcsr_type_no_symmetry, &
                     row_blk_size=row_blk_size, col_blk_size=col_blk_size, data_type=dbcsr_type_real_8)

   call dbcsr_distribution_release(dist_matrix)

! ------ fill matrix c[no] ------

   ! reserve non-zero blocks. for performance it is important to first reserve all present blocks
   ! before calculating them and inserting them into DBCSR matrix.
   call dbcsr_get_info(c_matrix, row_blk_offset=row_offset, col_blk_offset=col_offset)

   ind = 0
   allocate (blk_ind_1(0), blk_ind_2(0))
   do row = 1, dbcsr_nblkrows_total(c_matrix)
      do col = 1, dbcsr_nblkcols_total(c_matrix)

         ! only consider blocks that are local to this rank (according to distribution)
         call dbcsr_get_stored_coordinates(c_matrix, row, col, node_holds_blk)
         if (node_holds_blk /= mynode) cycle

         ! calculate largest matrix element to determine an upper bound for block frobenius norm
         ! block is reserved only if this estimate is larger than the filter_eps parameter
         min_exp = block_minabsdiff(row_offset(row), col_offset(col), row_blk_size(row), col_blk_size(col))
         blk_size = row_blk_size(row)*col_blk_size(col)
         if (blk_size*exp(-0.5*gamma*real(min_exp**2)) < filter_eps) cycle

         ind = ind + 1

         ! store index of block to be reserved
         call move_alloc(blk_ind_1, tmp)
         allocate (blk_ind_1(ind))
         blk_ind_1(:ind - 1) = tmp; deallocate (tmp)

         call move_alloc(blk_ind_2, tmp)
         allocate (blk_ind_2(ind))
         blk_ind_2(:ind - 1) = tmp; deallocate (tmp)

         blk_ind_1(ind) = row
         blk_ind_2(ind) = col

      end do
   end do

   ! reserve blocks
   call dbcsr_reserve_blocks(c_matrix, blk_ind_1, blk_ind_2)
   deallocate (blk_ind_1, blk_ind_2)

   ! iterate over reserved matrix blocks to fill them with data
   call dbcsr_iterator_start(iter_matrix, c_matrix)
   do while (dbcsr_iterator_blocks_left(iter_matrix))
      call dbcsr_iterator_next_block(iter_matrix, blk_ind_2d(1), blk_ind_2d(2), blk_values_2d, tr, &
                                     row_size=blk_size_2d(1), col_size=blk_size_2d(2), &
                                     row_offset=blk_offset_2d(1), col_offset=blk_offset_2d(2))
      do n_arr = 1, blk_size_2d(1)
         do o_arr = 1, blk_size_2d(2)
            ! get matrix element index n & o from block offset
            n = n_arr + blk_offset_2d(1) - 1
            o = o_arr + blk_offset_2d(2) - 1
            ! calculate matrix element
            blk_values_2d(n_arr, o_arr) = exp(-0.5*gamma*real((n - o)**2))
         end do
      end do
   end do
   call dbcsr_iterator_stop(iter_matrix)

   ! finalize the DBCSR matrix
   call dbcsr_finalize(c_matrix)

   ! sparsity refinement by removing small blocks
   call dbcsr_filter(c_matrix, filter_eps)

   ! create tensor from DBCSR matrix for tensor contraction and copy data
   ! (alternatively we could have directly created c_matrix as a tensor)
   call dbcsr_t_create(c_matrix, c_no)
   call dbcsr_t_copy_matrix_to_tensor(c_matrix, c_no)

! ------ create tensor a[ijk] ------

   ! note: tensor api is analogous to matrix api with a few differences of technical and historical nature

   shape_3d = shape_ijklmno(1:3)

   ! n-rank tensor requires an n-dimensional process grid:
   ! 'dbcsr_t_pgrid_create' is analogous to 'mpi_cart_create' but comes with some additional defaults.
   ! If the tensor dimensions vary significantly in size, it's important for performance to use the
   ! optional argument 'tensor_dims' to specify the tensor (block) dimensions.
   pdims_3d(:) = 0
   call dbcsr_t_pgrid_create(mpi_comm_world, pdims_3d, pgrid_3d)

   allocate (dist_1(shape_3d(1)))
   call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_i, dist_1)

   allocate (dist_2(shape_3d(2)))
   call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_j, dist_2)

   allocate (dist_3(shape_3d(3)))
   call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_k, dist_3)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
   deallocate (dist_1, dist_2, dist_3)

   ! create tensor. Compared with dbcsr_create this takes 2 additional arguments to control how the
   ! tensor is internally represented as a matrix:
   ! - map1_2d: which tensor dimensions are mapped to the first matrix dimension (in this case i & j)
   ! - map2_2d: which tensor dimensions are mapped to the second matrix dimension (in this case k)
   ! (these arguments need to be given for performance reasons, see documentation of dbcsr_t_contract
   ! for more info)
   call dbcsr_t_create(a_ijk, "a[ij|k]", dist_tensor, &
                       map1_2d=[1, 2], map2_2d=[3], &
                       data_type=dbcsr_type_real_8, &
                       blk_size_1=blk_size_i, blk_size_2=blk_size_j, blk_size_3=blk_size_k)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ create a[lmk]  ------
   ! note: normally we can just create an exact copy by calling:
   !    call dbcsr_t_create(a_ijk, a_lmk)
   !    call dbcsr_t_copy(a_ijk, a_lmk)
   ! here we need to create from scratch since the tensors have different block sizes
   shape_3d = shape_ijklmno([4, 5, 3])

   allocate (dist_1(shape_3d(1)))
   call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_l, dist_1)

   allocate (dist_2(shape_3d(2)))
   call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)

   allocate (dist_3(shape_3d(3)))
   call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_k, dist_3)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
   deallocate (dist_1, dist_2, dist_3)
   call dbcsr_t_create(a_lmk, "a[lm|k]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
                       blk_size_l, blk_size_m, blk_size_k)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ fill tensor a[ijk] and copy to a[lmk] ------

   allocate (offset_i(dbcsr_t_nblks_total(a_ijk, 1)))
   allocate (offset_j(dbcsr_t_nblks_total(a_ijk, 2)))
   allocate (offset_k(dbcsr_t_nblks_total(a_ijk, 3)))
   call dbcsr_t_get_info(a_ijk, blk_offset_1=offset_i, blk_offset_2=offset_j, blk_offset_3=offset_k)

   ind = 0
   allocate (blk_ind_1(0), blk_ind_2(0), blk_ind_3(0))
   do i = 1, dbcsr_t_nblks_total(a_ijk, 1)
      do j = 1, dbcsr_t_nblks_total(a_ijk, 2)
         do k = 1, dbcsr_t_nblks_total(a_ijk, 3)

            call dbcsr_t_get_stored_coordinates(a_ijk, [i, j, k], node_holds_blk)
            if (node_holds_blk /= mynode) cycle

            min_exp_ij = block_minabsdiff(offset_i(i), offset_j(j), blk_size_i(i), blk_size_j(j))
            min_exp_ik = block_minabsdiff(offset_i(i), offset_k(k), blk_size_i(i), blk_size_k(k))
            min_exp_jk = block_minabsdiff(offset_j(j), offset_k(k), blk_size_j(j), blk_size_k(k))

            blk_size = blk_size_i(i)*blk_size_j(j)*blk_size_k(k)

            if (blk_size*exp(-1./3*alpha*real(min_exp_ij**2 + min_exp_ik**2 + min_exp_jk**2)) < filter_eps) cycle

            ind = ind + 1

            call move_alloc(blk_ind_1, tmp)
            allocate (blk_ind_1(ind))
            blk_ind_1(:ind - 1) = tmp; deallocate (tmp)

            call move_alloc(blk_ind_2, tmp)
            allocate (blk_ind_2(ind))
            blk_ind_2(:ind - 1) = tmp; deallocate (tmp)

            call move_alloc(blk_ind_3, tmp)
            allocate (blk_ind_3(ind))
            blk_ind_3(:ind - 1) = tmp; deallocate (tmp)

            blk_ind_1(ind) = i
            blk_ind_2(ind) = j
            blk_ind_3(ind) = k
         end do
      end do
   end do

   call dbcsr_t_reserve_blocks(a_ijk, blk_ind_1, blk_ind_2, blk_ind_3)
   deallocate (blk_ind_1, blk_ind_2, blk_ind_3)

   call dbcsr_t_iterator_start(iter_tensor, a_ijk)
   do while (dbcsr_t_iterator_blocks_left(iter_tensor))
      ! direct access to block pointers via iterator is not possible in the tensor api
      ! the iterator goes over indices and then we call 'put_block'
      call dbcsr_t_iterator_next_block(iter_tensor, blk_ind_3d, blk, blk_size=blk_size_3d, blk_offset=blk_offset_3d)
      allocate (blk_values_3d(blk_size_3d(1), blk_size_3d(2), blk_size_3d(3)))
      do i_arr = 1, blk_size_3d(1)
         do j_arr = 1, blk_size_3d(2)
            do k_arr = 1, blk_size_3d(3)
               i = i_arr + blk_offset_3d(1) - 1
               j = j_arr + blk_offset_3d(2) - 1
               k = k_arr + blk_offset_3d(3) - 1
               blk_values_3d(i_arr, j_arr, k_arr) = exp(-1./3*alpha*real((i - j)**2 + (i - k)**2 + (j - k)**2))
            end do
         end do
      end do
      call dbcsr_t_put_block(a_ijk, blk_ind_3d, blk_size_3d, blk_values_3d)
      deallocate (blk_values_3d)
   end do
   call dbcsr_t_iterator_stop(iter_tensor)

   call dbcsr_t_filter(a_ijk, filter_eps)

   ! no need to finalize for tensors, this is done internally

   ! fill tensor (lmk) by copying from a[ijk]
   call dbcsr_t_copy(a_ijk, a_lmk)
   call dbcsr_t_filter(a_lmk, filter_eps)

! ------ create tensor b[iln] ------
   shape_3d = shape_ijklmno([1, 4, 6])

   allocate (dist_1(shape_3d(1)))
   call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_i, dist_1)

   allocate (dist_2(shape_3d(2)))
   call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_l, dist_2)

   allocate (dist_3(shape_3d(3)))
   call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_n, dist_3)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
   deallocate (dist_1, dist_2, dist_3)

   call dbcsr_t_create(b_iln, "b[il|n]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
                       blk_size_i, blk_size_l, blk_size_n)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ fill tensor b[iln] ------
   allocate (offset_l(dbcsr_t_nblks_total(b_iln, 2)))
   allocate (offset_n(dbcsr_t_nblks_total(b_iln, 3)))
   call dbcsr_t_get_info(b_iln, blk_offset_2=offset_l, blk_offset_3=offset_n)

   ind = 0
   allocate (blk_ind_1(0), blk_ind_2(0), blk_ind_3(0))
   do i = 1, dbcsr_t_nblks_total(b_iln, 1)
      do l = 1, dbcsr_t_nblks_total(b_iln, 2)
         do n = 1, dbcsr_t_nblks_total(b_iln, 3)

            call dbcsr_t_get_stored_coordinates(b_iln, [i, l, n], node_holds_blk)
            if (node_holds_blk /= mynode) cycle

            min_exp_il = block_minabsdiff(offset_i(i), offset_l(l), blk_size_i(i), blk_size_l(l))
            min_exp_in = block_minabsdiff(offset_i(i), offset_n(n), blk_size_i(i), blk_size_n(n))
            min_exp_ln = block_minabsdiff(offset_l(l), offset_n(n), blk_size_l(l), blk_size_n(n))

            blk_size = blk_size_i(i)*blk_size_l(l)*blk_size_n(n)

            if (blk_size*exp(-1./3*beta*real(min_exp_il**2 + min_exp_in**2 + min_exp_ln**2)) < filter_eps) cycle

            ind = ind + 1

            call move_alloc(blk_ind_1, tmp)
            allocate (blk_ind_1(ind))
            blk_ind_1(:ind - 1) = tmp; deallocate (tmp)

            call move_alloc(blk_ind_2, tmp)
            allocate (blk_ind_2(ind))
            blk_ind_2(:ind - 1) = tmp; deallocate (tmp)

            call move_alloc(blk_ind_3, tmp)
            allocate (blk_ind_3(ind))
            blk_ind_3(:ind - 1) = tmp; deallocate (tmp)

            blk_ind_1(ind) = i
            blk_ind_2(ind) = l
            blk_ind_3(ind) = n
         end do
      end do
   end do

   call dbcsr_t_reserve_blocks(b_iln, blk_ind_1, blk_ind_2, blk_ind_3)
   deallocate (blk_ind_1, blk_ind_2, blk_ind_3)

   call dbcsr_t_iterator_start(iter_tensor, b_iln)
   do while (dbcsr_t_iterator_blocks_left(iter_tensor))
      call dbcsr_t_iterator_next_block(iter_tensor, blk_ind_3d, blk, blk_size=blk_size_3d, blk_offset=blk_offset_3d)
      allocate (blk_values_3d(blk_size_3d(1), blk_size_3d(2), blk_size_3d(3)))
      do i_arr = 1, blk_size_3d(1)
         do l_arr = 1, blk_size_3d(2)
            do n_arr = 1, blk_size_3d(3)
               i = i_arr + blk_offset_3d(1) - 1
               l = l_arr + blk_offset_3d(2) - 1
               n = n_arr + blk_offset_3d(3) - 1
               blk_values_3d(i_arr, l_arr, n_arr) = exp(-1./3*beta*real((i - l)**2 + (i - n)**2 + (l - n)**2))
            end do
         end do
      end do
      call dbcsr_t_put_block(b_iln, blk_ind_3d, blk_size_3d, blk_values_3d)
      deallocate (blk_values_3d)
   end do
   call dbcsr_t_iterator_stop(iter_tensor)

   call dbcsr_t_filter(b_iln, filter_eps)

! ------ create tensor e[jmn] ------
   shape_3d = shape_ijklmno([2, 5, 6])

   allocate (dist_1(shape_3d(1)))
   call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_j, dist_1)

   allocate (dist_2(shape_3d(2)))
   call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)

   allocate (dist_3(shape_3d(3)))
   call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_n, dist_3)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
   deallocate (dist_1, dist_2, dist_3)
   call dbcsr_t_create(e_jmn, "e[jm|n]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
                       blk_size_j, blk_size_m, blk_size_n)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ create tensor f[jmo] ------
   shape_3d = shape_ijklmno([2, 5, 7])

   allocate (dist_1(shape_3d(1)))
   call dbcsr_t_default_distvec(shape_3d(1), pdims_3d(1), blk_size_j, dist_1)

   allocate (dist_2(shape_3d(2)))
   call dbcsr_t_default_distvec(shape_3d(2), pdims_3d(2), blk_size_m, dist_2)

   allocate (dist_3(shape_3d(3)))
   call dbcsr_t_default_distvec(shape_3d(3), pdims_3d(3), blk_size_o, dist_3)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_3d, dist_1, dist_2, dist_3)
   deallocate (dist_1, dist_2, dist_3)
   call dbcsr_t_create(f_jmo, "f[jm|o]", dist_tensor, [1, 2], [3], dbcsr_type_real_8, &
                       blk_size_j, blk_size_m, blk_size_o)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ create and fill tensor f[jmo] ------
! ------ f(j,m,o) = b(m,o,j) + b(o,m,j) ------

   ! note: order argument of dbcsr_t_copy allows for arbitrary index permutations
   ! (same convention as fortran reshape intrinsic)

   ! f(j,m,o) = b(m,o,j)
   call dbcsr_t_copy(b_iln, f_jmo, order=[2, 3, 1])

   ! f(j,m,o) = f(j,m,o) + b(o,m,j)
   call dbcsr_t_copy(b_iln, f_jmo, order=[3, 2, 1], summation=.true.)

   call dbcsr_t_filter(f_jmo, filter_eps)

! ------ create tensor d[i,j,l,m] ------
   shape_4d = shape_ijklmno([1, 2, 4, 5])

   pdims_4d(:) = 0
   call dbcsr_t_pgrid_create(mpi_comm_world, pdims_4d, pgrid_4d)

   allocate (dist_1(shape_4d(1)))
   call dbcsr_t_default_distvec(shape_4d(1), pdims_4d(1), blk_size_i, dist_1)

   allocate (dist_2(shape_4d(2)))
   call dbcsr_t_default_distvec(shape_4d(2), pdims_4d(2), blk_size_j, dist_2)

   allocate (dist_3(shape_4d(3)))
   call dbcsr_t_default_distvec(shape_4d(3), pdims_4d(3), blk_size_l, dist_3)

   allocate (dist_4(shape_4d(4)))
   call dbcsr_t_default_distvec(shape_4d(4), pdims_4d(4), blk_size_m, dist_4)

   call dbcsr_t_distribution_new(dist_tensor, pgrid_4d, dist_1, dist_2, dist_3, dist_4)
   deallocate (dist_1, dist_2, dist_3, dist_4)

   call dbcsr_t_create(d_ijlm, "d[ij|lm]", dist_tensor, [1, 2], [3, 4], dbcsr_type_real_8, &
                       blk_size_i, blk_size_j, blk_size_l, blk_size_m)
   call dbcsr_t_distribution_destroy(dist_tensor)

! ------ write tensors (for debugging purposes only) ------
   if (verbosity == 3) call dbcsr_t_write_blocks(a_ijk, io_unit_dbcsr, output_unit)
   if (verbosity == 3) call dbcsr_t_write_blocks(b_iln, io_unit_dbcsr, output_unit)
   if (verbosity == 3) call dbcsr_t_write_blocks(c_no, io_unit_dbcsr, output_unit)

   if (contract_direct) then

! ------ d(i,j,l,m) = a(i,j,k) x a(l,m,k) ------

      ! performance measurement
      nflop_sum = 0
      call cpu_time(t0)

      ! contract_1: indices of first tensor to sum
      ! notcontract_1: all other indices of first tensor
      ! contract_2: indices of second tensor to sum (corresponding to contract_1)
      ! notcontract_2: all other indices of second tensor
      ! map_1: indices of result tensor corresponding to notcontract_1
      ! map_2: indices of result tensor corresponding to notcontract_2

      call dbcsr_t_contract(alpha=dbcsr_scalar(1.0_real64), tensor_1=a_ijk, tensor_2=a_lmk, &
                            beta=dbcsr_scalar(0.0_real64), tensor_3=d_ijlm, &
                            contract_1=[3], notcontract_1=[1, 2], &
                            contract_2=[3], notcontract_2=[1, 2], &
                            map_1=[1, 2], map_2=[3, 4], &
                            filter_eps=filter_eps, &
                            unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
                            flop=nflop)
      nflop_sum = nflop_sum + nflop

! ------ e(j,m,n) = d(i,j,l,m) x b(i,l,n) ------

      ! note: tensor d was created with map1_2d, map2_2d arguments inconsistent with
      ! contract_1 and notcontract_1 since this tensor was created with the previous contraction in mind.
      ! in this case tensor will be redistributed to the correct layout automatically.
      call dbcsr_t_contract(dbcsr_scalar(1.0_real64), d_ijlm, b_iln, dbcsr_scalar(0.0_real64), e_jmn, &
                            contract_1=[1, 3], notcontract_1=[2, 4], &
                            contract_2=[1, 2], notcontract_2=[3], &
                            map_1=[1, 2], map_2=[3], &
                            filter_eps=filter_eps, &
                            unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
                            flop=nflop)

      nflop_sum = nflop_sum + nflop

      ! free memory
      call dbcsr_t_clear(d_ijlm)

! ------ c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o) ------

      ! summation to c is done by setting beta parameter to 1
      call dbcsr_t_contract(dbcsr_scalar(1.0_real64), e_jmn, f_jmo, dbcsr_scalar(1.0_real64), c_no, &
                            contract_1=[1, 2], notcontract_1=[3], &
                            contract_2=[1, 2], notcontract_2=[3], &
                            map_1=[1], map_2=[2], &
                            filter_eps=filter_eps, &
                            unit_nr=io_unit_dbcsr, log_verbose=verbosity >= 2, &
                            flop=nflop)

      nflop_sum = nflop_sum + nflop

      ! free memory
      call dbcsr_t_clear(e_jmn)

      call cpu_time(t1)

! ------ verify result by calculating checksum of c ------

      cs = dbcsr_t_checksum(c_no)
      if (io_unit > 0) write (io_unit, "(a, e20.13)") "checksum matrix c", cs

! ------ write contraction result (for debugging purposes only) ------
      if (verbosity == 3) call dbcsr_t_write_blocks(c_no, io_unit_dbcsr, output_unit)

! ------ output performance measurements ------
! useful to test strong scaling & overhead of batched contraction

      time = t1 - t0
      flop_rate = real(nflop_sum, real64)/(1.0e09_real64*time)

      if (io_unit > 0) then
         write (io_unit, "(a,t73,es8.2)") "performance: total number of flops:", real(nflop_sum*numnodes)
         write (io_unit, "(a,t66,f15.2)") "performance: total execution time:", time
         write (io_unit, "(a,t66,f15.2)") "performance: contraction flop rate (gflops / mpi rank):", flop_rate
      end if

   end if

   if (contract_batched) then

! ------ batched contraction ------
! reduce memory by contracting over batches (such that intermediate tensors are never fully held in memory)
! indices i,j,l,m are split into n batches each (these indices belong to largest tensor d[ijlm])

      ! performance measurement
      nflop_sum = 0
      call cpu_time(t0)

      call create_batches(blk_size_i, nbatch, start_batch_i, end_batch_i)
      call create_batches(blk_size_j, nbatch, start_batch_j, end_batch_j)
      call create_batches(blk_size_l, nbatch, start_batch_l, end_batch_l)
      call create_batches(blk_size_m, nbatch, start_batch_m, end_batch_m)

      call dbcsr_t_copy_matrix_to_tensor(c_matrix, c_no)

      ! for better performance (avoiding communications) call init routine on all tensors that appear
      ! in multiple contraction calls with the same bounds:
      call dbcsr_t_batched_contract_init(c_no)

      ! iterate over index batches
      do jbatch = 1, nbatch
         do mbatch = 1, nbatch
            do ibatch = 1, nbatch
               call dbcsr_t_batched_contract_init(a_ijk)
               do lbatch = 1, nbatch

! ------ d(i,j,l,m) = a(i,j,k) x a(l,m,k) ------

                  ! specify bounds corresponding to the contraction index sets
                  allocate (bounds_2(2, 2), bounds_3(2, 2))

                  ! bounds corresponding to notcontract_1 indices i,j
                  bounds_2(:, 1) = [start_batch_i(ibatch), end_batch_i(ibatch)]
                  bounds_2(:, 2) = [start_batch_j(jbatch), end_batch_j(jbatch)]

                  ! bounds corresponding to notcontract_2 indices l,m
                  bounds_3(:, 1) = [start_batch_l(lbatch), end_batch_l(lbatch)]
                  bounds_3(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]

                  call dbcsr_t_contract(dbcsr_scalar(1.0_real64), a_ijk, a_lmk, &
                                        dbcsr_scalar(0.0_real64), d_ijlm, &
                                        contract_1=[3], notcontract_1=[1, 2], &
                                        contract_2=[3], notcontract_2=[1, 2], &
                                        map_1=[1, 2], map_2=[3, 4], &
                                        bounds_2=bounds_2, &
                                        bounds_3=bounds_3, &
                                        filter_eps=filter_eps, &
                                        unit_nr=io_unit_dbcsr, &
                                        flop=nflop)
                  nflop_sum = nflop_sum + nflop
                  deallocate (bounds_2, bounds_3)

! ------ e(j,m,n) = d(i,j,l,m) x b(i,l,n) ------

                  allocate (bounds_1(2, 2), bounds_2(2, 2))

                  ! bounds corresponding to contract indices i,l
                  bounds_1(:, 1) = [start_batch_i(ibatch), end_batch_i(ibatch)]
                  bounds_1(:, 2) = [start_batch_l(lbatch), end_batch_l(lbatch)]

                  ! bounds corresponding to notcontract_1 indices j,m
                  bounds_2(:, 1) = [start_batch_j(jbatch), end_batch_j(jbatch)]
                  bounds_2(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]

                  ! note: we sum up contributions from batches i & l, thus beta parameter set to 1
                  call dbcsr_t_contract(dbcsr_scalar(1.0_real64), d_ijlm, b_iln, dbcsr_scalar(1.0_real64), e_jmn, &
                                        contract_1=[1, 3], notcontract_1=[2, 4], &
                                        contract_2=[1, 2], notcontract_2=[3], &
                                        map_1=[1, 2], map_2=[3], &
                                        bounds_1=bounds_1, bounds_2=bounds_2, &
                                        filter_eps=filter_eps, &
                                        unit_nr=io_unit_dbcsr, &
                                        flop=nflop)

                  nflop_sum = nflop_sum + nflop
                  deallocate (bounds_1, bounds_2)

                  ! free memory
                  call dbcsr_t_clear(d_ijlm)

               end do

               ! complete batched contraction of a
               call dbcsr_t_batched_contract_finalize(a_ijk)
            end do

! ------ c(n,o) = c(n,o) + e(j,m,n) x f(j,m,o) ------

            allocate (bounds_1(2, 2))

            ! bounds corresponding to contract indices j,m
            bounds_1(:, 1) = [start_batch_j(jbatch), end_batch_j(jbatch)]
            bounds_1(:, 2) = [start_batch_m(mbatch), end_batch_m(mbatch)]

            call dbcsr_t_contract(dbcsr_scalar(1.0_real64), e_jmn, f_jmo, dbcsr_scalar(1.0_real64), c_no, &
                                  contract_1=[1, 2], notcontract_1=[3], &
                                  contract_2=[1, 2], notcontract_2=[3], &
                                  map_1=[1], map_2=[2], &
                                  bounds_1=bounds_1, &
                                  filter_eps=filter_eps, &
                                  unit_nr=io_unit_dbcsr, &
                                  flop=nflop)

            nflop_sum = nflop_sum + nflop
            deallocate (bounds_1)

            ! free memory
            call dbcsr_t_clear(e_jmn)
         end do
      end do

      ! complete batched contraction of c
      call dbcsr_t_batched_contract_finalize(c_no)

      call cpu_time(t1)

! ------ verify result by calculating checksum of c ------
      cs = dbcsr_t_checksum(c_no)
      if (io_unit > 0) write (io_unit, "(a, e20.13)") "checksum matrix c", cs

! ------ output performance measurements ------
! useful to test strong scaling & overhead of batched contraction

      time = t1 - t0
      flop_rate = real(nflop_sum, real64)/(1.0e09_real64*time)

      if (io_unit > 0) then
         write (io_unit, "(a,t73,es8.2)") "performance (batched): total number of flops:", real(nflop_sum*numnodes)
         write (io_unit, "(a,t66,f15.2)") "performance (batched): total execution time:", time
         write (io_unit, "(a,t66,f15.2)") "performance (batched): contraction flop rate (gflops / mpi rank):", flop_rate
      end if

      deallocate (start_batch_i, start_batch_j, start_batch_l, start_batch_m, &
                  end_batch_i, end_batch_j, end_batch_l, end_batch_m)

   end if

! ------ copy tensor c to matrix c ------
   call dbcsr_t_copy_tensor_to_matrix(c_no, c_matrix)

! ------ cleanup ------

   call dbcsr_t_pgrid_destroy(pgrid_3d)
   call dbcsr_t_pgrid_destroy(pgrid_4d)

   call dbcsr_release(c_matrix)

   call dbcsr_t_destroy(c_no)
   call dbcsr_t_destroy(a_ijk)
   call dbcsr_t_destroy(e_jmn)
   call dbcsr_t_destroy(a_lmk)
   call dbcsr_t_destroy(b_iln)
   call dbcsr_t_destroy(f_jmo)
   call dbcsr_t_destroy(d_ijlm)

   deallocate (blk_size_i, blk_size_j, blk_size_k, blk_size_l, blk_size_m, blk_size_n, blk_size_o, &
               offset_i, offset_j, offset_k, offset_l, offset_n)

   call mpi_comm_free(group, ierr)
   if (ierr /= 0) stop "error in mpi_comm_free"

   ! finalize libdbcsr
   call dbcsr_finalize_lib()

   ! finalize mpi
   call mpi_finalize(ierr)
   if (ierr /= 0) stop "error in mpi_finalize"

contains

   subroutine random_blk_sizes(total_size, nblk, blk_sizes)
      ! random block sizes such that sum is equal to total_size
      integer, intent(in) :: total_size
      integer, intent(out) :: nblk
      integer, intent(out), allocatable :: blk_sizes(:)
      integer, allocatable :: tmp(:)
      integer :: mynode, ierr, blk_sum, bsize
      real :: rand

      call mpi_comm_rank(mpi_comm_world, mynode, ierr)
      if (ierr /= 0) stop "error in mpi_comm_rank"

      if (mynode == 0) then
         blk_sum = 0
         allocate (blk_sizes(0))
         nblk = 0
         do while (blk_sum < total_size)
            call random_number(rand)
            bsize = int(rand*max_bsize + 1)
            if (blk_sum + bsize > total_size) bsize = total_size - blk_sum
            blk_sum = blk_sum + bsize
            nblk = nblk + 1
            call move_alloc(blk_sizes, tmp)
            allocate (blk_sizes(nblk))
            blk_sizes(1:nblk - 1) = tmp; deallocate (tmp)
            blk_sizes(nblk) = bsize
         end do
      end if
      call mpi_bcast(nblk, 1, mpi_integer, 0, mpi_comm_world, ierr)
      if (ierr /= 0) stop "error in mpi_bcast"
      if (mynode /= 0) allocate (blk_sizes(nblk))
      call mpi_bcast(blk_sizes, nblk, mpi_integer, 0, mpi_comm_world, ierr)
      if (ierr /= 0) stop "error in mpi_bcast"

   end subroutine

   function block_minabsdiff(offset_1, offset_2, size_1, size_2)
      ! get minimum difference between row and column indices belonging to a block defined by its
      ! size and offset
      integer, intent(in) :: offset_1, offset_2, size_1, size_2
      integer :: block_minabsdiff
      integer, dimension(2) :: limits_1, limits_2

      limits_1 = offset_1 - 1 + [1, size_1]
      limits_2 = offset_2 - 1 + [1, size_2]

      if (limits_1(2) < limits_2(1)) then
         block_minabsdiff = limits_2(1) - limits_1(2)
      elseif (limits_2(2) < limits_1(1)) then
         block_minabsdiff = limits_1(1) - limits_2(2)
      else
         block_minabsdiff = 0
      end if

   end function

   subroutine create_batches(blk_sizes, nbatch, start_batch, end_batch)
      ! create tensor batches: split index at block boundaries such that each batch contains approximately
      ! the same number of tensor elements.
      integer, dimension(:), intent(in) :: blk_sizes
      integer, intent(in) :: nbatch
      integer, dimension(:), allocatable, intent(out) :: start_batch, end_batch
      integer :: nel, nel_batch, nblk, blk_sum, batch_sum, iblk
      integer, dimension(:), allocatable :: tmp

      nblk = size(blk_sizes)
      nel = sum(blk_sizes)
      nel_batch = nel/nbatch
      ibatch = 0
      blk_sum = 0; batch_sum = nel_batch
      allocate (end_batch(0:nbatch))
      allocate (start_batch(1:nbatch))
      end_batch(0) = 0
      do iblk = 1, nblk
         blk_sum = blk_sum + blk_sizes(iblk)
         if (blk_sum >= batch_sum) then
            ibatch = ibatch + 1
            end_batch(ibatch) = blk_sum
            start_batch(ibatch) = end_batch(ibatch - 1) + 1
            batch_sum = min(batch_sum + nel_batch, nel)
         end if
      end do

      call move_alloc(end_batch, tmp)
      allocate (end_batch(1:nbatch))
      end_batch(:) = tmp(1:)

   end subroutine

end program