File: dbcsr_test.cpp

package info (click to toggle)
dbcsr 2.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 39,836 kB
  • sloc: fortran: 54,534; ansic: 7,060; python: 3,482; cpp: 2,431; sh: 1,639; f90: 1,178; lisp: 689; makefile: 633
file content (323 lines) | stat: -rw-r--r-- 11,337 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*------------------------------------------------------------------------------------------------*/
/* Copyright (C) by the DBCSR developers group - All rights reserved                              */
/* This file is part of the DBCSR library.                                                        */
/*                                                                                                */
/* For information on the license, see the LICENSE file.                                          */
/* For further information please visit https://dbcsr.cp2k.org                                    */
/* SPDX-License-Identifier: GPL-2.0+                                                              */
/*------------------------------------------------------------------------------------------------*/

#include <vector>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstdint>
#include <random>

#include <mpi.h>

#include <dbcsr.h>


// Random distribution by using round-robin assignment
// of blocks to processors
std::vector<int> random_dist(int dist_size, int nbins) {
  std::vector<int> dist(dist_size);

  for (int i = 0; i < dist_size; i++) dist[i] = i % nbins;

  return dist;
}


int main(int argc, char* argv[]) {
  MPI_Init(&argc, &argv);

  int mpi_size, mpi_rank;
  MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
  MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

  // Make 2D grid
  int dims[2] = {0};
  MPI_Dims_create(mpi_size, 2, dims);
  int periods[2] = {1};
  int reorder = 0;
  MPI_Comm group;
  MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &group);

  int coord[2];
  MPI_Cart_coords(group, mpi_rank, 2, coord);

  for (int i = 0; i != mpi_size; ++i) {
    if (mpi_rank == i) {
      std::cout << "I'm processor " << mpi_rank << " over " << mpi_size << " proc"
                << ", (" << coord[0] << ", " << coord[1] << ") in the 2D grid" << std::endl;
    }
    MPI_Barrier(MPI_COMM_WORLD);
  }

  c_dbcsr_init_lib(MPI_COMM_WORLD, nullptr);

  // Total number of blocks
  int nrows_1 = 4;
  int ncols_1 = 5;
  int nrows_2 = 5;
  int ncols_2 = 4;

  // Block sizes
  std::vector<int> row_blk_sizes_1 = {2, 3, 5, 2};
  std::vector<int> col_blk_sizes_1 = {3, 3, 4, 6, 2};
  std::vector<int> row_blk_sizes_2 = col_blk_sizes_1;
  std::vector<int> col_blk_sizes_2 = {5, 2, 5, 3};

  auto row_dist_1 = random_dist(nrows_1, dims[0]);
  auto col_dist_1 = random_dist(ncols_1, dims[1]);
  auto row_dist_2 = random_dist(nrows_2, dims[0]);
  auto col_dist_2 = random_dist(ncols_2, dims[1]);

  void* dist1 = nullptr;
  void* dist2 = nullptr;
  void* dist3 = nullptr;

  if (mpi_rank == 0) std::cout << "Creating distributions..." << std::endl;

  c_dbcsr_distribution_new(&dist1, group, row_dist_1.data(), row_dist_1.size(), col_dist_1.data(), col_dist_1.size());

  c_dbcsr_distribution_new(&dist2, group, row_dist_2.data(), row_dist_2.size(), col_dist_2.data(), col_dist_2.size());

  c_dbcsr_distribution_new(&dist3, group, row_dist_1.data(), row_dist_1.size(), col_dist_2.data(), col_dist_2.size());

  // Fill all blocks, i.e. dense matrices


  auto fill_matrix = [&](void* matrix, std::vector<int>& irblks, std::vector<int>& icblks) {
    std::vector<double> block;
    std::vector<int> loc_irblks, loc_icblks;

    for (int i = 0; i != (int)irblks.size(); ++i) {
      int blk_proc = -1;
      int ix = irblks[i];
      int jx = icblks[i];
      c_dbcsr_get_stored_coordinates(matrix, ix, jx, &blk_proc);
      if (mpi_rank == blk_proc) {
        loc_irblks.push_back(ix);
        loc_icblks.push_back(jx);
      }
    }

    c_dbcsr_reserve_blocks(matrix, loc_irblks.data(), loc_icblks.data(), loc_irblks.size());

    void* iter = nullptr;
    c_dbcsr_iterator_start(&iter, matrix, nullptr, nullptr, nullptr, nullptr, nullptr);

    while (c_dbcsr_iterator_blocks_left(iter)) {
      int i = -1;
      int j = -1;
      int nblk = -1;
      int rsize = -1;
      int csize = -1;
      int roff = -1;
      int coff = -1;
      bool tr = false;

      double* blk = nullptr;
      c_dbcsr_iterator_next_2d_block_d(iter, &i, &j, &blk, &tr, &nblk, &rsize, &csize, &roff, &coff);

      std::generate(blk, blk + rsize * csize, [&]() { return static_cast<double>(std::rand()) / RAND_MAX; });
    }

    c_dbcsr_iterator_stop(&iter);
  };


  // create and fill matrix a
  void* matrix_a = nullptr;
  void* matrix_b = nullptr;
  void* matrix_c = nullptr;

  if (mpi_rank == 0) std::cout << "Creating matrices..." << std::endl;


  c_dbcsr_create_new(&matrix_a, "matrix a", dist1, dbcsr_type_no_symmetry, row_blk_sizes_1.data(), row_blk_sizes_1.size(),
    col_blk_sizes_1.data(), col_blk_sizes_1.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);

  c_dbcsr_create_new(&matrix_b, "matrix b", dist2, dbcsr_type_no_symmetry, row_blk_sizes_2.data(), row_blk_sizes_2.size(),
    col_blk_sizes_2.data(), col_blk_sizes_2.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);

  c_dbcsr_create_new(&matrix_c, "matrix c", dist3, dbcsr_type_no_symmetry, row_blk_sizes_1.data(), row_blk_sizes_1.size(),
    col_blk_sizes_2.data(), col_blk_sizes_2.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);

  std::vector<int> irblks_1 = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3};
  std::vector<int> icblks_1 = {0, 1, 2, 4, 0, 2, 3, 1, 3, 4, 0, 1, 2};

  std::vector<int> irblks_2 = {0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4};
  std::vector<int> icblks_2 = {0, 2, 3, 0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3};

  std::vector<int> irblks_3 = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3};
  std::vector<int> icblks_3 = {0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3};

  if (mpi_rank == 0) std::cout << "Filling matrices..." << std::endl;

  fill_matrix(matrix_a, irblks_1, icblks_1);
  c_dbcsr_finalize(matrix_a);
  fill_matrix(matrix_b, irblks_2, icblks_2);
  c_dbcsr_finalize(matrix_b);
  fill_matrix(matrix_c, irblks_3, icblks_3);
  c_dbcsr_finalize(matrix_c);

  if (mpi_rank == 0) std::cout << "Multiplying..." << std::endl;

  c_dbcsr_multiply_d('N', 'N', 1.0, matrix_a, matrix_b, 2.0, matrix_c, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
    nullptr, nullptr, nullptr);

  if (mpi_rank == 0) std::cout << "Testing get_info for matrix_c" << std::endl;

  int nblkrowstot(0), nblkcolstot(0), nfullrowstot(0), nfullcolstot(0), nblkrowsloc(0), nblkcolsloc(0), nfullrowsloc(0),
    nfullcolsloc(0), my_prow(0), my_pcol(0);

  //int *local_rows, *local_cols, *proc_row_dist, *proc_col_dist,
  //    *row_blk_size, *col_blk_size, *row_blk_offset, *col_blk_offset;

  std::vector<int> local_rows(c_dbcsr_nblkrows_local(matrix_a));
  std::vector<int> local_cols(c_dbcsr_nblkcols_local(matrix_a));
  std::vector<int> proc_row(c_dbcsr_nblkrows_total(matrix_a));
  std::vector<int> proc_col(c_dbcsr_nblkcols_total(matrix_a));
  std::vector<int> row_blk(c_dbcsr_nblkrows_total(matrix_a));
  std::vector<int> col_blk(c_dbcsr_nblkcols_total(matrix_a));
  std::vector<int> row_off(c_dbcsr_nblkrows_total(matrix_a));
  std::vector<int> col_off(c_dbcsr_nblkcols_total(matrix_a));

  char* name;
  char matrix_type;
  int data_type;

  c_dbcsr_get_info(matrix_c, &nblkrowstot, &nblkcolstot, &nfullrowstot, &nfullcolstot, &nblkrowsloc, &nblkcolsloc, &nfullrowsloc,
    &nfullcolsloc, &my_prow, &my_pcol, local_rows.data(), local_cols.data(), proc_row.data(), proc_col.data(), row_blk.data(),
    col_blk.data(), nullptr, nullptr, nullptr, &name, &matrix_type, &data_type, nullptr);


  auto printv = [](std::vector<int>& v) {
    for (auto x : v) std::cout << x << " ";
    std::cout << std::endl;
  };

#define print_var(name) std::cout << #name << ": " << name << std::endl;

#define print_vec(name) \
  std::cout << #name << ": " << std::endl; \
  printv(name);

  if (mpi_rank == 0) {
    std::cout << "Name: " << name << std::endl;

    print_var(nblkrowstot) print_var(nblkcolstot) print_var(nfullrowstot) print_var(nfullcolstot) print_var(nblkrowsloc)
      print_var(nblkcolsloc) print_var(nfullrowsloc) print_var(nfullcolsloc)

        print_vec(local_rows) print_vec(local_cols) print_vec(proc_row) print_vec(proc_col) print_vec(row_blk) print_vec(col_blk)
          print_vec(row_off) print_vec(col_off)
  }

  c_free_string(&name);

  MPI_Barrier(MPI_COMM_WORLD);

  if (mpi_rank == 0) std::cout << "Testing distribution_get for dist1" << std::endl;

  int *row_dist, *col_dist, *pgrid;
  int nrows, ncols, mynode, numnodes, nprows, npcols, myprow, mypcol, prow_group, pcol_group;
  bool has_threads, subgroups_defined;
  MPI_Comm cgroup;

  c_dbcsr_distribution_get(dist1, &row_dist, &col_dist, &nrows, &ncols, &has_threads, &cgroup, &mynode, &numnodes, &nprows, &npcols,
    &myprow, &mypcol, &pgrid, &subgroups_defined, &prow_group, &pcol_group);

  if (mpi_rank == 0) {
    print_var(nrows) print_var(ncols) print_var(mynode) print_var(numnodes) print_var(nprows) print_var(npcols) print_var(myprow)
      print_var(mypcol) print_var(prow_group) print_var(pcol_group)

        if (cgroup == group) {
      std::cout << "Correct MPI communicator." << std::endl;
    }
    std::cout << "dist row:" << std::endl;
    for (int i = 0; i != nrows; ++i) std::cout << row_dist[i] << " ";
    std::cout << std::endl;
    std::cout << "dist col:" << std::endl;
    for (int i = 0; i != ncols; ++i) std::cout << col_dist[i] << " ";
    std::cout << std::endl;

    std::cout << "grid: " << std::endl;
    for (int i = 0; i != nprows; ++i) {
      for (int j = 0; j != npcols; ++j) std::cout << pgrid[i + nprows * j] << " ";
      std::cout << std::endl;
    }
  }

  MPI_Barrier(MPI_COMM_WORLD);

  c_dbcsr_release(&matrix_a);
  c_dbcsr_release(&matrix_b);
  c_dbcsr_release(&matrix_c);

  c_dbcsr_distribution_release(&dist1);
  c_dbcsr_distribution_release(&dist2);
  c_dbcsr_distribution_release(&dist3);

  if (mpi_rank == 0) std::cout << "Extracting block diagonal..." << std::endl;

  std::vector<int> blk_sizes = {3, 3, 3};

  auto rowdist = random_dist(blk_sizes.size(), dims[0]);
  auto coldist = random_dist(blk_sizes.size(), dims[1]);

  void* dist4 = nullptr;

  c_dbcsr_distribution_new(&dist4, group, rowdist.data(), rowdist.size(), coldist.data(), coldist.size());

  void* matrix_d = nullptr;

  c_dbcsr_create_new(&matrix_d, "matrix d", dist4, dbcsr_type_no_symmetry, blk_sizes.data(), blk_sizes.size(), blk_sizes.data(),
    blk_sizes.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);

  c_dbcsr_init_random(matrix_d, nullptr);

  c_dbcsr_print(matrix_d);

  std::vector<double> alpha(9);
  for (size_t i = 0; i != alpha.size(); ++i) {
    alpha[i] = (double)i;
  }
  c_dbcsr_scale_by_vector_d(matrix_d, alpha.data(), alpha.size(), "right");

  c_dbcsr_print(matrix_d);

  double* data = nullptr;
  double type = 1.0;
  long long int data_size = 0;
  c_dbcsr_get_data_d(matrix_d, &data, &data_size, &type, nullptr, nullptr);

  if (mpi_rank == 0) {
    std::cout << "Data on rank 0:" << std::endl;
    for (int i = 0; i != data_size; ++i) std::cout << data[i] << " ";
    std::cout << std::endl;
  }

  void* diag = nullptr;
  c_dbcsr_get_block_diag(matrix_d, &diag);

  c_dbcsr_print(diag);

  c_dbcsr_release(&matrix_d);
  c_dbcsr_release(&diag);
  c_dbcsr_distribution_release(&dist4);

  c_dbcsr_print_statistics(nullptr, nullptr);

  MPI_Comm_free(&group);

  c_dbcsr_finalize_lib();

  MPI_Finalize();

  return 0;
}