1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*------------------------------------------------------------------------------------------------*/
/* Copyright (C) by the DBCSR developers group - All rights reserved */
/* This file is part of the DBCSR library. */
/* */
/* For information on the license, see the LICENSE file. */
/* For further information please visit https://dbcsr.cp2k.org */
/* SPDX-License-Identifier: GPL-2.0+ */
/*------------------------------------------------------------------------------------------------*/
#include <vector>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstdint>
#include <random>
#include <mpi.h>
#include <dbcsr.h>
// Random distribution by using round-robin assignment
// of blocks to processors
std::vector<int> random_dist(int dist_size, int nbins) {
std::vector<int> dist(dist_size);
for (int i = 0; i < dist_size; i++) dist[i] = i % nbins;
return dist;
}
int main(int argc, char* argv[]) {
MPI_Init(&argc, &argv);
int mpi_size, mpi_rank;
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
// Make 2D grid
int dims[2] = {0};
MPI_Dims_create(mpi_size, 2, dims);
int periods[2] = {1};
int reorder = 0;
MPI_Comm group;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, reorder, &group);
int coord[2];
MPI_Cart_coords(group, mpi_rank, 2, coord);
for (int i = 0; i != mpi_size; ++i) {
if (mpi_rank == i) {
std::cout << "I'm processor " << mpi_rank << " over " << mpi_size << " proc"
<< ", (" << coord[0] << ", " << coord[1] << ") in the 2D grid" << std::endl;
}
MPI_Barrier(MPI_COMM_WORLD);
}
c_dbcsr_init_lib(MPI_COMM_WORLD, nullptr);
// Total number of blocks
int nrows_1 = 4;
int ncols_1 = 5;
int nrows_2 = 5;
int ncols_2 = 4;
// Block sizes
std::vector<int> row_blk_sizes_1 = {2, 3, 5, 2};
std::vector<int> col_blk_sizes_1 = {3, 3, 4, 6, 2};
std::vector<int> row_blk_sizes_2 = col_blk_sizes_1;
std::vector<int> col_blk_sizes_2 = {5, 2, 5, 3};
auto row_dist_1 = random_dist(nrows_1, dims[0]);
auto col_dist_1 = random_dist(ncols_1, dims[1]);
auto row_dist_2 = random_dist(nrows_2, dims[0]);
auto col_dist_2 = random_dist(ncols_2, dims[1]);
void* dist1 = nullptr;
void* dist2 = nullptr;
void* dist3 = nullptr;
if (mpi_rank == 0) std::cout << "Creating distributions..." << std::endl;
c_dbcsr_distribution_new(&dist1, group, row_dist_1.data(), row_dist_1.size(), col_dist_1.data(), col_dist_1.size());
c_dbcsr_distribution_new(&dist2, group, row_dist_2.data(), row_dist_2.size(), col_dist_2.data(), col_dist_2.size());
c_dbcsr_distribution_new(&dist3, group, row_dist_1.data(), row_dist_1.size(), col_dist_2.data(), col_dist_2.size());
// Fill all blocks, i.e. dense matrices
auto fill_matrix = [&](void* matrix, std::vector<int>& irblks, std::vector<int>& icblks) {
std::vector<double> block;
std::vector<int> loc_irblks, loc_icblks;
for (int i = 0; i != (int)irblks.size(); ++i) {
int blk_proc = -1;
int ix = irblks[i];
int jx = icblks[i];
c_dbcsr_get_stored_coordinates(matrix, ix, jx, &blk_proc);
if (mpi_rank == blk_proc) {
loc_irblks.push_back(ix);
loc_icblks.push_back(jx);
}
}
c_dbcsr_reserve_blocks(matrix, loc_irblks.data(), loc_icblks.data(), loc_irblks.size());
void* iter = nullptr;
c_dbcsr_iterator_start(&iter, matrix, nullptr, nullptr, nullptr, nullptr, nullptr);
while (c_dbcsr_iterator_blocks_left(iter)) {
int i = -1;
int j = -1;
int nblk = -1;
int rsize = -1;
int csize = -1;
int roff = -1;
int coff = -1;
bool tr = false;
double* blk = nullptr;
c_dbcsr_iterator_next_2d_block_d(iter, &i, &j, &blk, &tr, &nblk, &rsize, &csize, &roff, &coff);
std::generate(blk, blk + rsize * csize, [&]() { return static_cast<double>(std::rand()) / RAND_MAX; });
}
c_dbcsr_iterator_stop(&iter);
};
// create and fill matrix a
void* matrix_a = nullptr;
void* matrix_b = nullptr;
void* matrix_c = nullptr;
if (mpi_rank == 0) std::cout << "Creating matrices..." << std::endl;
c_dbcsr_create_new(&matrix_a, "matrix a", dist1, dbcsr_type_no_symmetry, row_blk_sizes_1.data(), row_blk_sizes_1.size(),
col_blk_sizes_1.data(), col_blk_sizes_1.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
c_dbcsr_create_new(&matrix_b, "matrix b", dist2, dbcsr_type_no_symmetry, row_blk_sizes_2.data(), row_blk_sizes_2.size(),
col_blk_sizes_2.data(), col_blk_sizes_2.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
c_dbcsr_create_new(&matrix_c, "matrix c", dist3, dbcsr_type_no_symmetry, row_blk_sizes_1.data(), row_blk_sizes_1.size(),
col_blk_sizes_2.data(), col_blk_sizes_2.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
std::vector<int> irblks_1 = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3};
std::vector<int> icblks_1 = {0, 1, 2, 4, 0, 2, 3, 1, 3, 4, 0, 1, 2};
std::vector<int> irblks_2 = {0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4};
std::vector<int> icblks_2 = {0, 2, 3, 0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3};
std::vector<int> irblks_3 = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3};
std::vector<int> icblks_3 = {0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3};
if (mpi_rank == 0) std::cout << "Filling matrices..." << std::endl;
fill_matrix(matrix_a, irblks_1, icblks_1);
c_dbcsr_finalize(matrix_a);
fill_matrix(matrix_b, irblks_2, icblks_2);
c_dbcsr_finalize(matrix_b);
fill_matrix(matrix_c, irblks_3, icblks_3);
c_dbcsr_finalize(matrix_c);
if (mpi_rank == 0) std::cout << "Multiplying..." << std::endl;
c_dbcsr_multiply_d('N', 'N', 1.0, matrix_a, matrix_b, 2.0, matrix_c, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr);
if (mpi_rank == 0) std::cout << "Testing get_info for matrix_c" << std::endl;
int nblkrowstot(0), nblkcolstot(0), nfullrowstot(0), nfullcolstot(0), nblkrowsloc(0), nblkcolsloc(0), nfullrowsloc(0),
nfullcolsloc(0), my_prow(0), my_pcol(0);
//int *local_rows, *local_cols, *proc_row_dist, *proc_col_dist,
// *row_blk_size, *col_blk_size, *row_blk_offset, *col_blk_offset;
std::vector<int> local_rows(c_dbcsr_nblkrows_local(matrix_a));
std::vector<int> local_cols(c_dbcsr_nblkcols_local(matrix_a));
std::vector<int> proc_row(c_dbcsr_nblkrows_total(matrix_a));
std::vector<int> proc_col(c_dbcsr_nblkcols_total(matrix_a));
std::vector<int> row_blk(c_dbcsr_nblkrows_total(matrix_a));
std::vector<int> col_blk(c_dbcsr_nblkcols_total(matrix_a));
std::vector<int> row_off(c_dbcsr_nblkrows_total(matrix_a));
std::vector<int> col_off(c_dbcsr_nblkcols_total(matrix_a));
char* name;
char matrix_type;
int data_type;
c_dbcsr_get_info(matrix_c, &nblkrowstot, &nblkcolstot, &nfullrowstot, &nfullcolstot, &nblkrowsloc, &nblkcolsloc, &nfullrowsloc,
&nfullcolsloc, &my_prow, &my_pcol, local_rows.data(), local_cols.data(), proc_row.data(), proc_col.data(), row_blk.data(),
col_blk.data(), nullptr, nullptr, nullptr, &name, &matrix_type, &data_type, nullptr);
auto printv = [](std::vector<int>& v) {
for (auto x : v) std::cout << x << " ";
std::cout << std::endl;
};
#define print_var(name) std::cout << #name << ": " << name << std::endl;
#define print_vec(name) \
std::cout << #name << ": " << std::endl; \
printv(name);
if (mpi_rank == 0) {
std::cout << "Name: " << name << std::endl;
print_var(nblkrowstot) print_var(nblkcolstot) print_var(nfullrowstot) print_var(nfullcolstot) print_var(nblkrowsloc)
print_var(nblkcolsloc) print_var(nfullrowsloc) print_var(nfullcolsloc)
print_vec(local_rows) print_vec(local_cols) print_vec(proc_row) print_vec(proc_col) print_vec(row_blk) print_vec(col_blk)
print_vec(row_off) print_vec(col_off)
}
c_free_string(&name);
MPI_Barrier(MPI_COMM_WORLD);
if (mpi_rank == 0) std::cout << "Testing distribution_get for dist1" << std::endl;
int *row_dist, *col_dist, *pgrid;
int nrows, ncols, mynode, numnodes, nprows, npcols, myprow, mypcol, prow_group, pcol_group;
bool has_threads, subgroups_defined;
MPI_Comm cgroup;
c_dbcsr_distribution_get(dist1, &row_dist, &col_dist, &nrows, &ncols, &has_threads, &cgroup, &mynode, &numnodes, &nprows, &npcols,
&myprow, &mypcol, &pgrid, &subgroups_defined, &prow_group, &pcol_group);
if (mpi_rank == 0) {
print_var(nrows) print_var(ncols) print_var(mynode) print_var(numnodes) print_var(nprows) print_var(npcols) print_var(myprow)
print_var(mypcol) print_var(prow_group) print_var(pcol_group)
if (cgroup == group) {
std::cout << "Correct MPI communicator." << std::endl;
}
std::cout << "dist row:" << std::endl;
for (int i = 0; i != nrows; ++i) std::cout << row_dist[i] << " ";
std::cout << std::endl;
std::cout << "dist col:" << std::endl;
for (int i = 0; i != ncols; ++i) std::cout << col_dist[i] << " ";
std::cout << std::endl;
std::cout << "grid: " << std::endl;
for (int i = 0; i != nprows; ++i) {
for (int j = 0; j != npcols; ++j) std::cout << pgrid[i + nprows * j] << " ";
std::cout << std::endl;
}
}
MPI_Barrier(MPI_COMM_WORLD);
c_dbcsr_release(&matrix_a);
c_dbcsr_release(&matrix_b);
c_dbcsr_release(&matrix_c);
c_dbcsr_distribution_release(&dist1);
c_dbcsr_distribution_release(&dist2);
c_dbcsr_distribution_release(&dist3);
if (mpi_rank == 0) std::cout << "Extracting block diagonal..." << std::endl;
std::vector<int> blk_sizes = {3, 3, 3};
auto rowdist = random_dist(blk_sizes.size(), dims[0]);
auto coldist = random_dist(blk_sizes.size(), dims[1]);
void* dist4 = nullptr;
c_dbcsr_distribution_new(&dist4, group, rowdist.data(), rowdist.size(), coldist.data(), coldist.size());
void* matrix_d = nullptr;
c_dbcsr_create_new(&matrix_d, "matrix d", dist4, dbcsr_type_no_symmetry, blk_sizes.data(), blk_sizes.size(), blk_sizes.data(),
blk_sizes.size(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
c_dbcsr_init_random(matrix_d, nullptr);
c_dbcsr_print(matrix_d);
std::vector<double> alpha(9);
for (size_t i = 0; i != alpha.size(); ++i) {
alpha[i] = (double)i;
}
c_dbcsr_scale_by_vector_d(matrix_d, alpha.data(), alpha.size(), "right");
c_dbcsr_print(matrix_d);
double* data = nullptr;
double type = 1.0;
long long int data_size = 0;
c_dbcsr_get_data_d(matrix_d, &data, &data_size, &type, nullptr, nullptr);
if (mpi_rank == 0) {
std::cout << "Data on rank 0:" << std::endl;
for (int i = 0; i != data_size; ++i) std::cout << data[i] << " ";
std::cout << std::endl;
}
void* diag = nullptr;
c_dbcsr_get_block_diag(matrix_d, &diag);
c_dbcsr_print(diag);
c_dbcsr_release(&matrix_d);
c_dbcsr_release(&diag);
c_dbcsr_distribution_release(&dist4);
c_dbcsr_print_statistics(nullptr, nullptr);
MPI_Comm_free(&group);
c_dbcsr_finalize_lib();
MPI_Finalize();
return 0;
}
|