File: sha2.c

package info (click to toggle)
dcfldd 1.3.4.1-11~bpo9+1
  • links: PTS, VCS
  • area: main
  • in suites: stretch-backports
  • size: 1,028 kB
  • sloc: ansic: 8,479; sh: 3,338; makefile: 13
file content (1065 lines) | stat: -rw-r--r-- 32,043 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
/*
 * FILE:	sha2.c
 * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
 * 
 * Copyright (c) 2000-2001, Aaron D. Gifford
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holder nor the names of contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $Id: sha2.c,v 1.3 2005/05/13 18:52:06 harbourn Exp $
 */

#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h>	/* assert() */
#include "sha2.h"

/*
 * ASSERT NOTE:
 * Some sanity checking code is included using assert().  On my FreeBSD
 * system, this additional code can be removed by compiling with NDEBUG
 * defined.  Check your own systems manpage on assert() to see how to
 * compile WITHOUT the sanity checking code on your system.
 *
 * UNROLLED TRANSFORM LOOP NOTE:
 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
 * loop version for the hash transform rounds (defined using macros
 * later in this file).  Either define on the command line, for example:
 *
 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
 *
 * or define below:
 *
 *   #define SHA2_UNROLL_TRANSFORM
 *
 */


/*** SHA-256/384/512 Machine Architecture Definitions *****************/
/*
 * BYTE_ORDER NOTE:
 *
 * Please make sure that your system defines BYTE_ORDER.  If your
 * architecture is little-endian, make sure it also defines
 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
 * equivilent.
 *
 * If your system does not define the above, then you can do so by
 * hand like this:
 *
 *   #define LITTLE_ENDIAN 1234
 *   #define BIG_ENDIAN    4321
 *
 * And for little-endian machines, add:
 *
 *   #define BYTE_ORDER LITTLE_ENDIAN 
 *
 * Or for big-endian machines:
 *
 *   #define BYTE_ORDER BIG_ENDIAN
 *
 * The FreeBSD machine this was written on defines BYTE_ORDER
 * appropriately by including <sys/types.h> (which in turn includes
 * <machine/endian.h> where the appropriate definitions are actually
 * made).
 */
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif

/*
 * Define the followingsha2_* types to types of the correct length on
 * the native archtecture.   Most BSD systems and Linux define u_intXX_t
 * types.  Machines with very recent ANSI C headers, can use the
 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
 * during compile or in the sha.h header file.
 *
 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
 * will need to define these three typedefs below (and the appropriate
 * ones in sha.h too) by hand according to their system architecture.
 *
 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
 */
#ifdef SHA2_USE_INTTYPES_H

typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
typedef uint64_t sha2_word64;	/* Exactly 8 bytes */

#else /* SHA2_USE_INTTYPES_H */

typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */

#endif /* SHA2_USE_INTTYPES_H */


/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)


/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x)	{ \
	sha2_word32 tmp = (w); \
	tmp = (tmp >> 16) | (tmp << 16); \
	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x)	{ \
	sha2_word64 tmp = (w); \
	tmp = (tmp >> 32) | (tmp << 32); \
	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */

/*
 * Macro for incrementally adding the unsigned 64-bit integer n to the
 * unsigned 128-bit integer (represented using a two-element array of
 * 64-bit words):
 */
#define ADDINC128(w,n)	{ \
	(w)[0] += (sha2_word64)(n); \
	if ((w)[0] < (n)) { \
		(w)[1]++; \
	} \
}

/*
 * Macros for copying blocks of memory and for zeroing out ranges
 * of memory.  Using these macros makes it easy to switch from
 * using memset()/memcpy() and using bzero()/bcopy().
 *
 * Please define either SHA2_USE_MEMSET_MEMCPY or define
 * SHA2_USE_BZERO_BCOPY depending on which function set you
 * choose to use:
 */
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
/* Default to memset()/memcpy() if no option is specified */
#define	SHA2_USE_MEMSET_MEMCPY	1
#endif
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
/* Abort with an error if BOTH options are defined */
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
#endif

#ifdef SHA2_USE_MEMSET_MEMCPY
#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
#endif
#ifdef SHA2_USE_BZERO_BCOPY
#define MEMSET_BZERO(p,l)	bzero((p), (l))
#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
#endif


/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
 *
 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
 *   S is a ROTATION) because the SHA-256/384/512 description document
 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
 *   same "backwards" definition.
 */
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) 		((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))

/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))

/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))

/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
 * library -- they are intended for private internal visibility/use
 * only.
 */
void SHA512_Last(SHA512_CTX*);
void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
void SHA512_Transform(SHA512_CTX*, const sha2_word64*);


/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
const static sha2_word32 K256[64] = {
	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

/* Initial hash value H for SHA-256: */
const static sha2_word32 sha256_initial_hash_value[8] = {
	0x6a09e667UL,
	0xbb67ae85UL,
	0x3c6ef372UL,
	0xa54ff53aUL,
	0x510e527fUL,
	0x9b05688cUL,
	0x1f83d9abUL,
	0x5be0cd19UL
};

/* Hash constant words K for SHA-384 and SHA-512: */
const static sha2_word64 K512[80] = {
	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};

/* Initial hash value H for SHA-384 */
const static sha2_word64 sha384_initial_hash_value[8] = {
	0xcbbb9d5dc1059ed8ULL,
	0x629a292a367cd507ULL,
	0x9159015a3070dd17ULL,
	0x152fecd8f70e5939ULL,
	0x67332667ffc00b31ULL,
	0x8eb44a8768581511ULL,
	0xdb0c2e0d64f98fa7ULL,
	0x47b5481dbefa4fa4ULL
};

/* Initial hash value H for SHA-512 */
const static sha2_word64 sha512_initial_hash_value[8] = {
	0x6a09e667f3bcc908ULL,
	0xbb67ae8584caa73bULL,
	0x3c6ef372fe94f82bULL,
	0xa54ff53a5f1d36f1ULL,
	0x510e527fade682d1ULL,
	0x9b05688c2b3e6c1fULL,
	0x1f83d9abfb41bd6bULL,
	0x5be0cd19137e2179ULL
};

/*
 * Constant used by SHA256/384/512_End() functions for converting the
 * digest to a readable hexadecimal character string:
 */
static const char *sha2_hex_digits = "0123456789abcdef";


/*** SHA-256: *********************************************************/
void SHA256_Init(SHA256_CTX* context) {
	if (context == (SHA256_CTX*)0) {
		return;
	}
	MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
	MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
	context->bitcount = 0;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-256 round macros: */

#if BYTE_ORDER == LITTLE_ENDIAN

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
	REVERSE32(*data++, W256[j]); \
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
             K256[j] + W256[j]; \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++


#else /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
	     K256[j] + (W256[j] = *data++); \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++

#endif /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND256(a,b,c,d,e,f,g,h)	\
	s0 = W256[(j+1)&0x0f]; \
	s0 = sigma0_256(s0); \
	s1 = W256[(j+14)&0x0f]; \
	s1 = sigma1_256(s1); \
	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
	(d) += T1; \
	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
	j++

void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
	sha2_word32	T1, *W256;
	int		j;

	W256 = (sha2_word32*)context->buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->state[0];
	b = context->state[1];
	c = context->state[2];
	d = context->state[3];
	e = context->state[4];
	f = context->state[5];
	g = context->state[6];
	h = context->state[7];

	j = 0;
	do {
		/* Rounds 0 to 15 (unrolled): */
		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
	} while (j < 16);

	/* Now for the remaining rounds to 64: */
	do {
		ROUND256(a,b,c,d,e,f,g,h);
		ROUND256(h,a,b,c,d,e,f,g);
		ROUND256(g,h,a,b,c,d,e,f);
		ROUND256(f,g,h,a,b,c,d,e);
		ROUND256(e,f,g,h,a,b,c,d);
		ROUND256(d,e,f,g,h,a,b,c);
		ROUND256(c,d,e,f,g,h,a,b);
		ROUND256(b,c,d,e,f,g,h,a);
	} while (j < 64);

	/* Compute the current intermediate hash value */
	context->state[0] += a;
	context->state[1] += b;
	context->state[2] += c;
	context->state[3] += d;
	context->state[4] += e;
	context->state[5] += f;
	context->state[6] += g;
	context->state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
	sha2_word32	T1, T2, *W256;
	int		j;

	W256 = (sha2_word32*)context->buffer;

	/* Initialize registers with the prev. intermediate value */
	a = context->state[0];
	b = context->state[1];
	c = context->state[2];
	d = context->state[3];
	e = context->state[4];
	f = context->state[5];
	g = context->state[6];
	h = context->state[7];

	j = 0;
	do {
#if BYTE_ORDER == LITTLE_ENDIAN
		/* Copy data while converting to host byte order */
		REVERSE32(*data++,W256[j]);
		/* Apply the SHA-256 compression function to update a..h */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
		/* Apply the SHA-256 compression function to update a..h with copy */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
		T2 = Sigma0_256(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 16);

	do {
		/* Part of the message block expansion: */
		s0 = W256[(j+1)&0x0f];
		s0 = sigma0_256(s0);
		s1 = W256[(j+14)&0x0f];	
		s1 = sigma1_256(s1);

		/* Apply the SHA-256 compression function to update a..h */
		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
		T2 = Sigma0_256(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 64);

	/* Compute the current intermediate hash value */
	context->state[0] += a;
	context->state[1] += b;
	context->state[2] += c;
	context->state[3] += d;
	context->state[4] += e;
	context->state[5] += f;
	context->state[6] += g;
	context->state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
	unsigned int	freespace, usedspace;

	if (len == 0) {
		/* Calling with no data is valid - we do nothing */
		return;
	}

	/* Sanity check: */
	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);

	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
	if (usedspace > 0) {
		/* Calculate how much free space is available in the buffer */
		freespace = SHA256_BLOCK_LENGTH - usedspace;

		if (len >= freespace) {
			/* Fill the buffer completely and process it */
			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
			context->bitcount += freespace << 3;
			len -= freespace;
			data += freespace;
			SHA256_Transform(context, (sha2_word32*)context->buffer);
		} else {
			/* The buffer is not yet full */
			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
			context->bitcount += len << 3;
			/* Clean up: */
			usedspace = freespace = 0;
			return;
		}
	}
	while (len >= SHA256_BLOCK_LENGTH) {
		/* Process as many complete blocks as we can */
		SHA256_Transform(context, (sha2_word32*)data);
		context->bitcount += SHA256_BLOCK_LENGTH << 3;
		len -= SHA256_BLOCK_LENGTH;
		data += SHA256_BLOCK_LENGTH;
	}
	if (len > 0) {
		/* There's left-overs, so save 'em */
		MEMCPY_BCOPY(context->buffer, data, len);
		context->bitcount += len << 3;
	}
	/* Clean up: */
	usedspace = freespace = 0;
}

void SHA256_Final(SHA256_CTX* context, sha2_byte digest[]) {
	sha2_word32	*d = (sha2_word32*)digest;
	unsigned int	usedspace;

	/* Sanity check: */
	assert(context != (SHA256_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha2_byte*)0) {
		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
		/* Convert FROM host byte order */
		REVERSE64(context->bitcount,context->bitcount);
#endif
		if (usedspace > 0) {
			/* Begin padding with a 1 bit: */
			context->buffer[usedspace++] = 0x80;

			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
				/* Set-up for the last transform: */
				MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
			} else {
				if (usedspace < SHA256_BLOCK_LENGTH) {
					MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
				}
				/* Do second-to-last transform: */
				SHA256_Transform(context, (sha2_word32*)context->buffer);

				/* And set-up for the last transform: */
				MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
			}
		} else {
			/* Set-up for the last transform: */
			MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);

			/* Begin padding with a 1 bit: */
			*context->buffer = 0x80;
		}
		/* Set the bit count: */
		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;

		/* Final transform: */
		SHA256_Transform(context, (sha2_word32*)context->buffer);

#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < 8; j++) {
				REVERSE32(context->state[j],context->state[j]);
				*d++ = context->state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
	}

	/* Clean up state data: */
	MEMSET_BZERO(context, sizeof(context));
	usedspace = 0;
}

char *SHA256_End(SHA256_CTX* context, char buffer[]) {
	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA256_CTX*)0);

	if (buffer != (char*)0) {
		SHA256_Final(context, digest);

		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha2_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(context));
	}
	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
	return buffer;
}

char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
	SHA256_CTX	context;

	SHA256_Init(&context);
	SHA256_Update(&context, data, len);
	return SHA256_End(&context, digest);
}


/*** SHA-512: *********************************************************/
void SHA512_Init(SHA512_CTX* context) {
	if (context == (SHA512_CTX*)0) {
		return;
	}
	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
	MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
	context->bitcount[0] = context->bitcount[1] =  0;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-512 round macros: */
#if BYTE_ORDER == LITTLE_ENDIAN

#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
	REVERSE64(*data++, W512[j]); \
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
             K512[j] + W512[j]; \
	(d) += T1, \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
	j++


#else /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
             K512[j] + (W512[j] = *data++); \
	(d) += T1; \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
	j++

#endif /* BYTE_ORDER == LITTLE_ENDIAN */

#define ROUND512(a,b,c,d,e,f,g,h)	\
	s0 = W512[(j+1)&0x0f]; \
	s0 = sigma0_512(s0); \
	s1 = W512[(j+14)&0x0f]; \
	s1 = sigma1_512(s1); \
	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
	(d) += T1; \
	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
	j++

void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
	int		j;

	/* Initialize registers with the prev. intermediate value */
	a = context->state[0];
	b = context->state[1];
	c = context->state[2];
	d = context->state[3];
	e = context->state[4];
	f = context->state[5];
	g = context->state[6];
	h = context->state[7];

	j = 0;
	do {
		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
	} while (j < 16);

	/* Now for the remaining rounds up to 79: */
	do {
		ROUND512(a,b,c,d,e,f,g,h);
		ROUND512(h,a,b,c,d,e,f,g);
		ROUND512(g,h,a,b,c,d,e,f);
		ROUND512(f,g,h,a,b,c,d,e);
		ROUND512(e,f,g,h,a,b,c,d);
		ROUND512(d,e,f,g,h,a,b,c);
		ROUND512(c,d,e,f,g,h,a,b);
		ROUND512(b,c,d,e,f,g,h,a);
	} while (j < 80);

	/* Compute the current intermediate hash value */
	context->state[0] += a;
	context->state[1] += b;
	context->state[2] += c;
	context->state[3] += d;
	context->state[4] += e;
	context->state[5] += f;
	context->state[6] += g;
	context->state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
	int		j;

	/* Initialize registers with the prev. intermediate value */
	a = context->state[0];
	b = context->state[1];
	c = context->state[2];
	d = context->state[3];
	e = context->state[4];
	f = context->state[5];
	g = context->state[6];
	h = context->state[7];

	j = 0;
	do {
#if BYTE_ORDER == LITTLE_ENDIAN
		/* Convert TO host byte order */
		REVERSE64(*data++, W512[j]);
		/* Apply the SHA-512 compression function to update a..h */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
		/* Apply the SHA-512 compression function to update a..h with copy */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
		T2 = Sigma0_512(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 16);

	do {
		/* Part of the message block expansion: */
		s0 = W512[(j+1)&0x0f];
		s0 = sigma0_512(s0);
		s1 = W512[(j+14)&0x0f];
		s1 =  sigma1_512(s1);

		/* Apply the SHA-512 compression function to update a..h */
		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
		T2 = Sigma0_512(a) + Maj(a, b, c);
		h = g;
		g = f;
		f = e;
		e = d + T1;
		d = c;
		c = b;
		b = a;
		a = T1 + T2;

		j++;
	} while (j < 80);

	/* Compute the current intermediate hash value */
	context->state[0] += a;
	context->state[1] += b;
	context->state[2] += c;
	context->state[3] += d;
	context->state[4] += e;
	context->state[5] += f;
	context->state[6] += g;
	context->state[7] += h;

	/* Clean up */
	a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
	unsigned int	freespace, usedspace;

	if (len == 0) {
		/* Calling with no data is valid - we do nothing */
		return;
	}

	/* Sanity check: */
	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);

	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
	if (usedspace > 0) {
		/* Calculate how much free space is available in the buffer */
		freespace = SHA512_BLOCK_LENGTH - usedspace;

		if (len >= freespace) {
			/* Fill the buffer completely and process it */
			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
			ADDINC128(context->bitcount, freespace << 3);
			len -= freespace;
			data += freespace;
			SHA512_Transform(context, (sha2_word64*)context->buffer);
		} else {
			/* The buffer is not yet full */
			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
			ADDINC128(context->bitcount, len << 3);
			/* Clean up: */
			usedspace = freespace = 0;
			return;
		}
	}
	while (len >= SHA512_BLOCK_LENGTH) {
		/* Process as many complete blocks as we can */
		SHA512_Transform(context, (sha2_word64*)data);
		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
		len -= SHA512_BLOCK_LENGTH;
		data += SHA512_BLOCK_LENGTH;
	}
	if (len > 0) {
		/* There's left-overs, so save 'em */
		MEMCPY_BCOPY(context->buffer, data, len);
		ADDINC128(context->bitcount, len << 3);
	}
	/* Clean up: */
	usedspace = freespace = 0;
}

void SHA512_Last(SHA512_CTX* context) {
	unsigned int	usedspace;

	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
	/* Convert FROM host byte order */
	REVERSE64(context->bitcount[0],context->bitcount[0]);
	REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
	if (usedspace > 0) {
		/* Begin padding with a 1 bit: */
		context->buffer[usedspace++] = 0x80;

		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
			/* Set-up for the last transform: */
			MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
		} else {
			if (usedspace < SHA512_BLOCK_LENGTH) {
				MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
			}
			/* Do second-to-last transform: */
			SHA512_Transform(context, (sha2_word64*)context->buffer);

			/* And set-up for the last transform: */
			MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
		}
	} else {
		/* Prepare for final transform: */
		MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);

		/* Begin padding with a 1 bit: */
		*context->buffer = 0x80;
	}
	/* Store the length of input data (in bits): */
	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];

	/* Final transform: */
	SHA512_Transform(context, (sha2_word64*)context->buffer);
}

void SHA512_Final(SHA512_CTX* context, sha2_byte digest[]) {
	sha2_word64	*d = (sha2_word64*)digest;

	/* Sanity check: */
	assert(context != (SHA512_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha2_byte*)0) {
		SHA512_Last(context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < 8; j++) {
				REVERSE64(context->state[j],context->state[j]);
				*d++ = context->state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif
	}

	/* Zero out state data */
	MEMSET_BZERO(context, sizeof(context));
}

char *SHA512_End(SHA512_CTX* context, char buffer[]) {
	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA512_CTX*)0);

	if (buffer != (char*)0) {
		SHA512_Final(context, digest);

		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha2_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(context));
	}
	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
	return buffer;
}

char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
	SHA512_CTX	context;

	SHA512_Init(&context);
	SHA512_Update(&context, data, len);
	return SHA512_End(&context, digest);
}


/*** SHA-384: *********************************************************/
void SHA384_Init(SHA384_CTX* context) {
	if (context == (SHA384_CTX*)0) {
		return;
	}
	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
	MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
	context->bitcount[0] = context->bitcount[1] = 0;
}

void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
	SHA512_Update((SHA512_CTX*)context, data, len);
}

void SHA384_Final(SHA384_CTX* context, sha2_byte digest[]) {
	sha2_word64	*d = (sha2_word64*)digest;

	/* Sanity check: */
	assert(context != (SHA384_CTX*)0);

	/* If no digest buffer is passed, we don't bother doing this: */
	if (digest != (sha2_byte*)0) {
		SHA512_Last((SHA512_CTX*)context);

		/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
		{
			/* Convert TO host byte order */
			int	j;
			for (j = 0; j < 6; j++) {
				REVERSE64(context->state[j],context->state[j]);
				*d++ = context->state[j];
			}
		}
#else
		MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif
	}

	/* Zero out state data */
	MEMSET_BZERO(context, sizeof(context));
}

char *SHA384_End(SHA384_CTX* context, char buffer[]) {
	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
	int		i;

	/* Sanity check: */
	assert(context != (SHA384_CTX*)0);

	if (buffer != (char*)0) {
		SHA384_Final(context, digest);

		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
			*buffer++ = sha2_hex_digits[*d & 0x0f];
			d++;
		}
		*buffer = (char)0;
	} else {
		MEMSET_BZERO(context, sizeof(context));
	}
	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
	return buffer;
}

char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
	SHA384_CTX	context;

	SHA384_Init(&context);
	SHA384_Update(&context, data, len);
	return SHA384_End(&context, digest);
}