File: nifti1_io_core.cpp

package info (click to toggle)
dcm2niix 1.0.20161101-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,852 kB
  • sloc: ansic: 8,505; cpp: 7,896; pascal: 1,216; objc: 275; makefile: 17; sh: 15
file content (479 lines) | stat: -rw-r--r-- 17,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#include "nifti1_io_core.h"
#include <math.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <stdbool.h>
#include <ctype.h>
#include <string.h>
#include <stddef.h>
#include <float.h>
#include <stdio.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif

void nifti_swap_8bytes( size_t n , void *ar )    // 4 bytes at a time
{
    size_t ii ;
    unsigned char * cp0 = (unsigned char *)ar, * cp1, * cp2 ;
    unsigned char tval ;
    for( ii=0 ; ii < n ; ii++ ){
        cp1 = cp0; cp2 = cp0+7;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp1++;  cp2--;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp1++;  cp2--;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp1++;  cp2--;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp0 += 8;
    }
    return ;
}

void nifti_swap_4bytes( size_t n , void *ar )    // 4 bytes at a time
{
    size_t ii ;
    unsigned char * cp0 = (unsigned char *)ar, * cp1, * cp2 ;
    unsigned char tval ;
    for( ii=0 ; ii < n ; ii++ ){
        cp1 = cp0; cp2 = cp0+3;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp1++;  cp2--;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp0 += 4;
    }
    return ;
}

void nifti_swap_2bytes( size_t n , void *ar )    // 2 bytes at a time
{
    size_t ii ;
    unsigned char * cp1 = (unsigned char *)ar, * cp2 ;
    unsigned char   tval;
    for( ii=0 ; ii < n ; ii++ ){
        cp2 = cp1 + 1;
        tval = *cp1;  *cp1 = *cp2;  *cp2 = tval;
        cp1 += 2;
    }
    return ;
}

int isSameFloat (float a, float b) {
    return (fabs (a - b) <= FLT_EPSILON);
}

ivec3 setiVec3(int x, int y, int z)
{
    ivec3 v = {x, y, z};
    return v;
}

vec3 setVec3(float x, float y, float z)
{
    vec3 v = {x, y, z};
    return v;
}

vec4 setVec4(float x, float y, float z)
{
    vec4 v= {x, y, z, 1};
    return v;
}

vec3 crossProduct(vec3 u, vec3 v)
{
    return setVec3(u.v[1]*v.v[2] - v.v[1]*u.v[2],
                   -u.v[0]*v.v[2] + v.v[0]*u.v[2],
                   u.v[0]*v.v[1] - v.v[0]*u.v[1]);
}

float dotProduct(vec3 u, vec3 v)
{
    return (u.v[0]*v.v[0] + v.v[1]*u.v[1] + v.v[2]*u.v[2]);
}

vec3 nifti_vect33_norm (vec3 v) { //normalize vector length
    vec3 vO = v;
    float vLen = sqrt( (v.v[0]*v.v[0])
                      + (v.v[1]*v.v[1])
                      + (v.v[2]*v.v[2]));
    if (vLen <= FLT_EPSILON) return vO; //avoid divide by zero
    for (int i = 0; i < 3; i++)
        vO.v[i] = v.v[i]/vLen;
    return vO;
}

vec3 nifti_vect33mat33_mul(vec3 v, mat33 m ) { //multiply vector * 3x3matrix
    vec3 vO;
    for (int i=0; i<3; i++) { //multiply Pcrs * m
        vO.v[i] = 0;
        for(int j=0; j<3; j++)
            vO.v[i] += m.m[i][j]*v.v[j];
    }
    return vO;
}

vec4 nifti_vect44mat44_mul(vec4 v, mat44 m ) { //multiply vector * 4x4matrix
    vec4 vO;
    for (int i=0; i<4; i++) { //multiply Pcrs * m
        vO.v[i] = 0;
        for(int j=0; j<4; j++)
            vO.v[i] += m.m[i][j]*v.v[j];
    }
    return vO;
}

mat44 nifti_dicom2mat(float orient[7], float patientPosition[4], float xyzMM[4]) {
    //create NIfTI header based on values from DICOM header
    //note orient has 6 values, indexed from 1, patient position and xyzMM have 3 values indexed from 1
    mat33 Q, diagVox;
    Q.m[0][0] = orient[1]; Q.m[0][1] = orient[2] ; Q.m[0][2] = orient[3] ; // load Q
    Q.m[1][0] = orient[4]; Q.m[1][1] = orient[5] ; Q.m[1][2] = orient[6];
    //printf("Orient %g %g %g %g %g %g\n",orient[1],orient[2],orient[3],orient[4],orient[5],orient[6] );
    /* normalize row 1 */
    double val = Q.m[0][0]*Q.m[0][0] + Q.m[0][1]*Q.m[0][1] + Q.m[0][2]*Q.m[0][2] ;
    if( val > 0.0l ){
        val = 1.0l / sqrt(val) ;
        Q.m[0][0] *= (float)val ; Q.m[0][1] *= (float)val ; Q.m[0][2] *= (float)val ;
    } else {
        Q.m[0][0] = 1.0l ; Q.m[0][1] = 0.0l ; Q.m[0][2] = 0.0l ;
    }
    /* normalize row 2 */
    val = Q.m[1][0]*Q.m[1][0] + Q.m[1][1]*Q.m[1][1] + Q.m[1][2]*Q.m[1][2] ;
    if( val > 0.0l ){
        val = 1.0l / sqrt(val) ;
        Q.m[1][0] *= (float)val ; Q.m[1][1] *= (float)val ; Q.m[1][2] *= (float)val ;
    } else {
        Q.m[1][0] = 0.0l ; Q.m[1][1] = 1.0l ; Q.m[1][2] = 0.0l ;
    }
    /* row 3 is the cross product of rows 1 and 2*/
    Q.m[2][0] = Q.m[0][1]*Q.m[1][2] - Q.m[0][2]*Q.m[1][1] ;  /* cross */
    Q.m[2][1] = Q.m[0][2]*Q.m[1][0] - Q.m[0][0]*Q.m[1][2] ;  /* product */
    Q.m[2][2] = Q.m[0][0]*Q.m[1][1] - Q.m[0][1]*Q.m[1][0] ;
    Q = nifti_mat33_transpose(Q);
    if (nifti_mat33_determ(Q) < 0.0) {
        Q.m[0][2] = -Q.m[0][2];
        Q.m[1][2] = -Q.m[1][2];
        Q.m[2][2] = -Q.m[2][2];
    }
    //next scale matrix
    LOAD_MAT33(diagVox, xyzMM[1],0.0l,0.0l, 0.0l,xyzMM[2],0.0l, 0.0l,0.0l, xyzMM[3]);
    Q = nifti_mat33_mul(Q,diagVox);
    mat44 Q44; //4x4 matrix includes translations
    LOAD_MAT44(Q44, Q.m[0][0],Q.m[0][1],Q.m[0][2],patientPosition[1],
               Q.m[1][0],Q.m[1][1],Q.m[1][2],patientPosition[2],
               Q.m[2][0],Q.m[2][1],Q.m[2][2],patientPosition[3]);
    return Q44;
}

float nifti_mat33_determ( mat33 R )   /* determinant of 3x3 matrix */
{
    double r11,r12,r13,r21,r22,r23,r31,r32,r33 ;
    /*  INPUT MATRIX:  */
    r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2];  /* [ r11 r12 r13 ] */
    r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2];  /* [ r21 r22 r23 ] */
    r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2];  /* [ r31 r32 r33 ] */
    return (float)(r11*r22*r33-r11*r32*r23-r21*r12*r33
                   +r21*r32*r13+r31*r12*r23-r31*r22*r13) ;
}

mat33 nifti_mat33_mul( mat33 A , mat33 B )  /* multiply 2 3x3 matrices */
//see http://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1_io.c
{
    mat33 C ; int i,j ;
    for( i=0 ; i < 3 ; i++ )
        for( j=0 ; j < 3 ; j++ )
            C.m[i][j] =  A.m[i][0] * B.m[0][j]
            + A.m[i][1] * B.m[1][j]
            + A.m[i][2] * B.m[2][j] ;
    return C ;
}

mat44 nifti_mat44_mul( mat44 A , mat44 B )  /* multiply 2 3x3 matrices */
{
    mat44 C ; int i,j ;
    for( i=0 ; i < 4 ; i++ )
        for( j=0 ; j < 4; j++ )
            C.m[i][j] =  A.m[i][0] * B.m[0][j]
            + A.m[i][1] * B.m[1][j]
            + A.m[i][2] * B.m[2][j]
            + A.m[i][3] * B.m[3][j];
    return C ;
}

mat33 nifti_mat33_transpose( mat33 A )  /* transpose 3x3 matrix */
//see http://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1_io.c
{
    mat33 B; int i,j ;
    for( i=0 ; i < 3 ; i++ )
        for( j=0 ; j < 3 ; j++ )
            B.m[i][j] =  A.m[j][i];
    return B;
}

mat33 nifti_mat33_inverse( mat33 R )   /* inverse of 3x3 matrix */
{
    double r11,r12,r13,r21,r22,r23,r31,r32,r33 , deti ;
    mat33 Q ;
    //  INPUT MATRIX:
    r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2];  // [ r11 r12 r13 ]
    r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2];  // [ r21 r22 r23 ]
    r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2];  // [ r31 r32 r33 ]
    deti = r11*r22*r33-r11*r32*r23-r21*r12*r33
    +r21*r32*r13+r31*r12*r23-r31*r22*r13 ;
    if( deti != 0.0l ) deti = 1.0l / deti ;
    Q.m[0][0] = deti*( r22*r33-r32*r23) ;
    Q.m[0][1] = deti*(-r12*r33+r32*r13) ;
    Q.m[0][2] = deti*( r12*r23-r22*r13) ;
    Q.m[1][0] = deti*(-r21*r33+r31*r23) ;
    Q.m[1][1] = deti*( r11*r33-r31*r13) ;
    Q.m[1][2] = deti*(-r11*r23+r21*r13) ;
    Q.m[2][0] = deti*( r21*r32-r31*r22) ;
    Q.m[2][1] = deti*(-r11*r32+r31*r12) ;
    Q.m[2][2] = deti*( r11*r22-r21*r12) ;
    return Q ;
}

float nifti_mat33_rownorm( mat33 A )  // max row norm of 3x3 matrix
{
    float r1,r2,r3 ;
    r1 = fabs(A.m[0][0])+fabs(A.m[0][1])+fabs(A.m[0][2]) ;
    r2 = fabs(A.m[1][0])+fabs(A.m[1][1])+fabs(A.m[1][2]) ;
    r3 = fabs(A.m[2][0])+fabs(A.m[2][1])+fabs(A.m[2][2]) ;
    if( r1 < r2 ) r1 = r2 ;
    if( r1 < r3 ) r1 = r3 ;
    return r1 ;
}

float nifti_mat33_colnorm( mat33 A )  // max column norm of 3x3 matrix
{
    float r1,r2,r3 ;
    r1 = fabs(A.m[0][0])+fabs(A.m[1][0])+fabs(A.m[2][0]) ;
    r2 = fabs(A.m[0][1])+fabs(A.m[1][1])+fabs(A.m[2][1]) ;
    r3 = fabs(A.m[0][2])+fabs(A.m[1][2])+fabs(A.m[2][2]) ;
    if( r1 < r2 ) r1 = r2 ;
    if( r1 < r3 ) r1 = r3 ;
    return r1 ;
}

mat33 nifti_mat33_polar( mat33 A )
{
    mat33 X , Y , Z ;
    float alp,bet,gam,gmi , dif=1.0 ;
    int k=0 ;
    X = A ;
    // force matrix to be nonsingular
    gam = nifti_mat33_determ(X) ;
    while( gam == 0.0 ){        // perturb matrix
        gam = 0.00001 * ( 0.001 + nifti_mat33_rownorm(X) ) ;
        X.m[0][0] += gam ; X.m[1][1] += gam ; X.m[2][2] += gam ;
        gam = nifti_mat33_determ(X) ;
    }
    while(1){
        Y = nifti_mat33_inverse(X) ;
        if( dif > 0.3 ){     // far from convergence
            alp = sqrt( nifti_mat33_rownorm(X) * nifti_mat33_colnorm(X) ) ;
            bet = sqrt( nifti_mat33_rownorm(Y) * nifti_mat33_colnorm(Y) ) ;
            gam = sqrt( bet / alp ) ;
            gmi = 1.0 / gam ;
        } else
            gam = gmi = 1.0 ;  // close to convergence
        Z.m[0][0] = 0.5 * ( gam*X.m[0][0] + gmi*Y.m[0][0] ) ;
        Z.m[0][1] = 0.5 * ( gam*X.m[0][1] + gmi*Y.m[1][0] ) ;
        Z.m[0][2] = 0.5 * ( gam*X.m[0][2] + gmi*Y.m[2][0] ) ;
        Z.m[1][0] = 0.5 * ( gam*X.m[1][0] + gmi*Y.m[0][1] ) ;
        Z.m[1][1] = 0.5 * ( gam*X.m[1][1] + gmi*Y.m[1][1] ) ;
        Z.m[1][2] = 0.5 * ( gam*X.m[1][2] + gmi*Y.m[2][1] ) ;
        Z.m[2][0] = 0.5 * ( gam*X.m[2][0] + gmi*Y.m[0][2] ) ;
        Z.m[2][1] = 0.5 * ( gam*X.m[2][1] + gmi*Y.m[1][2] ) ;
        Z.m[2][2] = 0.5 * ( gam*X.m[2][2] + gmi*Y.m[2][2] ) ;
        dif = fabs(Z.m[0][0]-X.m[0][0])+fabs(Z.m[0][1]-X.m[0][1])
        +fabs(Z.m[0][2]-X.m[0][2])+fabs(Z.m[1][0]-X.m[1][0])
        +fabs(Z.m[1][1]-X.m[1][1])+fabs(Z.m[1][2]-X.m[1][2])
        +fabs(Z.m[2][0]-X.m[2][0])+fabs(Z.m[2][1]-X.m[2][1])
        +fabs(Z.m[2][2]-X.m[2][2])                          ;
        k = k+1 ;
        if( k > 100 || dif < 3.e-6 ) break ;  // convergence or exhaustion
        X = Z ;
    }
    return Z ;
}

void nifti_mat44_to_quatern( mat44 R ,
                            float *qb, float *qc, float *qd,
                            float *qx, float *qy, float *qz,
                            float *dx, float *dy, float *dz, float *qfac )
{
    double r11,r12,r13 , r21,r22,r23 , r31,r32,r33 ;
    double xd,yd,zd , a,b,c,d ;
    mat33 P,Q ;
    // offset outputs are read write out of input matrix
    ASSIF(qx,R.m[0][3]) ; ASSIF(qy,R.m[1][3]) ; ASSIF(qz,R.m[2][3]) ;
    // load 3x3 matrix into local variables */
    r11 = R.m[0][0] ; r12 = R.m[0][1] ; r13 = R.m[0][2] ;
    r21 = R.m[1][0] ; r22 = R.m[1][1] ; r23 = R.m[1][2] ;
    r31 = R.m[2][0] ; r32 = R.m[2][1] ; r33 = R.m[2][2] ;
    // compute lengths of each column; these determine grid spacings
    xd = sqrt( r11*r11 + r21*r21 + r31*r31 ) ;
    yd = sqrt( r12*r12 + r22*r22 + r32*r32 ) ;
    zd = sqrt( r13*r13 + r23*r23 + r33*r33 ) ;
    // if a column length is zero, patch the trouble
    if( xd == 0.0l ){ r11 = 1.0l ; r21 = r31 = 0.0l ; xd = 1.0l ; }
    if( yd == 0.0l ){ r22 = 1.0l ; r12 = r32 = 0.0l ; yd = 1.0l ; }
    if( zd == 0.0l ){ r33 = 1.0l ; r13 = r23 = 0.0l ; zd = 1.0l ; }
    // assign the output lengths */
    ASSIF(dx,xd) ; ASSIF(dy,yd) ; ASSIF(dz,zd) ;
    // normalize the columns */
    r11 /= xd ; r21 /= xd ; r31 /= xd ;
    r12 /= yd ; r22 /= yd ; r32 /= yd ;
    r13 /= zd ; r23 /= zd ; r33 /= zd ;
    /* At this point, the matrix has normal columns, but we have to allow
     for the fact that the hideous user may not have given us a matrix
     with orthogonal columns.
     So, now find the orthogonal matrix closest to the current matrix.
     One reason for using the polar decomposition to get this
     orthogonal matrix, rather than just directly orthogonalizing
     the columns, is so that inputting the inverse matrix to R
     will result in the inverse orthogonal matrix at this point.
     If we just orthogonalized the columns, this wouldn't necessarily hold. */
    Q.m[0][0] = r11 ; Q.m[0][1] = r12 ; Q.m[0][2] = r13 ; // load Q
    Q.m[1][0] = r21 ; Q.m[1][1] = r22 ; Q.m[1][2] = r23 ;
    Q.m[2][0] = r31 ; Q.m[2][1] = r32 ; Q.m[2][2] = r33 ;
    P = nifti_mat33_polar(Q) ;  // P is orthog matrix closest to Q
    r11 = P.m[0][0] ; r12 = P.m[0][1] ; r13 = P.m[0][2] ; // unload
    r21 = P.m[1][0] ; r22 = P.m[1][1] ; r23 = P.m[1][2] ;
    r31 = P.m[2][0] ; r32 = P.m[2][1] ; r33 = P.m[2][2] ;
    //                            [ r11 r12 r13 ]
    // at this point, the matrix  [ r21 r22 r23 ] is orthogonal
    //                            [ r31 r32 r33 ]
    // compute the determinant to determine if it is proper
    zd = r11*r22*r33-r11*r32*r23-r21*r12*r33
    +r21*r32*r13+r31*r12*r23-r31*r22*r13 ;  // should be -1 or 1
    if( zd > 0 ){             // proper
        ASSIF(qfac,1.0) ;
    } else {                  // improper ==> flip 3rd column
        ASSIF(qfac,-1.0) ;
        r13 = -r13 ; r23 = -r23 ; r33 = -r33 ;
    }
    // now, compute quaternion parameters
    a = r11 + r22 + r33 + 1.0l ;
    if( a > 0.5l ){                // simplest case
        a = 0.5l * sqrt(a) ;
        b = 0.25l * (r32-r23) / a ;
        c = 0.25l * (r13-r31) / a ;
        d = 0.25l * (r21-r12) / a ;
    } else {                       // trickier case
        xd = 1.0 + r11 - (r22+r33) ;  // 4*b*b
        yd = 1.0 + r22 - (r11+r33) ;  // 4*c*c
        zd = 1.0 + r33 - (r11+r22) ;  // 4*d*d
        if( xd > 1.0 ){
            b = 0.5l * sqrt(xd) ;
            c = 0.25l* (r12+r21) / b ;
            d = 0.25l* (r13+r31) / b ;
            a = 0.25l* (r32-r23) / b ;
        } else if( yd > 1.0 ){
            c = 0.5l * sqrt(yd) ;
            b = 0.25l* (r12+r21) / c ;
            d = 0.25l* (r23+r32) / c ;
            a = 0.25l* (r13-r31) / c ;
        } else {
            d = 0.5l * sqrt(zd) ;
            b = 0.25l* (r13+r31) / d ;
            c = 0.25l* (r23+r32) / d ;
            a = 0.25l* (r21-r12) / d ;
        }
        //        if( a < 0.0l ){ b=-b ; c=-c ; d=-d; a=-a; }
        if( a < 0.0l ){ b=-b ; c=-c ; d=-d; } //a discarded...
    }
    ASSIF(qb,b) ; ASSIF(qc,c) ; ASSIF(qd,d) ;
    return ;
}

mat44 nifti_quatern_to_mat44( float qb, float qc, float qd,
                             float qx, float qy, float qz,
                             float dx, float dy, float dz, float qfac )
{
    mat44 R ;
    double a,b=qb,c=qc,d=qd , xd,yd,zd ;

    /* last row is always [ 0 0 0 1 ] */

    R.m[3][0]=R.m[3][1]=R.m[3][2] = 0.0f ; R.m[3][3]= 1.0f ;

    /* compute a parameter from b,c,d */

    a = 1.0l - (b*b + c*c + d*d) ;
    if( a < 1.e-7l ){                   /* special case */
        a = 1.0l / sqrt(b*b+c*c+d*d) ;
        b *= a ; c *= a ; d *= a ;        /* normalize (b,c,d) vector */
        a = 0.0l ;                        /* a = 0 ==> 180 degree rotation */
    } else{
        a = sqrt(a) ;                     /* angle = 2*arccos(a) */
    }

    /* load rotation matrix, including scaling factors for voxel sizes */

    xd = (dx > 0.0) ? dx : 1.0l ;       /* make sure are positive */
    yd = (dy > 0.0) ? dy : 1.0l ;
    zd = (dz > 0.0) ? dz : 1.0l ;

    if( qfac < 0.0 ) zd = -zd ;         /* left handedness? */

    R.m[0][0] = (float)( (a*a+b*b-c*c-d*d) * xd) ;
    R.m[0][1] = 2.0l * (b*c-a*d        ) * yd ;
    R.m[0][2] = 2.0l * (b*d+a*c        ) * zd ;
    R.m[1][0] = 2.0l * (b*c+a*d        ) * xd ;
    R.m[1][1] = (float)( (a*a+c*c-b*b-d*d) * yd) ;
    R.m[1][2] = 2.0l * (c*d-a*b        ) * zd ;
    R.m[2][0] = 2.0l * (b*d-a*c        ) * xd ;
    R.m[2][1] = 2.0l * (c*d+a*b        ) * yd ;
    R.m[2][2] = (float)( (a*a+d*d-c*c-b*b) * zd) ;

    /* load offsets */

    R.m[0][3] = qx ; R.m[1][3] = qy ; R.m[2][3] = qz ;

    return R ;
}

mat44 nifti_mat44_inverse( mat44 R )
{
    double r11,r12,r13,r21,r22,r23,r31,r32,r33,v1,v2,v3 , deti ;
    mat44 Q ;
    /*  INPUT MATRIX IS:  */
    r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2];  // [ r11 r12 r13 v1 ]
    r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2];  // [ r21 r22 r23 v2 ]
    r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2];  // [ r31 r32 r33 v3 ]
    v1  = R.m[0][3]; v2  = R.m[1][3]; v3  = R.m[2][3];  // [  0   0   0   1 ]
    deti = r11*r22*r33-r11*r32*r23-r21*r12*r33
    +r21*r32*r13+r31*r12*r23-r31*r22*r13 ;
    if( deti != 0.0l ) deti = 1.0l / deti ;
    Q.m[0][0] = deti*( r22*r33-r32*r23) ;
    Q.m[0][1] = deti*(-r12*r33+r32*r13) ;
    Q.m[0][2] = deti*( r12*r23-r22*r13) ;
    Q.m[0][3] = deti*(-r12*r23*v3+r12*v2*r33+r22*r13*v3
                      -r22*v1*r33-r32*r13*v2+r32*v1*r23) ;
    Q.m[1][0] = deti*(-r21*r33+r31*r23) ;
    Q.m[1][1] = deti*( r11*r33-r31*r13) ;
    Q.m[1][2] = deti*(-r11*r23+r21*r13) ;
    Q.m[1][3] = deti*( r11*r23*v3-r11*v2*r33-r21*r13*v3
                      +r21*v1*r33+r31*r13*v2-r31*v1*r23) ;
    Q.m[2][0] = deti*( r21*r32-r31*r22) ;
    Q.m[2][1] = deti*(-r11*r32+r31*r12) ;
    Q.m[2][2] = deti*( r11*r22-r21*r12) ;
    Q.m[2][3] = deti*(-r11*r22*v3+r11*r32*v2+r21*r12*v3
                      -r21*r32*v1-r31*r12*v2+r31*r22*v1) ;
    Q.m[3][0] = Q.m[3][1] = Q.m[3][2] = 0.0l ;
    Q.m[3][3] = (deti == 0.0l) ? 0.0l : 1.0l ; // failure flag if deti == 0
    return Q ;
}