1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
#include "nifti1_io_core.h"
#include <math.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <stdbool.h>
#include <ctype.h>
#include <string.h>
#include <stddef.h>
#include <float.h>
#include <stdio.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
void nifti_swap_8bytes( size_t n , void *ar ) // 4 bytes at a time
{
size_t ii ;
unsigned char * cp0 = (unsigned char *)ar, * cp1, * cp2 ;
unsigned char tval ;
for( ii=0 ; ii < n ; ii++ ){
cp1 = cp0; cp2 = cp0+7;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp1++; cp2--;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp1++; cp2--;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp1++; cp2--;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp0 += 8;
}
return ;
}
void nifti_swap_4bytes( size_t n , void *ar ) // 4 bytes at a time
{
size_t ii ;
unsigned char * cp0 = (unsigned char *)ar, * cp1, * cp2 ;
unsigned char tval ;
for( ii=0 ; ii < n ; ii++ ){
cp1 = cp0; cp2 = cp0+3;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp1++; cp2--;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp0 += 4;
}
return ;
}
void nifti_swap_2bytes( size_t n , void *ar ) // 2 bytes at a time
{
size_t ii ;
unsigned char * cp1 = (unsigned char *)ar, * cp2 ;
unsigned char tval;
for( ii=0 ; ii < n ; ii++ ){
cp2 = cp1 + 1;
tval = *cp1; *cp1 = *cp2; *cp2 = tval;
cp1 += 2;
}
return ;
}
int isSameFloat (float a, float b) {
return (fabs (a - b) <= FLT_EPSILON);
}
ivec3 setiVec3(int x, int y, int z)
{
ivec3 v = {x, y, z};
return v;
}
vec3 setVec3(float x, float y, float z)
{
vec3 v = {x, y, z};
return v;
}
vec4 setVec4(float x, float y, float z)
{
vec4 v= {x, y, z, 1};
return v;
}
vec3 crossProduct(vec3 u, vec3 v)
{
return setVec3(u.v[1]*v.v[2] - v.v[1]*u.v[2],
-u.v[0]*v.v[2] + v.v[0]*u.v[2],
u.v[0]*v.v[1] - v.v[0]*u.v[1]);
}
float dotProduct(vec3 u, vec3 v)
{
return (u.v[0]*v.v[0] + v.v[1]*u.v[1] + v.v[2]*u.v[2]);
}
vec3 nifti_vect33_norm (vec3 v) { //normalize vector length
vec3 vO = v;
float vLen = sqrt( (v.v[0]*v.v[0])
+ (v.v[1]*v.v[1])
+ (v.v[2]*v.v[2]));
if (vLen <= FLT_EPSILON) return vO; //avoid divide by zero
for (int i = 0; i < 3; i++)
vO.v[i] = v.v[i]/vLen;
return vO;
}
vec3 nifti_vect33mat33_mul(vec3 v, mat33 m ) { //multiply vector * 3x3matrix
vec3 vO;
for (int i=0; i<3; i++) { //multiply Pcrs * m
vO.v[i] = 0;
for(int j=0; j<3; j++)
vO.v[i] += m.m[i][j]*v.v[j];
}
return vO;
}
vec4 nifti_vect44mat44_mul(vec4 v, mat44 m ) { //multiply vector * 4x4matrix
vec4 vO;
for (int i=0; i<4; i++) { //multiply Pcrs * m
vO.v[i] = 0;
for(int j=0; j<4; j++)
vO.v[i] += m.m[i][j]*v.v[j];
}
return vO;
}
mat44 nifti_dicom2mat(float orient[7], float patientPosition[4], float xyzMM[4]) {
//create NIfTI header based on values from DICOM header
//note orient has 6 values, indexed from 1, patient position and xyzMM have 3 values indexed from 1
mat33 Q, diagVox;
Q.m[0][0] = orient[1]; Q.m[0][1] = orient[2] ; Q.m[0][2] = orient[3] ; // load Q
Q.m[1][0] = orient[4]; Q.m[1][1] = orient[5] ; Q.m[1][2] = orient[6];
//printf("Orient %g %g %g %g %g %g\n",orient[1],orient[2],orient[3],orient[4],orient[5],orient[6] );
/* normalize row 1 */
double val = Q.m[0][0]*Q.m[0][0] + Q.m[0][1]*Q.m[0][1] + Q.m[0][2]*Q.m[0][2] ;
if( val > 0.0l ){
val = 1.0l / sqrt(val) ;
Q.m[0][0] *= (float)val ; Q.m[0][1] *= (float)val ; Q.m[0][2] *= (float)val ;
} else {
Q.m[0][0] = 1.0l ; Q.m[0][1] = 0.0l ; Q.m[0][2] = 0.0l ;
}
/* normalize row 2 */
val = Q.m[1][0]*Q.m[1][0] + Q.m[1][1]*Q.m[1][1] + Q.m[1][2]*Q.m[1][2] ;
if( val > 0.0l ){
val = 1.0l / sqrt(val) ;
Q.m[1][0] *= (float)val ; Q.m[1][1] *= (float)val ; Q.m[1][2] *= (float)val ;
} else {
Q.m[1][0] = 0.0l ; Q.m[1][1] = 1.0l ; Q.m[1][2] = 0.0l ;
}
/* row 3 is the cross product of rows 1 and 2*/
Q.m[2][0] = Q.m[0][1]*Q.m[1][2] - Q.m[0][2]*Q.m[1][1] ; /* cross */
Q.m[2][1] = Q.m[0][2]*Q.m[1][0] - Q.m[0][0]*Q.m[1][2] ; /* product */
Q.m[2][2] = Q.m[0][0]*Q.m[1][1] - Q.m[0][1]*Q.m[1][0] ;
Q = nifti_mat33_transpose(Q);
if (nifti_mat33_determ(Q) < 0.0) {
Q.m[0][2] = -Q.m[0][2];
Q.m[1][2] = -Q.m[1][2];
Q.m[2][2] = -Q.m[2][2];
}
//next scale matrix
LOAD_MAT33(diagVox, xyzMM[1],0.0l,0.0l, 0.0l,xyzMM[2],0.0l, 0.0l,0.0l, xyzMM[3]);
Q = nifti_mat33_mul(Q,diagVox);
mat44 Q44; //4x4 matrix includes translations
LOAD_MAT44(Q44, Q.m[0][0],Q.m[0][1],Q.m[0][2],patientPosition[1],
Q.m[1][0],Q.m[1][1],Q.m[1][2],patientPosition[2],
Q.m[2][0],Q.m[2][1],Q.m[2][2],patientPosition[3]);
return Q44;
}
float nifti_mat33_determ( mat33 R ) /* determinant of 3x3 matrix */
{
double r11,r12,r13,r21,r22,r23,r31,r32,r33 ;
/* INPUT MATRIX: */
r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2]; /* [ r11 r12 r13 ] */
r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2]; /* [ r21 r22 r23 ] */
r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2]; /* [ r31 r32 r33 ] */
return (float)(r11*r22*r33-r11*r32*r23-r21*r12*r33
+r21*r32*r13+r31*r12*r23-r31*r22*r13) ;
}
mat33 nifti_mat33_mul( mat33 A , mat33 B ) /* multiply 2 3x3 matrices */
//see http://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1_io.c
{
mat33 C ; int i,j ;
for( i=0 ; i < 3 ; i++ )
for( j=0 ; j < 3 ; j++ )
C.m[i][j] = A.m[i][0] * B.m[0][j]
+ A.m[i][1] * B.m[1][j]
+ A.m[i][2] * B.m[2][j] ;
return C ;
}
mat44 nifti_mat44_mul( mat44 A , mat44 B ) /* multiply 2 3x3 matrices */
{
mat44 C ; int i,j ;
for( i=0 ; i < 4 ; i++ )
for( j=0 ; j < 4; j++ )
C.m[i][j] = A.m[i][0] * B.m[0][j]
+ A.m[i][1] * B.m[1][j]
+ A.m[i][2] * B.m[2][j]
+ A.m[i][3] * B.m[3][j];
return C ;
}
mat33 nifti_mat33_transpose( mat33 A ) /* transpose 3x3 matrix */
//see http://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1_io.c
{
mat33 B; int i,j ;
for( i=0 ; i < 3 ; i++ )
for( j=0 ; j < 3 ; j++ )
B.m[i][j] = A.m[j][i];
return B;
}
mat33 nifti_mat33_inverse( mat33 R ) /* inverse of 3x3 matrix */
{
double r11,r12,r13,r21,r22,r23,r31,r32,r33 , deti ;
mat33 Q ;
// INPUT MATRIX:
r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2]; // [ r11 r12 r13 ]
r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2]; // [ r21 r22 r23 ]
r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2]; // [ r31 r32 r33 ]
deti = r11*r22*r33-r11*r32*r23-r21*r12*r33
+r21*r32*r13+r31*r12*r23-r31*r22*r13 ;
if( deti != 0.0l ) deti = 1.0l / deti ;
Q.m[0][0] = deti*( r22*r33-r32*r23) ;
Q.m[0][1] = deti*(-r12*r33+r32*r13) ;
Q.m[0][2] = deti*( r12*r23-r22*r13) ;
Q.m[1][0] = deti*(-r21*r33+r31*r23) ;
Q.m[1][1] = deti*( r11*r33-r31*r13) ;
Q.m[1][2] = deti*(-r11*r23+r21*r13) ;
Q.m[2][0] = deti*( r21*r32-r31*r22) ;
Q.m[2][1] = deti*(-r11*r32+r31*r12) ;
Q.m[2][2] = deti*( r11*r22-r21*r12) ;
return Q ;
}
float nifti_mat33_rownorm( mat33 A ) // max row norm of 3x3 matrix
{
float r1,r2,r3 ;
r1 = fabs(A.m[0][0])+fabs(A.m[0][1])+fabs(A.m[0][2]) ;
r2 = fabs(A.m[1][0])+fabs(A.m[1][1])+fabs(A.m[1][2]) ;
r3 = fabs(A.m[2][0])+fabs(A.m[2][1])+fabs(A.m[2][2]) ;
if( r1 < r2 ) r1 = r2 ;
if( r1 < r3 ) r1 = r3 ;
return r1 ;
}
float nifti_mat33_colnorm( mat33 A ) // max column norm of 3x3 matrix
{
float r1,r2,r3 ;
r1 = fabs(A.m[0][0])+fabs(A.m[1][0])+fabs(A.m[2][0]) ;
r2 = fabs(A.m[0][1])+fabs(A.m[1][1])+fabs(A.m[2][1]) ;
r3 = fabs(A.m[0][2])+fabs(A.m[1][2])+fabs(A.m[2][2]) ;
if( r1 < r2 ) r1 = r2 ;
if( r1 < r3 ) r1 = r3 ;
return r1 ;
}
mat33 nifti_mat33_polar( mat33 A )
{
mat33 X , Y , Z ;
float alp,bet,gam,gmi , dif=1.0 ;
int k=0 ;
X = A ;
// force matrix to be nonsingular
gam = nifti_mat33_determ(X) ;
while( gam == 0.0 ){ // perturb matrix
gam = 0.00001 * ( 0.001 + nifti_mat33_rownorm(X) ) ;
X.m[0][0] += gam ; X.m[1][1] += gam ; X.m[2][2] += gam ;
gam = nifti_mat33_determ(X) ;
}
while(1){
Y = nifti_mat33_inverse(X) ;
if( dif > 0.3 ){ // far from convergence
alp = sqrt( nifti_mat33_rownorm(X) * nifti_mat33_colnorm(X) ) ;
bet = sqrt( nifti_mat33_rownorm(Y) * nifti_mat33_colnorm(Y) ) ;
gam = sqrt( bet / alp ) ;
gmi = 1.0 / gam ;
} else
gam = gmi = 1.0 ; // close to convergence
Z.m[0][0] = 0.5 * ( gam*X.m[0][0] + gmi*Y.m[0][0] ) ;
Z.m[0][1] = 0.5 * ( gam*X.m[0][1] + gmi*Y.m[1][0] ) ;
Z.m[0][2] = 0.5 * ( gam*X.m[0][2] + gmi*Y.m[2][0] ) ;
Z.m[1][0] = 0.5 * ( gam*X.m[1][0] + gmi*Y.m[0][1] ) ;
Z.m[1][1] = 0.5 * ( gam*X.m[1][1] + gmi*Y.m[1][1] ) ;
Z.m[1][2] = 0.5 * ( gam*X.m[1][2] + gmi*Y.m[2][1] ) ;
Z.m[2][0] = 0.5 * ( gam*X.m[2][0] + gmi*Y.m[0][2] ) ;
Z.m[2][1] = 0.5 * ( gam*X.m[2][1] + gmi*Y.m[1][2] ) ;
Z.m[2][2] = 0.5 * ( gam*X.m[2][2] + gmi*Y.m[2][2] ) ;
dif = fabs(Z.m[0][0]-X.m[0][0])+fabs(Z.m[0][1]-X.m[0][1])
+fabs(Z.m[0][2]-X.m[0][2])+fabs(Z.m[1][0]-X.m[1][0])
+fabs(Z.m[1][1]-X.m[1][1])+fabs(Z.m[1][2]-X.m[1][2])
+fabs(Z.m[2][0]-X.m[2][0])+fabs(Z.m[2][1]-X.m[2][1])
+fabs(Z.m[2][2]-X.m[2][2]) ;
k = k+1 ;
if( k > 100 || dif < 3.e-6 ) break ; // convergence or exhaustion
X = Z ;
}
return Z ;
}
void nifti_mat44_to_quatern( mat44 R ,
float *qb, float *qc, float *qd,
float *qx, float *qy, float *qz,
float *dx, float *dy, float *dz, float *qfac )
{
double r11,r12,r13 , r21,r22,r23 , r31,r32,r33 ;
double xd,yd,zd , a,b,c,d ;
mat33 P,Q ;
// offset outputs are read write out of input matrix
ASSIF(qx,R.m[0][3]) ; ASSIF(qy,R.m[1][3]) ; ASSIF(qz,R.m[2][3]) ;
// load 3x3 matrix into local variables */
r11 = R.m[0][0] ; r12 = R.m[0][1] ; r13 = R.m[0][2] ;
r21 = R.m[1][0] ; r22 = R.m[1][1] ; r23 = R.m[1][2] ;
r31 = R.m[2][0] ; r32 = R.m[2][1] ; r33 = R.m[2][2] ;
// compute lengths of each column; these determine grid spacings
xd = sqrt( r11*r11 + r21*r21 + r31*r31 ) ;
yd = sqrt( r12*r12 + r22*r22 + r32*r32 ) ;
zd = sqrt( r13*r13 + r23*r23 + r33*r33 ) ;
// if a column length is zero, patch the trouble
if( xd == 0.0l ){ r11 = 1.0l ; r21 = r31 = 0.0l ; xd = 1.0l ; }
if( yd == 0.0l ){ r22 = 1.0l ; r12 = r32 = 0.0l ; yd = 1.0l ; }
if( zd == 0.0l ){ r33 = 1.0l ; r13 = r23 = 0.0l ; zd = 1.0l ; }
// assign the output lengths */
ASSIF(dx,xd) ; ASSIF(dy,yd) ; ASSIF(dz,zd) ;
// normalize the columns */
r11 /= xd ; r21 /= xd ; r31 /= xd ;
r12 /= yd ; r22 /= yd ; r32 /= yd ;
r13 /= zd ; r23 /= zd ; r33 /= zd ;
/* At this point, the matrix has normal columns, but we have to allow
for the fact that the hideous user may not have given us a matrix
with orthogonal columns.
So, now find the orthogonal matrix closest to the current matrix.
One reason for using the polar decomposition to get this
orthogonal matrix, rather than just directly orthogonalizing
the columns, is so that inputting the inverse matrix to R
will result in the inverse orthogonal matrix at this point.
If we just orthogonalized the columns, this wouldn't necessarily hold. */
Q.m[0][0] = r11 ; Q.m[0][1] = r12 ; Q.m[0][2] = r13 ; // load Q
Q.m[1][0] = r21 ; Q.m[1][1] = r22 ; Q.m[1][2] = r23 ;
Q.m[2][0] = r31 ; Q.m[2][1] = r32 ; Q.m[2][2] = r33 ;
P = nifti_mat33_polar(Q) ; // P is orthog matrix closest to Q
r11 = P.m[0][0] ; r12 = P.m[0][1] ; r13 = P.m[0][2] ; // unload
r21 = P.m[1][0] ; r22 = P.m[1][1] ; r23 = P.m[1][2] ;
r31 = P.m[2][0] ; r32 = P.m[2][1] ; r33 = P.m[2][2] ;
// [ r11 r12 r13 ]
// at this point, the matrix [ r21 r22 r23 ] is orthogonal
// [ r31 r32 r33 ]
// compute the determinant to determine if it is proper
zd = r11*r22*r33-r11*r32*r23-r21*r12*r33
+r21*r32*r13+r31*r12*r23-r31*r22*r13 ; // should be -1 or 1
if( zd > 0 ){ // proper
ASSIF(qfac,1.0) ;
} else { // improper ==> flip 3rd column
ASSIF(qfac,-1.0) ;
r13 = -r13 ; r23 = -r23 ; r33 = -r33 ;
}
// now, compute quaternion parameters
a = r11 + r22 + r33 + 1.0l ;
if( a > 0.5l ){ // simplest case
a = 0.5l * sqrt(a) ;
b = 0.25l * (r32-r23) / a ;
c = 0.25l * (r13-r31) / a ;
d = 0.25l * (r21-r12) / a ;
} else { // trickier case
xd = 1.0 + r11 - (r22+r33) ; // 4*b*b
yd = 1.0 + r22 - (r11+r33) ; // 4*c*c
zd = 1.0 + r33 - (r11+r22) ; // 4*d*d
if( xd > 1.0 ){
b = 0.5l * sqrt(xd) ;
c = 0.25l* (r12+r21) / b ;
d = 0.25l* (r13+r31) / b ;
a = 0.25l* (r32-r23) / b ;
} else if( yd > 1.0 ){
c = 0.5l * sqrt(yd) ;
b = 0.25l* (r12+r21) / c ;
d = 0.25l* (r23+r32) / c ;
a = 0.25l* (r13-r31) / c ;
} else {
d = 0.5l * sqrt(zd) ;
b = 0.25l* (r13+r31) / d ;
c = 0.25l* (r23+r32) / d ;
a = 0.25l* (r21-r12) / d ;
}
// if( a < 0.0l ){ b=-b ; c=-c ; d=-d; a=-a; }
if( a < 0.0l ){ b=-b ; c=-c ; d=-d; } //a discarded...
}
ASSIF(qb,b) ; ASSIF(qc,c) ; ASSIF(qd,d) ;
return ;
}
mat44 nifti_quatern_to_mat44( float qb, float qc, float qd,
float qx, float qy, float qz,
float dx, float dy, float dz, float qfac )
{
mat44 R ;
double a,b=qb,c=qc,d=qd , xd,yd,zd ;
/* last row is always [ 0 0 0 1 ] */
R.m[3][0]=R.m[3][1]=R.m[3][2] = 0.0f ; R.m[3][3]= 1.0f ;
/* compute a parameter from b,c,d */
a = 1.0l - (b*b + c*c + d*d) ;
if( a < 1.e-7l ){ /* special case */
a = 1.0l / sqrt(b*b+c*c+d*d) ;
b *= a ; c *= a ; d *= a ; /* normalize (b,c,d) vector */
a = 0.0l ; /* a = 0 ==> 180 degree rotation */
} else{
a = sqrt(a) ; /* angle = 2*arccos(a) */
}
/* load rotation matrix, including scaling factors for voxel sizes */
xd = (dx > 0.0) ? dx : 1.0l ; /* make sure are positive */
yd = (dy > 0.0) ? dy : 1.0l ;
zd = (dz > 0.0) ? dz : 1.0l ;
if( qfac < 0.0 ) zd = -zd ; /* left handedness? */
R.m[0][0] = (float)( (a*a+b*b-c*c-d*d) * xd) ;
R.m[0][1] = 2.0l * (b*c-a*d ) * yd ;
R.m[0][2] = 2.0l * (b*d+a*c ) * zd ;
R.m[1][0] = 2.0l * (b*c+a*d ) * xd ;
R.m[1][1] = (float)( (a*a+c*c-b*b-d*d) * yd) ;
R.m[1][2] = 2.0l * (c*d-a*b ) * zd ;
R.m[2][0] = 2.0l * (b*d-a*c ) * xd ;
R.m[2][1] = 2.0l * (c*d+a*b ) * yd ;
R.m[2][2] = (float)( (a*a+d*d-c*c-b*b) * zd) ;
/* load offsets */
R.m[0][3] = qx ; R.m[1][3] = qy ; R.m[2][3] = qz ;
return R ;
}
mat44 nifti_mat44_inverse( mat44 R )
{
double r11,r12,r13,r21,r22,r23,r31,r32,r33,v1,v2,v3 , deti ;
mat44 Q ;
/* INPUT MATRIX IS: */
r11 = R.m[0][0]; r12 = R.m[0][1]; r13 = R.m[0][2]; // [ r11 r12 r13 v1 ]
r21 = R.m[1][0]; r22 = R.m[1][1]; r23 = R.m[1][2]; // [ r21 r22 r23 v2 ]
r31 = R.m[2][0]; r32 = R.m[2][1]; r33 = R.m[2][2]; // [ r31 r32 r33 v3 ]
v1 = R.m[0][3]; v2 = R.m[1][3]; v3 = R.m[2][3]; // [ 0 0 0 1 ]
deti = r11*r22*r33-r11*r32*r23-r21*r12*r33
+r21*r32*r13+r31*r12*r23-r31*r22*r13 ;
if( deti != 0.0l ) deti = 1.0l / deti ;
Q.m[0][0] = deti*( r22*r33-r32*r23) ;
Q.m[0][1] = deti*(-r12*r33+r32*r13) ;
Q.m[0][2] = deti*( r12*r23-r22*r13) ;
Q.m[0][3] = deti*(-r12*r23*v3+r12*v2*r33+r22*r13*v3
-r22*v1*r33-r32*r13*v2+r32*v1*r23) ;
Q.m[1][0] = deti*(-r21*r33+r31*r23) ;
Q.m[1][1] = deti*( r11*r33-r31*r13) ;
Q.m[1][2] = deti*(-r11*r23+r21*r13) ;
Q.m[1][3] = deti*( r11*r23*v3-r11*v2*r33-r21*r13*v3
+r21*v1*r33+r31*r13*v2-r31*v1*r23) ;
Q.m[2][0] = deti*( r21*r32-r31*r22) ;
Q.m[2][1] = deti*(-r11*r32+r31*r12) ;
Q.m[2][2] = deti*( r11*r22-r21*r12) ;
Q.m[2][3] = deti*(-r11*r22*v3+r11*r32*v2+r21*r12*v3
-r21*r32*v1-r31*r12*v2+r31*r22*v1) ;
Q.m[3][0] = Q.m[3][1] = Q.m[3][2] = 0.0l ;
Q.m[3][3] = (deti == 0.0l) ? 0.0l : 1.0l ; // failure flag if deti == 0
return Q ;
}
|