File: dcpixel.cc

package info (click to toggle)
dcmtk 3.6.9-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 95,648 kB
  • sloc: ansic: 426,874; cpp: 318,177; makefile: 6,401; sh: 4,341; yacc: 1,026; xml: 482; lex: 321; perl: 277
file content (1358 lines) | stat: -rw-r--r-- 43,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
/*
 *
 *  Copyright (C) 1997-2024, OFFIS e.V.
 *  All rights reserved.  See COPYRIGHT file for details.
 *
 *  This software and supporting documentation were developed by
 *
 *    OFFIS e.V.
 *    R&D Division Health
 *    Escherweg 2
 *    D-26121 Oldenburg, Germany
 *
 *
 *  Module:  dcmdata
 *
 *  Author:  Andreas Barth
 *
 *  Purpose: class DcmPixelData
 *
 */

#include "dcmtk/config/osconfig.h"    /* make sure OS specific configuration is included first */
#include "dcmtk/dcmdata/dcpixel.h"
#include "dcmtk/dcmdata/dccodec.h"
#include "dcmtk/dcmdata/dcpixseq.h"
#include "dcmtk/dcmdata/dcdeftag.h"
#include "dcmtk/dcmdata/dcitem.h"
#include "dcmtk/dcmdata/dcpxitem.h"
#include "dcmtk/dcmdata/dcjson.h"

//
// class DcmRepresentationEntry
//

DcmRepresentationEntry::DcmRepresentationEntry(
    const E_TransferSyntax rt,
    const DcmRepresentationParameter *rp,
    DcmPixelSequence * ps)
  : repType(rt),
    repParam(NULL),
    pixSeq(ps)
{
    if (rp)
        repParam = rp->clone();
}

DcmRepresentationEntry::DcmRepresentationEntry(
    const DcmRepresentationEntry & oldEntry)
  : repType(oldEntry.repType),
    repParam(NULL),
    pixSeq(NULL)
{
    if (oldEntry.repParam)
        repParam = oldEntry.repParam->clone();
    pixSeq = new DcmPixelSequence(*(oldEntry.pixSeq));
}

DcmRepresentationEntry::~DcmRepresentationEntry()
{
    delete repParam;
    delete pixSeq;
}

OFBool
DcmRepresentationEntry::operator==(const DcmRepresentationEntry & x) const
{
    return (repType == x.repType) &&
        ((x.repParam == NULL && repParam == NULL) ||
         ((x.repParam != NULL) && (repParam != NULL) && (*(x.repParam) == *repParam)));
}

//
// class DcmPixelData
//

// Constructors / Deconstructors

DcmPixelData::DcmPixelData(
    const DcmTag & tag,
    const Uint32 len)
  : DcmPolymorphOBOW(tag, len),
    repList(),
    repListEnd(),
    original(),
    current(),
    existUnencapsulated(OFFalse),
    alwaysUnencapsulated(OFFalse),
    unencapsulatedVR(EVR_UNKNOWN),
    pixelSeqForWrite(NULL)
{
    repListEnd = repList.end();
    current = original = repListEnd;
    if ((getTag().getEVR() == EVR_ox) || (getTag().getEVR() == EVR_px))
        setTagVR(EVR_OW);
    unencapsulatedVR = getTag().getEVR();
    recalcVR();
}

DcmPixelData::DcmPixelData(
    const DcmPixelData & oldPixelData)
  : DcmPolymorphOBOW(oldPixelData),
    repList(),
    repListEnd(),
    original(),
    current(),
    existUnencapsulated(oldPixelData.existUnencapsulated),
    alwaysUnencapsulated(oldPixelData.alwaysUnencapsulated),
    unencapsulatedVR(oldPixelData.unencapsulatedVR),
    pixelSeqForWrite(NULL)
{
    repListEnd = repList.end();
    original = repListEnd;
    current = original;
    recalcVR();
    DcmRepresentationListConstIterator oldEnd(oldPixelData.repList.end());
    for (DcmRepresentationListConstIterator it(oldPixelData.repList.begin());
         it != oldEnd;
         ++it)
    {
        DcmRepresentationEntry * repEnt = new DcmRepresentationEntry(**it);
        repList.push_back(repEnt);
        if (it == oldPixelData.original)
            original = --repList.end();

        if (it == oldPixelData.current)
        {
            current = --repList.end();
            recalcVR();
        }
    }
}


DcmPixelData::~DcmPixelData()
{
    for (DcmRepresentationListIterator it(repList.begin());
         it != repListEnd;
         ++it)
    {
        delete *it;
        *it = NULL;
    }
}

DcmPixelData &DcmPixelData::operator=(const DcmPixelData &obj)
{
  if (this != &obj)
  {
    DcmPolymorphOBOW::operator=(obj);
    existUnencapsulated = obj.existUnencapsulated;
    alwaysUnencapsulated = obj.alwaysUnencapsulated;
    unencapsulatedVR = obj.unencapsulatedVR;
    pixelSeqForWrite = NULL;
    repList.clear();
    repListEnd = repList.end();
    original = repListEnd;
    current = original;
    recalcVR();
    DcmRepresentationListConstIterator oldEnd(obj.repList.end());
    DcmRepresentationListConstIterator it(obj.repList.begin());
    while (it != oldEnd)
    {
        DcmRepresentationEntry *repEnt = new DcmRepresentationEntry(**it);
        repList.push_back(repEnt);
        if (it == obj.original) original = --repList.end();
        if (it == current)
        {
            current = --repList.end();
            recalcVR();
        }
        ++it;
    }

  }
  return *this;
}

// methods in alphabetical order

Uint32
DcmPixelData::calcElementLength(
    const E_TransferSyntax xfer,
    const E_EncodingType enctype)
{
    DcmXfer xferSyn(xfer);
    errorFlag = EC_Normal;
    Uint32 elementLength = 0;

    if (xferSyn.usesEncapsulatedFormat() && (! writeUnencapsulated(xfer)))
    {
        DcmRepresentationListIterator found;
        errorFlag = findConformingEncapsulatedRepresentation(xfer, NULL, found);
        if (errorFlag == EC_Normal)
            elementLength = (*found)->pixSeq->calcElementLength(xfer, enctype);
    }
    else if (existUnencapsulated)
        elementLength = DcmPolymorphOBOW::calcElementLength(xfer, enctype);
    else
        errorFlag = EC_RepresentationNotFound;

    return elementLength;
}


OFBool
DcmPixelData::canChooseRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam)
{
    OFBool result = OFFalse;
    DcmXfer toType(repType);

    const DcmRepresentationEntry findEntry(repType, repParam, NULL);
    DcmRepresentationListIterator resultIt(repListEnd);
    // find out whether we have the desired target representation available. Three possibilities:
    // 1. we have uncompressed data, and target is uncompressed (conversion between uncompressed always possible)
    // 2. we have uncompressed and want compressed, but we are forced to write uncompressed anyway
    // 3. we want to go to compressed, and already have the desired representation available
    if ((toType.usesNativeFormat() && existUnencapsulated) ||
        (toType.usesEncapsulatedFormat() && writeUnencapsulated(repType) && existUnencapsulated) ||
        (toType.usesEncapsulatedFormat() && findRepresentationEntry(findEntry, resultIt) == EC_Normal))
    {
        // representation found
        result = OFTrue;
    }
    // otherwise let's see whether we know how to convert to the target representation
    else
    {
        // representation not found, check if we have a codec that can create the
        // desired representation.
        if (original == repListEnd)
        {
          // we have uncompressed data, check whether we know how to go from uncompressed to desired compression
          result = DcmCodecList::canChangeCoding(EXS_LittleEndianExplicit, toType.getXfer());
        }
        else if (toType.usesEncapsulatedFormat())
        {
          // we have encapsulated data, check whether we know how to transcode
          result = DcmCodecList::canChangeCoding((*original)->repType, toType.getXfer());
          if (!result)
          {
            // direct transcoding is not possible. Check if we can decode and then encode.
            result = canChooseRepresentation(EXS_LittleEndianExplicit, NULL);
            if (result) result = DcmCodecList::canChangeCoding(EXS_LittleEndianExplicit, toType.getXfer());
          }
        }
        else
        {
          // target transfer syntax is uncompressed, look whether decompression is possible
          result = DcmCodecList::canChangeCoding((*original)->repType, EXS_LittleEndianExplicit);
        }
    }
    return result;
}

OFBool
DcmPixelData::canWriteXfer(
    const E_TransferSyntax newXfer,
    const E_TransferSyntax /*oldXfer*/)
{
    DcmXfer newXferSyn(newXfer);
    DcmRepresentationListIterator found;
    OFBool result = existUnencapsulated && (newXferSyn.usesNativeFormat() || writeUnencapsulated(newXfer));

    if (!result && newXferSyn.usesEncapsulatedFormat())
        result = (findConformingEncapsulatedRepresentation(newXferSyn, NULL, found) == EC_Normal);
    return result;
}

OFCondition
DcmPixelData::chooseRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam,
    DcmStack & pixelStack)
{
    OFCondition l_error = EC_CannotChangeRepresentation;
    DcmXfer toType(repType);

    const DcmRepresentationEntry findEntry(repType, repParam, NULL);
    DcmRepresentationListIterator result(repListEnd);
    if ((toType.usesNativeFormat() && existUnencapsulated) ||
        (toType.usesEncapsulatedFormat() && findRepresentationEntry(findEntry, result) == EC_Normal))
    {
        // representation found
        current = result;
        recalcVR();
        l_error = EC_Normal;
    }
    else
    {
        if (original == repListEnd)
            l_error = encode(EXS_LittleEndianExplicit, NULL, NULL,
                             toType, repParam, pixelStack);
        else if (toType.usesEncapsulatedFormat())
            l_error = encode((*original)->repType, (*original)->repParam,
                             (*original)->pixSeq, toType, repParam, pixelStack);
        else
            l_error = decode((*original)->repType, (*original)->repParam,
                             (*original)->pixSeq, pixelStack);
    }
    if (l_error.bad() && toType.usesEncapsulatedFormat() && existUnencapsulated && writeUnencapsulated(repType))
        // Encoding failed so this will be written out unencapsulated
        l_error = EC_Normal;
    return l_error;
}


int DcmPixelData::compare(const DcmElement& rhs) const
{
  // check tag and VR
  int result = DcmElement::compare(rhs);
  if (result != 0)
  {
    return result;
  }

  // cast away constness (dcmdata is not const correct...)
  DcmPixelData* myThis = NULL;
  DcmPixelData* myRhs = NULL;
  myThis = OFconst_cast(DcmPixelData*, this);
  myRhs =  OFstatic_cast(DcmPixelData*, OFconst_cast(DcmElement*, &rhs));

  if (myThis->existUnencapsulated && myRhs->existUnencapsulated)
  {
    // we have uncompressed representations, which can be compared using DcmPolymorphOBOW::compare
    return DcmPolymorphOBOW::compare(rhs);
  }

  // both do not have uncompressed data, we must compare compressed ones.
  // check both have a current representation at all.
  if ((myThis->current == myThis->repList.end()) && (myRhs->current != myRhs->repList.end())) return -1;
  if ((myThis->current != myThis->repList.end()) && (myRhs->current == myRhs->repList.end())) return 1;
  if ((myThis->current == myThis->repList.end()) && (myRhs->current == myRhs->repList.end()))
  {
    // if one of both have uncompressed data at least, that one is considered "bigger"
    if (myThis->existUnencapsulated) return 1;
    if (myRhs->existUnencapsulated) return -1;
    else return 0;
  }

  // both have compressed data: compare current representation (only)
  if ((myThis->current != myThis->repList.end()) && (myRhs->current != myRhs->repList.end()) )
  {
    E_TransferSyntax myRep = (*(myThis->current))->repType;
    E_TransferSyntax rhsRep = (*(myRhs->current))->repType;
    DcmXfer myXfer(myRep);
    DcmXfer rhsXfer(rhsRep);
    // if both transfer syntaxes are different, we have to perform more checks to
    // find out whether the related pixel data is comparable; this is the case
    // for all uncompressed transfer syntaxes, except Big Endian with OW data
    // since it uses a different memory layout, and we do not want to byte-swap
    // the values for the comparison.
    if (myRep != rhsRep)
    {
        return 1;
    }
    else
    {
      // For compressed, compare pixel items bytewise
      DcmPixelSequence* myPix = (*(myThis->current))->pixSeq;
      DcmPixelSequence* rhsPix = (*(myRhs->current))->pixSeq;
      if (!myPix && rhsPix) return -1;
      if (myPix && !rhsPix) return 1;
      if (!myPix && !rhsPix) return 0;
      // Check number of pixel items
      long unsigned int myNumPix = myPix->card();
      long unsigned int rhsNumPix = rhsPix->card();
      if (myNumPix < rhsNumPix) return -1;
      if (myNumPix > rhsNumPix) return 1;
      // loop over pixel items, both have the same number of pixel items
      for (unsigned long n = 0; n < myNumPix; n++)
      {
        DcmPixelItem* myPixItem = NULL;
        DcmPixelItem* rhsPixItem = NULL;
        if (myPix->getItem(myPixItem, n).good() && rhsPix->getItem(rhsPixItem, n).good())
        {
          // compare them value by value, using DcmOtherByteOtherWord::compare() method
          result = myPixItem->compare(*rhsPixItem);
          if (result != 0)
          {
            return result;
          }
        }
        else
        {
          DCMDATA_ERROR("Internal error: Could not get pixel item #" << n << " from Pixel Sequence");
          return 1;
        }
      }
      return 0;
    }
  }
  // if one of both have a current representation; consider that one "bigger".
  // if none has a current one, consider both equal (neither uncompressed or compressed data present).
  else
  {
    if (myThis->current != myThis->repList.end()) return 1;
    if (myRhs->current != myRhs->repList.end()) return -1;
    else return 0;
  }
}

OFCondition DcmPixelData::copyFrom(const DcmObject& rhs)
{
  if (this != &rhs)
  {
    if (rhs.ident() != ident()) return EC_IllegalCall;
    *this = OFstatic_cast(const DcmPixelData &, rhs);
  }
  return EC_Normal;
}

void DcmPixelData::clearRepresentationList(
    DcmRepresentationListIterator leaveInList)
{
    /* define iterators to go through all representations in the list */
    DcmRepresentationListIterator it(repList.begin());
    DcmRepresentationListIterator del;

    /* as long as we have not encountered the end of the */
    /* representation list, go through all representations */
    while (it != repListEnd)
    {
        /* if this representation shall not be left in the list */
        if (it != leaveInList)
        {
            /* delete representation and move it to the next representation */
            delete *it;
            del = it++;
            repList.erase(del);
        }
        /* else leave this representation in the list and just go to the next */
        else
            ++it;
    }
}

OFCondition
DcmPixelData::decode(
    const DcmXfer & fromType,
    const DcmRepresentationParameter * fromParam,
    DcmPixelSequence * fromPixSeq,
    DcmStack & pixelStack)
{
    if (existUnencapsulated) return EC_Normal;
    OFBool removeOldPixelRepresentation = OFFalse;
    OFCondition l_error = DcmCodecList::decode(fromType, fromParam, fromPixSeq, *this, pixelStack, removeOldPixelRepresentation);
    if (l_error.good())
    {
        existUnencapsulated = OFTrue;
        current = repListEnd;
        setVR(EVR_OW);
        recalcVR();

        // the codec has indicated that the image pixel module has been modified
        // in a way that may affect the validity of the old representation of pixel data.
        // Thus, we cannot just switch back to the old representation.
        // Thus, remove old representation(s).
        if (removeOldPixelRepresentation) removeAllButCurrentRepresentations();
    }
    else
    {
        DcmPolymorphOBOW::putUint16Array(NULL,0);
        existUnencapsulated = OFFalse;
    }
    return l_error;
}



OFCondition
DcmPixelData::encode(
    const DcmXfer & fromType,
    const DcmRepresentationParameter * fromParam,
    DcmPixelSequence * fromPixSeq,
    const DcmXfer & toType,
    const DcmRepresentationParameter *toParam,
    DcmStack & pixelStack)
{
    OFCondition l_error = EC_CannotChangeRepresentation;
    if (toType.usesEncapsulatedFormat())
    {
       DcmPixelSequence * toPixSeq = NULL;
       OFBool removeOldPixelRepresentation = OFFalse;
       if (fromType.usesEncapsulatedFormat())
       {
         l_error = DcmCodecList::encode(fromType.getXfer(), fromParam, fromPixSeq,
                   toType.getXfer(), toParam, toPixSeq, pixelStack, removeOldPixelRepresentation);
       }
       else
       {
         Uint16 * pixelData;
         l_error = DcmPolymorphOBOW::getUint16Array(pixelData);
         Uint32 length = DcmPolymorphOBOW::getLength();
         if (l_error == EC_Normal)
         {
           l_error = DcmCodecList::encode(fromType.getXfer(), pixelData, length,
                     toType.getXfer(), toParam, toPixSeq, pixelStack, removeOldPixelRepresentation);
         }
       }

       if (l_error.good())
       {
           current = insertRepresentationEntry(
             new DcmRepresentationEntry(toType.getXfer(), toParam, toPixSeq));
           recalcVR();
           // the codec has indicated that the image pixel module has been modified
           // in a way that may affect the validity of the old representation of pixel data.
           // Thus, we cannot just switch back to the old representation, but have
           // to actually decode in this case. Thus, remove old representation(s).
           if (removeOldPixelRepresentation) removeAllButCurrentRepresentations();
       } else delete toPixSeq;

       // if it was possible to convert one encapsulated syntax into
       // another directly try it using decoding and encoding!
       if (l_error.bad() && fromType.usesEncapsulatedFormat())
       {
           l_error = decode(fromType, fromParam, fromPixSeq, pixelStack);
           if (l_error.good()) l_error = encode(EXS_LittleEndianExplicit, NULL, NULL, toType, toParam, pixelStack);
       }
    }
    return l_error;
}

OFCondition
DcmPixelData::findRepresentationEntry(
    const DcmRepresentationEntry & findEntry,
    DcmRepresentationListIterator & result)
{
    result = repList.begin();
    while(result != repListEnd &&
          (*result)->repType < findEntry.repType)
        ++result;

    DcmRepresentationListIterator it(result);

    while(it != repListEnd && **it != findEntry)
        ++it;
    if (it == repListEnd || **it != findEntry)
        return EC_RepresentationNotFound;
    else
    {
        result = it;
        return EC_Normal;
    }
}


OFCondition
DcmPixelData::findConformingEncapsulatedRepresentation(
    const DcmXfer & repTypeSyn,
    const DcmRepresentationParameter * repParam,
    DcmRepresentationListIterator & result)
{
    E_TransferSyntax repType = repTypeSyn.getXfer();
    result = repListEnd;
    OFCondition l_error = EC_RepresentationNotFound;
    // we are looking for an encapsulated representation
    // of this pixel data element which meets both
    // the transfer syntax and (if given) the representation
    // parameter (i.e. quality factor for lossy JPEG).
    if (repTypeSyn.usesEncapsulatedFormat())
    {
        // first we check the current (active) representation if any.
        if ((current != repListEnd) && ((*current)->repType == repType) &&
            ((repParam==NULL) || (((*current)->repParam != NULL)&&(*(*current)->repParam == *repParam))))
        {
            result = current;
            l_error = EC_Normal;
        }
        else
        {
            // now we check all representations
            DcmRepresentationListIterator it(repList.begin());
            OFBool found = OFFalse;
            while (!found && (it != repListEnd))
            {
              if ((*it)->repType == repType)
              {
                if ((repParam == NULL) || (((*it)->repParam != NULL)&&(*(*it)->repParam == *repParam)))
                {
                  // repParam is NULL or matches the one we are comparing with
                  found = OFTrue;
                  result = it;
                  l_error = EC_Normal;
                } else ++it;
              } else ++it;
            }
        }
    }
    return l_error;
}


OFCondition
DcmPixelData::getEncapsulatedRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam,
    DcmPixelSequence * & pixSeq)
{
    DcmRepresentationListIterator found;
    DcmRepresentationEntry findEntry(repType, repParam, NULL);
    if (findRepresentationEntry(findEntry, found) == EC_Normal)
    {
        pixSeq = (*found)->pixSeq;
        return EC_Normal;
    }

    return EC_RepresentationNotFound;
}


OFBool
DcmPixelData::hasRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam)
{
    DcmXfer repTypeSyn(repType);
    DcmRepresentationListIterator found;
    if (repTypeSyn.usesNativeFormat() && existUnencapsulated)
        return OFTrue;
    else if (repTypeSyn.usesEncapsulatedFormat())
        return findConformingEncapsulatedRepresentation(repTypeSyn, repParam, found).good();
    return OFFalse;
}


Uint32
DcmPixelData::getLength(const E_TransferSyntax xfer,
                        const E_EncodingType enctype)
{
    DcmXfer xferSyn(xfer);
    errorFlag = EC_Normal;
    Uint32 valueLength = 0;

    if (xferSyn.usesEncapsulatedFormat() && !writeUnencapsulated(xfer))
    {
        DcmRepresentationListIterator foundEntry;
        errorFlag = findConformingEncapsulatedRepresentation(
            xferSyn, NULL, foundEntry);
        if (errorFlag == EC_Normal)
            valueLength = (*foundEntry)->pixSeq->getLength(xfer, enctype);
    }
    else if (existUnencapsulated)
        valueLength =  DcmPolymorphOBOW::getLength(xfer, enctype);
    else
        errorFlag = EC_RepresentationNotFound;

    return valueLength;
}


void
DcmPixelData::getCurrentRepresentationKey(
    E_TransferSyntax & repType,
    const DcmRepresentationParameter * & repParam)
{
    if (current != repListEnd)
    {
        repType = (*current)->repType;
        repParam = (*current)->repParam;
    }
    else
    {
        repType = EXS_LittleEndianExplicit;
        repParam = NULL;
    }
}

void
DcmPixelData::getOriginalRepresentationKey(
    E_TransferSyntax & repType,
    const DcmRepresentationParameter * & repParam)
{
    if (original != repListEnd)
    {
        repType = (*original)->repType;
        repParam = (*original)->repParam;
    }
    else
    {
        repType = EXS_LittleEndianExplicit;
        repParam = NULL;
    }
}

DcmRepresentationListIterator
DcmPixelData::insertRepresentationEntry(
    DcmRepresentationEntry * repEntry)
{
    DcmRepresentationListIterator insertedEntry;
    DcmRepresentationListIterator result;
    if (findRepresentationEntry(*repEntry, result).good())
    {
        // this type of representation entry was already present in the list
        if (repEntry != *result)
        {
          insertedEntry = repList.insert(result, repEntry);

          // delete old entry from representation list
          delete *result;
          repList.erase(result);
        }
    }
    else
        insertedEntry = repList.insert(result,repEntry);
    return insertedEntry;
}

void
DcmPixelData::print(
    STD_NAMESPACE ostream &out,
    const size_t flags,
    const int level,
    const char *pixelFileName,
    size_t *pixelCounter)
{
    if (current == repListEnd)
        printPixel(out, flags, level, pixelFileName, pixelCounter);
    else
        (*current)->pixSeq->print(out, flags, level, pixelFileName, pixelCounter);
}

OFCondition
DcmPixelData::putUint8Array(
    const Uint8 * byteValue,
    const unsigned long length)
{
    // clear RepresentationList
    clearRepresentationList(repListEnd);
    OFCondition l_error = DcmPolymorphOBOW::putUint8Array(byteValue, length);
    original = current = repListEnd;
    recalcVR();
    existUnencapsulated = OFTrue;
    return l_error;
}

OFCondition
DcmPixelData::putUint16Array(
    const Uint16 * wordValue,
    const unsigned long length)
{
    // clear RepresentationList
    clearRepresentationList(repListEnd);
    OFCondition l_error = DcmPolymorphOBOW::putUint16Array(wordValue, length);
    original = current = repListEnd;
    recalcVR();
    existUnencapsulated = OFTrue;
    return l_error;
}

OFCondition
DcmPixelData::createUint8Array(
    const Uint32 numBytes,
    Uint8 * & bytes)
{
    OFCondition l_error = DcmPolymorphOBOW::createUint8Array(numBytes, bytes);
    existUnencapsulated = OFTrue;
    return l_error;
}

OFCondition
DcmPixelData::createUint16Array(
    const Uint32 numWords,
    Uint16 * & words)
{
    OFCondition l_error = DcmPolymorphOBOW::createUint16Array(numWords, words);
    existUnencapsulated = OFTrue;
    return l_error;
}

OFCondition
DcmPixelData::createValueFromTempFile(
    DcmInputStreamFactory *factory,
    const Uint32 length,
    const E_ByteOrder byteOrder)
{
    OFCondition l_error = DcmPolymorphOBOW::createValueFromTempFile(factory, length, byteOrder);
    existUnencapsulated = OFTrue;
    return l_error;
}

void
DcmPixelData::putOriginalRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam,
    DcmPixelSequence * pixSeq)
{
    // delete RepresentationList
    clearRepresentationList(repListEnd);
    // delete unencapsulated representation
    DcmPolymorphOBOW::putUint16Array(NULL,0);
    existUnencapsulated = OFFalse;
    // insert new Representation
    current = original = insertRepresentationEntry(
        new DcmRepresentationEntry(repType, repParam, pixSeq));
    recalcVR();
}

OFCondition
DcmPixelData::read(
    DcmInputStream & inStream,
    const E_TransferSyntax ixfer,
    const E_GrpLenEncoding glenc,
    const Uint32 maxReadLength)
{
    /* if this element's transfer state shows ERW_notInitialized, this is an illegal call */
    if (getTransferState() == ERW_notInitialized)
        errorFlag = EC_IllegalCall;
    else
    {
        /* if this is not an illegal call, go ahead */

        /* if the transfer state is ERW_init, we need to prepare the reading of the pixel */
        /* data from the stream: remove all representations from the representation list. */
        if (getTransferState() == ERW_init)
            clearRepresentationList(repListEnd);

        /* create a DcmXfer object based on the transfer syntax which was passed */
        DcmXfer ixferSyn(ixfer);

        /* determine if the pixel data is captured in native or encapsulated format.
         * We only derive this information from the length field which is set to
         * undefined length for encapsulated data because even in compressed transfer
         * syntaxes the Icon Image Sequence may contain an uncompressed image.
         */
        if (getLengthField() == DCM_UndefinedLength)
        {
            /* the pixel data is captured in encapsulated (e.g. compressed) format */

            /* if the transfer state is ERW_init, we need to prepare */
            /* the reading of the pixel data from the stream. */
            if (getTransferState() == ERW_init)
            {
                current = insertRepresentationEntry(
                    new DcmRepresentationEntry(
                        ixfer, NULL, new DcmPixelSequence(getTag(), getLengthField())));
                recalcVR();
                original = current;
                existUnencapsulated = OFFalse;
                setTransferState(ERW_inWork);

                if (! ixferSyn.usesEncapsulatedFormat())
                {
                  /* Special case: we have encountered encapsulated format for
                   * the pixel data (undefined element length) although we're
                   * decoding a non-encapsulated transfer syntax. This could e.g.
                   * be a compressed image stored without meta-header. For now,
                   * we just accept the data element; however, any attempt to
                   * write the dataset will fail because no suitable decoder is
                   * known.
                   */
                }
            }

            /* conduct the reading process */
            errorFlag =
                (*current)->pixSeq->read(inStream, ixfer, glenc, maxReadLength);

            /* if the errorFlag equals EC_Normal, all pixel data has been */
            /* read; hence, the transfer state has to be set to ERW_ready */
            if (errorFlag == EC_Normal)
                setTransferState(ERW_ready);
        }
        else
        {
            /* the pixel data is captured in native (uncompressed) format */

            /* if the transfer state is ERW_init, we need to prepare */
            /* the reading of the pixel data from the stream. */
            if (getTransferState() == ERW_init)
            {
                current = original = repListEnd;
                unencapsulatedVR = getTag().getEVR();
                recalcVR();
                existUnencapsulated = OFTrue;

                if (ixferSyn.usesEncapsulatedFormat())
                {
                  /* Special case: we have encountered native format for the pixel
                   * data (explicit element length) although we're decoding an
                   * encapsulated transfer syntax. This is probably an icon image.
                   */
                  alwaysUnencapsulated = OFTrue;
                }
            }

            /* conduct the reading process */
            errorFlag =
                DcmPolymorphOBOW::read(inStream, ixfer, glenc, maxReadLength);
        }
    }

    /* return result value */
    return errorFlag;
}


void
DcmPixelData::removeAllButCurrentRepresentations()
{
    clearRepresentationList(current);
    if (current != repListEnd && existUnencapsulated)
    {
        DcmPolymorphOBOW::putUint16Array(NULL,0);
        existUnencapsulated = OFFalse;
    }
    original = current;
}


void
DcmPixelData::removeAllButOriginalRepresentations()
{
    clearRepresentationList(original);
    if (original != repListEnd && existUnencapsulated)
    {
        DcmPolymorphOBOW::putUint16Array(NULL,0);
        existUnencapsulated = OFFalse;
    }
    current = original;
    recalcVR();
}

OFCondition
DcmPixelData::removeOriginalRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam)
{
    OFCondition l_error = EC_Normal;
    DcmXfer repTypeSyn(repType);

    /* native format or referenced pixel data */
    if (!repTypeSyn.usesEncapsulatedFormat())
    {
        if (original != repListEnd)
        {
            if (current == original)
            {
                current = repListEnd;
                recalcVR();
            }
            repList.erase(original);
            original = repListEnd;
        }
        else
            l_error = EC_IllegalCall;
    }
    else
    {
        /* encapsulated format */
        DcmRepresentationListIterator result;
        DcmRepresentationEntry findEntry(repType, repParam, NULL);
        if (findRepresentationEntry(findEntry, result) == EC_Normal)
        {
            if (result != original)
            {
                if (current == original)
                {
                    current = result;
                    recalcVR();
                }
                if (original == repListEnd)
                {
                    DcmPolymorphOBOW::putUint16Array(NULL, 0);
                    existUnencapsulated = OFFalse;
                }
                else
                    repList.erase(original);
                original = result;
            }
            else
                l_error = EC_IllegalCall;
        }
        else
            l_error = EC_RepresentationNotFound;
    }
    return l_error;
}

OFCondition
DcmPixelData::removeRepresentation(
    const E_TransferSyntax repType,
    const DcmRepresentationParameter * repParam)
{
    OFCondition l_error = EC_Normal;
    DcmXfer repTypeSyn(repType);

    /* native format or referenced pixel data */
    if (!repTypeSyn.usesEncapsulatedFormat())
    {
        if (original != repListEnd && existUnencapsulated)
        {
            DcmPolymorphOBOW::putUint16Array(NULL, 0);
            existUnencapsulated = OFFalse;
        }
        else
            l_error = EC_CannotChangeRepresentation;
    }
    else
    {
        /* encapsulated format */
        DcmRepresentationListIterator result;
        DcmRepresentationEntry findEntry(repType, repParam, NULL);
        if (findRepresentationEntry(findEntry, result) == EC_Normal)
        {
            if (original != result)
                repList.erase(result);
            else l_error = EC_CannotChangeRepresentation;
        }
        else
            l_error = EC_RepresentationNotFound;
    }
    return l_error;
}


OFCondition
DcmPixelData::setCurrentRepresentationParameter(
    const DcmRepresentationParameter * repParam)
{
    if (current != repListEnd)
    {
        if (repParam == NULL)
            (*current)->repParam = NULL;
        else
            (*current)->repParam = repParam->clone();
        return EC_Normal;
    }
    return EC_RepresentationNotFound;
}

OFCondition
DcmPixelData::setVR(DcmEVR vr)
{
    unencapsulatedVR = vr;
    return DcmPolymorphOBOW::setVR(vr);
}

void
DcmPixelData::transferEnd()
{
    DcmPolymorphOBOW::transferEnd();
    for (DcmRepresentationListIterator it(repList.begin());
         it != repListEnd;
         ++it)
        (*it)->pixSeq->transferEnd();
}

void
DcmPixelData::transferInit()
{
    DcmPolymorphOBOW::transferInit();
    for (DcmRepresentationListIterator it(repList.begin());
         it != repListEnd;
         ++it)
        (*it)->pixSeq->transferInit();
}

OFCondition DcmPixelData::write(
    DcmOutputStream &outStream,
    const E_TransferSyntax oxfer,
    const E_EncodingType enctype,
    DcmWriteCache *wcache)
{
  errorFlag = EC_Normal;
  if (getTransferState() == ERW_notInitialized) errorFlag = EC_IllegalCall;
  else
  {
    // check if the output transfer syntax is encapsulated and
    // we are not requested to write an uncompressed dataset,
    // for example because this is within an Icon Image Sequence
    DcmXfer xferSyn(oxfer);
    if (xferSyn.usesEncapsulatedFormat() && (! writeUnencapsulated(oxfer)))
    {
      // write encapsulated representation (i.e., compressed image)
      if (getTransferState() == ERW_init)
      {
        DcmRepresentationListIterator found;
        // find a compressed image matching the output transfer syntax
        errorFlag = findConformingEncapsulatedRepresentation(xferSyn, NULL, found);
        if (errorFlag == EC_Normal)
        {
          current = found;
          recalcVR();
          pixelSeqForWrite = (*found)->pixSeq;
          setTransferState(ERW_inWork);
        }
      }
      // write compressed image
      if (errorFlag == EC_Normal && pixelSeqForWrite) errorFlag = pixelSeqForWrite->write(outStream, oxfer, enctype, wcache);
      if (errorFlag == EC_Normal) setTransferState(ERW_ready);
    }
    else if (existUnencapsulated)
    {
      // we're supposed to write an uncompressed image, and we happen to have one available.
      current = repListEnd;
      recalcVR();
      // write uncompressed image
      errorFlag = DcmPolymorphOBOW::write(outStream, oxfer, enctype, wcache);
    }
    else if ((getValue() == NULL) && (current == repListEnd))
    {
      // the PixelData is empty. Write an empty element.
      errorFlag = DcmPolymorphOBOW::write(outStream, oxfer, enctype, wcache);
    } else errorFlag = EC_RepresentationNotFound;
  }
  return errorFlag;
}

OFCondition DcmPixelData::writeXML(
    STD_NAMESPACE ostream &out,
    const size_t flags)
{
    if (current == repListEnd)
    {
        errorFlag = DcmPolymorphOBOW::writeXML(out, flags);
    } else {
        /* pixel sequence (encapsulated data) */
        errorFlag = (*current)->pixSeq->writeXML(out, flags);
    }
    return errorFlag;
}

OFCondition DcmPixelData::writeSignatureFormat(
    DcmOutputStream &outStream,
    const E_TransferSyntax oxfer,
    const E_EncodingType enctype,
    DcmWriteCache *wcache)
{
  errorFlag = EC_Normal;
  if (getTransferState() == ERW_notInitialized) errorFlag = EC_IllegalCall;
  else if (getTag().isSignable())
  {
    DcmXfer xferSyn(oxfer);
    if (xferSyn.usesEncapsulatedFormat() && (! writeUnencapsulated(oxfer)))
    {
      if (getTransferState() == ERW_init)
      {
        DcmRepresentationListIterator found;
        errorFlag = findConformingEncapsulatedRepresentation(xferSyn, NULL, found);
        if (errorFlag == EC_Normal)
        {
          current = found;
          recalcVR();
          pixelSeqForWrite = (*found)->pixSeq;
          setTransferState(ERW_inWork);
        }
      }
      if (errorFlag == EC_Normal && pixelSeqForWrite) errorFlag = pixelSeqForWrite->writeSignatureFormat(outStream, oxfer, enctype, wcache);
      if (errorFlag == EC_Normal) setTransferState(ERW_ready);
    }
    else if (existUnencapsulated)
    {
      current = repListEnd;
      recalcVR();
      errorFlag = DcmPolymorphOBOW::writeSignatureFormat(outStream, oxfer, enctype, wcache);
    }
    else if (getValue() == NULL)
    {
      errorFlag = DcmPolymorphOBOW::writeSignatureFormat(outStream, oxfer, enctype, wcache);
    } else errorFlag = EC_RepresentationNotFound;
  } else errorFlag = EC_Normal;
  return errorFlag;
}

OFCondition DcmPixelData::loadAllDataIntoMemory(void)
{
    if (current == repListEnd)
        return DcmElement::loadAllDataIntoMemory();
    else
        return (*current)->pixSeq->loadAllDataIntoMemory();
}

void DcmPixelData::setNonEncapsulationFlag(OFBool flag)
{
    alwaysUnencapsulated = flag;
}

OFCondition DcmPixelData::getUncompressedFrame(
    DcmItem *dataset,
    Uint32 frameNo,
    Uint32& startFragment,
    void *buffer,
    Uint32 bufSize,
    OFString& decompressedColorModel,
    DcmFileCache *cache)
{
    if ((dataset == NULL) || (buffer == NULL)) return EC_IllegalCall;

    Sint32 numberOfFrames = 1;
    dataset->findAndGetSint32(DCM_NumberOfFrames, numberOfFrames); // don't fail if absent
    if (numberOfFrames < 1) numberOfFrames = 1;

    Uint32 frameSize;
    OFCondition result = getUncompressedFrameSize(dataset, frameSize, existUnencapsulated);
    if (result.bad()) return result;

    // determine the minimum buffer size, which may be frame size plus one pad byte if frame size is odd.
    // We need this extra byte, because the image might be in a different
    // endianness than our host cpu. In this case the decoder will swap
    // the data to the host byte order which could overflow the buffer.
    Uint32 minBufSize = frameSize;
    if (minBufSize & 1) ++minBufSize;

    if (bufSize < minBufSize) return EC_IllegalCall;

    // check frame number
    if (frameNo >= OFstatic_cast(Uint32, numberOfFrames)) return EC_IllegalCall;

    if (existUnencapsulated)
    {
      // we already have an uncompressed version of the pixel data
      // either in memory or in file. We can directly access this using
      // DcmElement::getPartialValue.
      result = getPartialValue(buffer, frameNo * frameSize, frameSize, cache);
      if (result.good()) result = dataset->findAndGetOFString(DCM_PhotometricInterpretation, decompressedColorModel);
    }
    else
    {
      // we only have a compressed version of the pixel data.
      // Identify a codec for decompressing the frame.
      result = DcmCodecList::decodeFrame(
        (*original)->repType, (*original)->repParam, (*original)->pixSeq,
        dataset, frameNo, startFragment, buffer, bufSize, decompressedColorModel);
    }
    return result;
}


OFCondition DcmPixelData::getDecompressedColorModel(
    DcmItem *dataset,
    OFString &decompressedColorModel)
{
    OFCondition result = EC_IllegalParameter;
    if (dataset != NULL)
    {
      if (existUnencapsulated)
      {
        // we already have an uncompressed version of the pixel data either in memory or in file,
        // so just retrieve the color model from the given dataset
        result = dataset->findAndGetOFString(DCM_PhotometricInterpretation, decompressedColorModel);
        if (result == EC_TagNotFound)
        {
          DCMDATA_WARN("DcmPixelData: Mandatory element PhotometricInterpretation " << DCM_PhotometricInterpretation << " is missing");
          result = EC_MissingAttribute;
        }
        else if (result.bad())
        {
          DCMDATA_WARN("DcmPixelData: Cannot retrieve value of element PhotometricInterpretation " << DCM_PhotometricInterpretation << ": " << result.text());
        }
        else if (decompressedColorModel.empty())
        {
          DCMDATA_WARN("DcmPixelData: No value for mandatory element PhotometricInterpretation " << DCM_PhotometricInterpretation);
          result = EC_MissingValue;
        }
    } else {
        // we only have a compressed version of the pixel data.
        // Identify a codec for determining the color model.
        result = DcmCodecList::determineDecompressedColorModel(
          (*original)->repType, (*original)->repParam, (*original)->pixSeq,
          dataset, decompressedColorModel);
      }
    }
    return result;
}

OFBool DcmPixelData::writeUnencapsulated(const E_TransferSyntax xfer)
{
    // There are three cases under which a dataset is written out
    // unencapsulated:
    //
    // - It was already read unencapsulated (handled via alwaysUnencapsulated)
    // - We were told to do so (handled via alwaysUnencapsulated)
    // - This is not the pixel data element on the main level and it exists
    //   unencapsulated.

    if (alwaysUnencapsulated)
        return OFTrue;
    if (DcmXfer(xfer).usesEncapsulatedFormat()) {
        DcmRepresentationListIterator found;
        OFCondition cond = findConformingEncapsulatedRepresentation(xfer, NULL, found);
        if (cond.good()) {
            // We found a suitable encapsulated representation, so encapsulate
            // this element in the output.
            return OFFalse;
        }
    }

    return existUnencapsulated && isNested();
}


OFCondition DcmPixelData::writeJson(STD_NAMESPACE ostream &out,
                                             DcmJsonFormat &format)
{

    // check if we have an empty uncompressed value field.
    // We never encode that as BulkDataURI.
    OFBool emptyValue = OFFalse;
    if ((current == repListEnd) && existUnencapsulated && (getLengthField() == 0))
    {
      emptyValue = OFTrue;
    }

    // now check if the pixel data will be written as
    // BulkDataURI, which is possible for both uncompressed
    // and encapsulated pixel data.
    OFString value;
    if ((! emptyValue) && format.asBulkDataURI(getTag(), value))
    {
        /* write JSON Opener */
        writeJsonOpener(out, format);

        /* return defined BulkDataURI */
        format.printBulkDataURIPrefix(out);
        DcmJsonFormat::printString(out, value);

        /* write JSON Closer */
        writeJsonCloser(out, format);
        return EC_Normal;
    }

    // No bulk data URI, we're supposed to write as InlineBinary.
    // This is only defined for uncompressed data, not for any of the
    // encapsulated encodings.

    // check the current pixel data representation
    if ((current == repListEnd) && existUnencapsulated)
    {
      // current pixel data representation is uncompressed (and available).

      /* write JSON Opener */
      writeJsonOpener(out, format);

      /* for an empty value field, we do not need to do anything */
      if (getLengthField() > 0)
      {
         /* encode binary data as Base64 */
         format.printInlineBinaryPrefix(out);
         out << "\"";
         /* adjust byte order to little endian */
         Uint8 *byteValues = OFstatic_cast(Uint8 *, getValue(EBO_LittleEndian));
         OFStandard::encodeBase64(out, byteValues, OFstatic_cast(size_t, getLengthField()));
         out << "\"";
      }
      /* write JSON Closer */
      writeJsonCloser(out, format);
      return EC_Normal;
    }

    /* write JSON Opener and Closer, because otherwise the output is not valid JSON */
    writeJsonOpener(out, format);
    writeJsonCloser(out, format);

    // pixel data is encapsulated, return error
    return EC_CannotWriteJsonInlineBinary;
}