File: ofuuid.cc

package info (click to toggle)
dcmtk 3.6.9-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 95,648 kB
  • sloc: ansic: 426,874; cpp: 318,177; makefile: 6,401; sh: 4,341; yacc: 1,026; xml: 482; lex: 321; perl: 277
file content (357 lines) | stat: -rw-r--r-- 11,171 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 *
 *  Copyright (C) 2011-2022, OFFIS e.V.
 *  All rights reserved.  See COPYRIGHT file for details.
 *
 *  This software and supporting documentation were developed by
 *
 *    OFFIS e.V.
 *    R&D Division Health
 *    Escherweg 2
 *    D-26121 Oldenburg, Germany
 *
 *
 *  Module:  ofstd
 *
 *  Author:  Uli Schlachter
 *
 *  Purpose: Definitions for generating UUIDs, as defined by ITU-T X.667
 *
 */


#include "dcmtk/config/osconfig.h"

#include "dcmtk/ofstd/ofuuid.h"
#include "dcmtk/ofstd/ofdefine.h"
#include "dcmtk/ofstd/ofthread.h"
#include "dcmtk/ofstd/ofstd.h"

BEGIN_EXTERN_C
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
END_EXTERN_C

#ifdef HAVE_WINDOWS_H
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif


static OFMutex UUIDMutex;
static Uint32 last_time[2];
static int uuids_this_tick;
static Uint16 last_clock_sequence;
static Uint8 last_node[6];
static OFBool initialized = OFFalse;


static void get_random(OFRandom &rnd, void *dest, size_t num)
{
    Uint8* ptr = OFreinterpret_cast(Uint8*, dest);
    while (num > 0) {
        *ptr++ = OFstatic_cast(Uint8, rnd.getRND16());
        num--;
    }
}

static void get_node(OFRandom &rnd)
{
    /* FIXME: This is supposed to be a MAC address and we are supposed to
     * re-check the MAC address each time we generate a UUID and do some stuff
     * if the MAC changes.
     */
    get_random(rnd, &last_node[0], sizeof(last_node));
}

#ifdef _WIN32
static void get_system_time(Uint32 *out)
{
    ULARGE_INTEGER tm;

    GetSystemTimeAsFileTime(OFreinterpret_cast(FILETIME *, &tm));

    /* tm is number of 100ns ticks since Jan 01 1601, but we want the number of
     * ticks since Oct 15 1582 (since a new calendar system has been introduced
     * at that time).
     */
    tm.QuadPart += OFstatic_cast(unsigned __int64, 1000 * 1000 * 10) // seconds
        * OFstatic_cast(unsigned __int64, 60 * 60 * 24) // days
        * OFstatic_cast(unsigned __int64, 17 + 30 + 31 + 365 * 18 + 5); // number of days
    out[0] = tm.LowPart;
    out[1] = tm.HighPart;
}
#else
static void get_system_time(Uint32 *out)
{
    struct timeval tp;
    Uint32 sec_factor = 1000 * 1000 * 10;
    Uint32 add;
    Uint32 ah, al, bh, bl;

    gettimeofday(&tp, NULL);

    /* tp is offset from Jan 1 1970, but we want Oct 15 1582 */
    out[1] = 0x01B21DD2;
    out[0] = 0x13814000;

    add = OFstatic_cast(Uint32, tp.tv_usec * 10);
    if (OFStandard::check32BitAddOverflow(out[0], add))
        out[1]++;
    out[0] += add;

    // We have to add tp.tv_sec * sec_factor, but that doesn't fit into 32 bits.
    ah = OFstatic_cast(Uint32, tp.tv_sec >> 16);
    al = tp.tv_sec & 0xffff;
    bh = sec_factor >> 16;
    bl = sec_factor & 0xffff;

    // tv_sec * sec_factor = (ah * 2^16 + al) * (bh * 2^16 + bl)
    //  = ah * bh * 2^32 + (ah * bl + al * bh) * 2^16 + (al * bl)
    add = al*bl;
    if (OFStandard::check32BitAddOverflow(out[0], add))
        out[1]++;
    out[0] += add;

    out[1] += ah * bh;

    // We have to add (ah * bl + al * bh) * 2^16. First we add the lower
    // 16 bits of that summand to out[0], then we add the higher 16 bits
    // directly to out[1].
    add = (((ah * bl) + (al * bh)) & 0xffff) << 16;
    if (OFStandard::check32BitAddOverflow(out[0], add))
        out[1]++;
    out[0] += add;

    add = (((ah * bl) + (al * bh)) & 0xffff0000) >> 16;
    out[1] += add;
}
#endif

static void get_time(Uint32 *out)
{
    get_system_time(out);
    if (out[0] == last_time[0] && out[1] == last_time[1]) {
        uuids_this_tick++;
        /* FIXME: If this gets to high, we are supposed to busy loop. For now
         * let's assume that we aren't called that often. (See A.3.3)
         * FIXME: Do we have to handle the integer overflow? I think no since
         * the lowest bits should always be zero and if we fix the above FIXME,
         * this one should be gone, too.
         */
        out[0] += uuids_this_tick;
    } else
        uuids_this_tick = 0;
}

void OFUUID::generate()
{
    Uint32 system_time[2];
    Uint16 clock_sequence;

    /* See ITU-T X.667, Annex A */
    UUIDMutex.lock();

    if (!initialized) {
        get_node(rnd);
        get_random(rnd, &last_clock_sequence, sizeof(last_clock_sequence));
        initialized = OFTrue;
    }

    get_time(&system_time[0]);
    /* If time went backwards, increment clock sequence */
    if (system_time[0] < last_time[0] || (system_time[0] == last_time[0] && system_time[1] < last_time[1]))
        last_clock_sequence++;
    clock_sequence = last_clock_sequence;

    last_time[0] = system_time[0];
    last_time[1] = system_time[1];

    UUIDMutex.unlock();

    /* Bits 0-31 of time (32 bits) */
    time_low = system_time[0];
    /* Bits 32-47 of time (16 bits) */
    time_mid = OFstatic_cast(Uint16, system_time[1] & 0xffff);
    /* Bits 48-59 of time (11 bits) */
    version_and_time_high = OFstatic_cast(Uint16, (system_time[1] >> 16) & 0xeff);
    /* Version number, bits 15 to 12 of version_and_time_high */
    version_and_time_high |= 0x100;
    /* Sequence, lowest 8 bits of clock_sequence */
    clock_seq_low = OFstatic_cast(Uint8, clock_sequence & 0xff);
    /* Bits 8-13 of clock_sequence */
    variant_and_clock_seq_high = OFstatic_cast(Uint8, (clock_sequence >> 8) & 0xcf);
    /* Version */
    variant_and_clock_seq_high |= 0x80;
    /* And the node value */
    memcpy(&node, &last_node, sizeof(node));
}

OFUUID::OFUUID()
: time_low(0),
  time_mid(0),
  version_and_time_high(0),
  variant_and_clock_seq_high(0),
  clock_seq_low(0),
  node(),
  rnd()
{
    generate();
}

OFUUID::OFUUID(const struct BinaryRepresentation& rep)
: time_low(0),
  time_mid(0),
  version_and_time_high(0),
  variant_and_clock_seq_high(0),
  clock_seq_low(0),
  node()
{
    time_low = rep.value[0];
    time_low = time_low << 8 | rep.value[1];
    time_low = time_low << 8 | rep.value[2];
    time_low = time_low << 8 | rep.value[3];
    time_mid = rep.value[4];
    time_mid = OFstatic_cast(Uint16, time_mid << 8 | rep.value[5]);
    version_and_time_high = rep.value[6];
    version_and_time_high = OFstatic_cast(Uint16, version_and_time_high << 8 | rep.value[7]);
    variant_and_clock_seq_high = rep.value[8];
    clock_seq_low = rep.value[9];
    memcpy(&node[0], &rep.value[10], sizeof(node));
}

void OFUUID::getBinaryRepresentation(struct BinaryRepresentation& rep) const
{
    rep.value[0] = OFstatic_cast(Uint8, (time_low >> 24) & 0xff);
    rep.value[1] = OFstatic_cast(Uint8, (time_low >> 16) & 0xff);
    rep.value[2] = OFstatic_cast(Uint8, (time_low >>  8) & 0xff);
    rep.value[3] = OFstatic_cast(Uint8, (time_low >>  0) & 0xff);
    rep.value[4] = OFstatic_cast(Uint8, (time_mid >>  8) & 0xff);
    rep.value[5] = OFstatic_cast(Uint8, (time_mid >>  0) & 0xff);
    rep.value[6] = OFstatic_cast(Uint8, (version_and_time_high >> 8) & 0xff);
    rep.value[7] = OFstatic_cast(Uint8, (version_and_time_high >> 0) & 0xff);
    rep.value[8] = variant_and_clock_seq_high;
    rep.value[9] = clock_seq_low;
    memcpy(&rep.value[10], &node[0], sizeof(node));
}

OFString& OFUUID::toString(OFString& result, E_Representation representation) const
{
    OFOStringStream stream;
    print(stream, representation);
    OFSTRINGSTREAM_GETSTR(stream, result_ptr)
    result = result_ptr;
    OFSTRINGSTREAM_FREESTR(result_ptr);
    return result;
}

STD_NAMESPACE ostream& OFUUID::print(STD_NAMESPACE ostream& stream, E_Representation representation) const
{
    switch (representation) {
    case ER_RepresentationOID:
        stream << "2.25.";
        /* Fall through */
    case ER_RepresentationInteger:
        printInteger(stream);
        break;
    case ER_RepresentationURN:
        stream << "urn:uuid:";
        /* Fall through */
    case ER_RepresentationHex:
        printHex(stream);
        break;
    }

    return stream;
}

void OFUUID::printHex(STD_NAMESPACE ostream& stream) const
{
    STD_NAMESPACE ios_base::fmtflags flags = stream.flags(STD_NAMESPACE ios_base::hex);
    char fill_char = stream.fill('0');

    stream << STD_NAMESPACE setw(8) << time_low << "-";
    stream << STD_NAMESPACE setw(4) << time_mid << "-";
    stream << STD_NAMESPACE setw(4) << version_and_time_high << "-";
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, variant_and_clock_seq_high);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, clock_seq_low) << "-";
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[0]);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[1]);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[2]);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[3]);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[4]);
    stream << STD_NAMESPACE setw(2) << OFstatic_cast(int, node[5]);

    stream.flags(flags);
    stream.fill(fill_char);
}

static void divide_by_10(Uint32 n, Uint32& res, Uint32& rem)
{
    // This calculates res = m / d and rem = m % d where m = n + rem * 2^32

    // First we do the higher half of the division
    Uint32 next = (rem << 16) | (n >> 16);
    Uint32 tmp = next / 10;
    rem = next % 10;

    // Then we do the same with the lower half
    next = (rem << 16) | (n & 0xffff);
    res = (next / 10) + (tmp << 16);
    rem = next % 10;
}

void OFUUID::printInteger(STD_NAMESPACE ostream& stream) const
{
    // Oh sh.., converting a 128-bit integer to its base 10 representation. Not funny.

    // A 128-bit int has at most 39 characters in base 10
    char buffer[40];
    // Our current 128-bit state
    Uint32 data[4];
    struct BinaryRepresentation representation;
    /* Current buffer index (we are generating the last character of the output
     * first, so we have write it into buffer in reverse order) */
    int idx = OFstatic_cast(int, sizeof(buffer) - 1);

    // First we convert the 128-bit integer into four 32-bit integers
    getBinaryRepresentation(representation);
    for (int i = 0; i < 4; i++) {
        data[i]  = representation.value[0 + 4*i] << 24;
        data[i] |= representation.value[1 + 4*i] << 16;
        data[i] |= representation.value[2 + 4*i] <<  8;
        data[i] |= representation.value[3 + 4*i] <<  0;
    }

    if (data[0] == 0 && data[1] == 0 && data[2] == 0 && data[3] == 0) {
        // This should never happen, but we can still handle it! :-)
        stream << "0";
        return;
    }

    // As long as the result isn't 0, divide by 10 and print the remainder
    while (data[0] != 0 || data[1] != 0 || data[2] != 0 || data[3] != 0) {
        Uint32 rem = 0;
        divide_by_10(data[0], data[0], rem);
        divide_by_10(data[1], data[1], rem);
        divide_by_10(data[2], data[2], rem);
        divide_by_10(data[3], data[3], rem);

        assert(rem <= 9);
        buffer[--idx] = OFstatic_cast(char, rem + '0');
    }
    assert(idx >= 0);
    buffer[sizeof(buffer) - 1] = '\0';
    stream << &buffer[idx];
}

OFBool OFUUID::operator==(const OFUUID& o) const
{
    struct BinaryRepresentation own;
    struct BinaryRepresentation other;
    getBinaryRepresentation(own);
    o.getBinaryRepresentation(other);

    return memcmp(&own, &other, sizeof(struct BinaryRepresentation)) == 0;
}